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Abstract: Doxorubicin (DXB) is one of the most commonly used anticancer agents for treating solid
and hematological malignancies; however, DXB-induced cardiorenal toxicity presents a limiting factor
to its clinical usefulness in cancer patients. Costunolide (COST) is a naturally occurring sesquiter-
pene lactone with excellent anti-inflammatory, antioxidant and antiapoptotic properties. This study
evaluated the effect of COST on DXB-induced cardiorenal toxicity in rats. Rats were orally treated
with COST for 4 weeks and received weekly 5 mg/kg doses of DXB for three weeks. Cardiorenal
biochemical biomarkers, lipid profile, oxidative stress, inflammatory cytokines, histological and
immunohistochemical analyses were evaluated. DXB-treated rats displayed significantly increased
levels of lipid profiles, markers of cardiorenal dysfunction (aspartate aminotransferase, creatine
kinase, lactate dehydrogenase, troponin T, blood urea nitrogen, uric acid and creatinine). In addition,
DXB markedly upregulated cardiorenal malondialdehyde, tumor necrosis factor-α, interleukin-1β,
interleukin-6 levels and decreased glutathione, superoxide dismutase and catalase activities. COST
treatment significantly attenuated the aforementioned alterations induced by DXB. Furthermore,
histopathological and immunohistochemical analyses revealed that COST ameliorated the histopatho-
logical features and reduced p53 and myeloperoxidase expression in the treated rats. These results
suggest that COST exhibits cardiorenal protective effects against DXB-induced injury presumably via
suppression of oxidative stress, inflammation and apoptosis.

Keywords: costunolide; cardiorenal protection; doxorubicin; oxidative stress; antioxidant

1. Introduction

Doxorubicin (DXB), an anthracycline anticancer agent represents one of the most
commonly used anticancer drugs in clinical practice for treating several hematological and
solid malignancies [1,2]. Despite its clinical usefulness, DXB exerts significant cardiorenal
toxicity upon continuous usage which could be life-threatening [1,3]. DXB-induced car-
diotoxicity and nephrotoxicity have been extensively linked to the generation of reactive
oxygen species, oxidative stress and deception of cellular antioxidant machineries leading
to oxidative damage of renal and cardiac cellular structures [4–6].

DXB-induced cardiac toxicity is generally typified by high concentrations of lactate
dehydrogenase, creatine kinase as well as cardiac morphological and functional alterations
resulting in cardiomyopathy and heart failure [7–9], while DXB-induced nephrotoxicity is
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characterized by progressive loss of kidney structure and function, increased glomerular
capillary permeability and tubular atrophy resulting in nephropathy [2,6].

As extensively illustrated in numerous reports, DXB-induced toxicity is primarily
facilitated by the accumulation of ROS and oxidative stress, which consequently results in
the stimulation of several other pathways related to cellular apoptosis and inflammation
that can be lethal to several organs in the body [6]. As a means of mitigating chemotherapy-
induced toxicity, antioxidant therapies have been recommended as a preventive approach
for DOX-induced toxicities [10].

Costunolide (COST; Figure 1A) is a naturally occurring sesquiterpene lactone isolated
from several Compositae plants. Several notable biological activities have been attributed
to COST, notably its anticancer efficacy against bone, breast and blood cancer [11,12].
COST was also reported to show several other bioactivities including antioxidant, anti-
inflammatory, antiulcer, antidiabetic and neuroprotective properties [11,13–15]. However,
there are no reports on the protective effects of COST on DXB-induced toxicity, including
cardiotoxicity and nephrotoxicity. Due to the reported antioxidant and anti-inflammatory
potentials of COST, this present study delineated the protective effects of COST against
DXB-elicited oxidative cardiac and renal damage in rats. The effect of COST on cardiore-
nal antioxidant activities, inflammatory mediators, biochemical, histoarchitecture and
immunohistochemical alterations in DXB-induced cardiorenal toxicity was evaluated.
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Figure 1. (A): Chemical structure of costunolide. Effect of costunolide on: (B): body weight gain, (C): 
heart weight, (D): kidney weight, (E): heart/body weight ratio, (F): kidney/body weight ratio. ** Sta-
tistically significant (p < 0.01) when compared with NCG and COST groups. && Statistically signif-
icant (p < 0.01) compared with DXB group. *** Statistically significant (p < 0.05) compared with NCG 
and COST groups.## Statistically significant (p < 0.05) compared with DXB group. 

2. Results 
2.1. Effect of COST on Body, Heart and Kidney Weights 

As shown in Figure 1, the results indicated a significant decrease in the body weight 
of DXB control rats compared to both HCG and COST treated rats. Whereas in the COST 
+ DXB-treated rats, there was a conspicuous increase in body weight compared to the DXB 
rats. Furthermore, treatment of DXB-induced rats with COST significantly improved car-
diac and renal weights, as well as attenuated renal/body weight ratio compared to the 
DXB group (Figure 1).  
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COST rats (Figure 2). In contrast, treatment of rats with COST significantly attenuated 
DXB-induced toxicity by markedly reducing the serum concentrations of these cardi-
orenal biomarkers compared to the DXB-treated rats (Figure 2). 
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Figure 1. (A): Chemical structure of costunolide. Effect of costunolide on: (B): body weight gain,
(C): heart weight, (D): kidney weight, (E): heart/body weight ratio, (F): kidney/body weight ratio.
** Statistically significant (p < 0.01) when compared with NCG and COST groups. && Statistically
significant (p < 0.01) compared with DXB group. *** Statistically significant (p < 0.05) compared with
NCG and COST groups. ## Statistically significant (p < 0.05) compared with DXB group.
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2. Results
2.1. Effect of COST on Body, Heart and Kidney Weights

As shown in Figure 1, the results indicated a significant decrease in the body weight
of DXB control rats compared to both HCG and COST treated rats. Whereas in the
COST + DXB-treated rats, there was a conspicuous increase in body weight compared
to the DXB rats. Furthermore, treatment of DXB-induced rats with COST significantly im-
proved cardiac and renal weights, as well as attenuated renal/body weight ratio compared
to the DXB group (Figure 1).

2.2. Effect of COST on Cardiorenal Function Markers

The results indicated that the administration of DXB significantly increased the serum
levels of LDH, TnT, AST, CK-MB, BUN, uric acid and Scr compared to NCG and COST rats
(Figure 2). In contrast, treatment of rats with COST significantly attenuated DXB-induced
toxicity by markedly reducing the serum concentrations of these cardiorenal biomarkers
compared to the DXB-treated rats (Figure 2).
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Figure 3. Effect of costunolide on: (A): serum triglycerides and total cholesterol, (B): serum LDL-C 
and HDL-C. ** Statistically significant (p < 0.01) compared with NCG and COST groups. && Statis-
tically significant (p < 0.01) compared with DXB group. 

2.4. Effect of COST Treatment on Cardiorenal Antioxidants Activities  
As indicated in Figure 4A–C, treatment with DXB led to marked diminution in car-

diorenal antioxidant activities (GSH, SOD and CAT), while DXB administration also en-
hanced cardiorenal lipid peroxidation (MDA) levels compared to NCG and COST rats 
(Figure 4D). Whereas the protective effect of COST in reducing oxidative cardiorenal dam-
age was evident in the restoration of cardiorenal antioxidant levels, the activities of SOD, 
GSH and CAT were significantly restored to levels similar to the NCG and COST groups. 

Figure 2. Effect of costunolide on: (A): CK-MB, (B): LDH, (C): Troponin T, (D): AST, (E): BUN,
(F): creatinine, (G): uric acid. ** Statistically significant (p < 0.01) compared with NCG and COST
groups. && Statistically significant (p < 0.01) compared with DXB group.
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2.3. Effects of COST on Serum Lipid Profiles

As elucidated in Figure 3, DXB-treated rats showed notable disruptions in serum lipid
profiles as indicated by worthy increases in the levels of TG, TC and LDL-C accompa-
nied by significant decline in the serum HDL level when compared to NCG and COST
rats. Contrariwise, treatment with COST substantially reduced TG, TC and LDL-C and
simultaneously increased HDL levels compared to the DXB group (Figure 3).
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Figure 3. Effect of costunolide on: (A): serum triglycerides and total cholesterol, (B): serum LDL-C 
and HDL-C. ** Statistically significant (p < 0.01) compared with NCG and COST groups. && Statis-
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Figure 3. Effect of costunolide on: (A): serum triglycerides and total cholesterol, (B): serum LDL-C and
HDL-C. ** Statistically significant (p < 0.01) compared with NCG and COST groups. && Statistically
significant (p < 0.01) compared with DXB group.

2.4. Effect of COST Treatment on Cardiorenal Antioxidants Activities

As indicated in Figure 4A–C, treatment with DXB led to marked diminution in cardiore-
nal antioxidant activities (GSH, SOD and CAT), while DXB administration also enhanced
cardiorenal lipid peroxidation (MDA) levels compared to NCG and COST rats (Figure 4D).
Whereas the protective effect of COST in reducing oxidative cardiorenal damage was ev-
ident in the restoration of cardiorenal antioxidant levels, the activities of SOD, GSH and
CAT were significantly restored to levels similar to the NCG and COST groups. Meanwhile,
MDA levels were markedly decreased in the COST + DOX treated group in comparison to
the DXB control group (Figure 4).
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Figure 4. Effect of costunolide on: (A): SOD, (B): CAT, (C): GSH, (D): MDA. ** Statistically significant
(p < 0.01) compared with NCG and COST groups. && Statistically significant (p < 0.01) compared
with DXB group.
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2.5. Effect of COST Treatment on Cardiorenal Histopathological Analysis

The representative histopathological images of the cardiorenal tissues are shown
in Figure 5. The cardiac tissue of the DXB group showed histopathological alteration
consistent with inflammatory cell infiltration and cardiac fiber necrosis, which were clearly
absent in the NCG and COST group. Treatment with COST evidently restored the altered
cardiac histoarchitecture compared to the untreated DXB group.
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Figure 5. H&E stained photomicrography of the kidney and cardiac tissues from all tested groups.
Kidney: red arrows; glomerular atrophy, black arrow; infiltration of inflammatory cells, green arrow;
disintegration of renal tubules. Heart: blue arrow; inflammatory cells, brown arrows; degeneration of
myofibrils (200×, 50 µm).

The representative microscopic sections of the kidney tissues of the NCG and COST
groups revealed normal kidney morphology of the cortical tubules and the glomerulus
without any evident alterations. In contrast, the DXB-treated group showed significant
deteriorative changes including infiltration of inflammatory cells, glomerular atrophy,
dilation of the Bowmans capsules as well as disintegration of renal tubules. Whereas in
the COST treated group, significant alleviation of these alterations as well as significant
preservation of the integrity of the renal architecture was observed when compared to the
DXB alone treated group (Figure 5).

2.6. Effects of COST Treatment of Cardiorenal Proinflammatory Cytokines

In the DXB alone treated group, significant increases in cardiorenal levels of proin-
flammatory cytokines viz TNF-α, IL-6 and IL-1β were observed compared to the NCG and
COST groups (Figure 6A–C). Treatment with COST induced marked decreases in cardiore-
nal concentrations of TNF-α, IL-6 and IL-1β compared to DXB group (Figure 6A–C).

2.7. Effects of COST Treatment of Cardiorenal p53 and Myeloperoxidase

The effect of COST on p53 and MPO expression was assessed in cardiorenal tissues
using immunohistochemical analysis. Compared with the HCG and COST group, the DXB
group showed significantly intense positive staining for p53 (Figure 7) and MPO (Figure 8)
in both cardiac and renal tissues. On the contrary, treatment of DXB-injected rats with
COST markedly reduced the expression of p53 and MPO compared to the DXB untreated
group (Figure 7A,B and Figure 8A,B).
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3. Discussion

DXB represents a prominent antitumor agent for the treatment of a wide range of
malignancies [16]; however, prolonged administration of DXB has prevailing adverse ef-
fects including cardiotoxicity, nephrotoxicity and neurotoxicity. The multi-organ injury
associated with DXB has been widely linked to the increased production of oxidative
radicals, oxidative stress and depleted cellular antioxidant availability, resulting in ox-
idative tissue damage [17]. Prevailing evidence from numerous studies have illustrated
DXB-induced oxidative injury in the heart, kidney, brain and testes [6,18–20]. Therefore,
exploring therapies that can prevent this oxidative multi-organ damage exerted by DXB in
cancer patients is warranted. This present study investigated the protective effects of COST
against DXB-induced cardiorenal toxicity in rats. The results obtained clearly showed
that the administration of multiple doses of DXB induced oxidative damage, resulting
in cardiorenal, biochemical and pathological alterations, whereas treatment with COST
significantly ameliorated the oxidative induced damage.

In the current study, DXB-treated animals showed significantly increased serum levels
of BUN, Scr, uric acid, LDH, TnT, AST and CK-MB. The increase in the concentrations
of these serum cardiorenal biomarkers corresponds to compromised cardiorenal architec-
ture including myocardial and tubular injury. The disruption in cellular membranes of
the cardiac and renal tissues ultimately results in the release of these enzymes into the
blood [7,21,22]. Furthermore, increases in these serum cardiorenal biomarkers following
DXB administration corresponded with significant histopathological injury as revealed by
myocardial and renal tubule degeneration, infiltration of inflammatory cells, as well as
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disarrangement of cardiorenal tissues. These results corroborated those of previous stud-
ies [22,23]. Contrariwise, the results obtained indicated that COST significantly improved
the levels of these serum cardiorenal biomarkers as well as ameliorated histopathological
damage accrued on cardiac and renal tissues by DXB.

Several studies have shown the prominent role of lipids in cardiovascular diseases and
the role of DXB-induced hyperlipidemia has been well documented [24,25]. DXB interferes
with the metabolism and synthesis of lipids resulting in high serum and cardiac lipid pro-
files [9,16]. In addition, it was reported that treatments exhibiting antihyperlipidemic effects
can decrease DXB-induced cardiotoxicity [26,27]. The administration of DXB was associated
with significant increases in serum TG, TC and LDL-C, while HDL was markedly reduced,
corroborating the findings of previous studies [24,25]. COST significantly ameliorated
DOX-induced hyperlipidemia in the treated rats.

As earlier stated, the ability of DXB to instigate ROS and oxidative stress is the most
prevailing factor associated with cardiorenal toxicity associated with DXB. A growing
body of evidences has proposed the implication of ROS-prompted oxidative injury in
multiple pathways involved in DXB-induced toxicity [4]. It is well known that ROS stimu-
lates the generation of reactive radicals that can interact with superoxide radicals leading
to the generation of highly toxic peroxynitrite species, resulting in damage to proteins
and macromolecules forming the basis of cardiorenal damage [6]. The results from this
study revealed DXB administration instigated cardiorenal oxidative stress, as displayed by
marked regression in GSH, SOD and CAT activities and elevated MDA levels. The decrease
in these cellular antioxidative enzyme activities was in line with several earlier studies
suggesting the inability of the renal and cardiac tissues to scavenge the increase in toxic
reactive oxygen species and lipid peroxides [7,28,29]. Previous studies have illustrated the
antioxidant prowess of costunolide in several models of toxicity. Mao et al. [17], reported
the protective effects of COST against acute liver injury induced by D-galactosamine and
LPS due to its antioxidative activity. Similarly, costunolide also showed protective effects
against ethanol-induced gastric ulcer partly by increasing SOD activity and decreasing
MDA levels [14]. In this study, COST treatment significantly increased SOD, GSH and CAT
activities in the heart and kidneys of DXB-induced rats.

Moreover, increased generation of ROS and oxidative stress can exacerbate the in-
flammatory cascade, leading to cardiorenal dysfunction. Another critical factor involved
in DXB-induced toxicity is inflammation, which involves the degradation of NF-κB pro-
tein and subsequent enhancement of proinflammatory cytokine generation [30]. The
involvement of several proinflammatory cytokines particularly IL-6, IL-1β and TNF-α in
DXB-induced cardiorenal toxicity was extensively highlighted by previous studies [31,32].
Oxidative-induced translocation and modulation of NF-κB to the nucleus stimulates the
transcription of proinflammatory cytokine genes [7,30,33,34]. Moreover, a previous study
indicated that DXB significantly activated NF-κB and IKKα, which subsequently modulated
the levels of TNF-α, IL-1β and IL-6 [30]. The overexpression of these proinflammatory cy-
tokines together with other inflammatory related mediators results in severe consequences.
In addition, DXB administration also significantly increased the stain intensity of MPO
in cardiorenal tissues suggesting neutrophil infiltration. It is interesting to note that the
anti-inflammatory effects of COST have been widely reported in many studies. Xie et al.
indicated the COST significantly suppressed IL-1β, IL-6, TNF-α and NF-κB in dextran
sulfate treated mice [35]. In another study, COST attenuated lipoteichoic acid-induced acute
lung injury by reducing TNF-α, IL-6 and MAPK inflammatory pathway [36]. In the present
study, treatment of DXB-administered rats with COST significantly attenuated cardiorenal
proinflammatory cytokine levels (TNF-α, IL-1β and IL-6), revealing another facet of the
cardioprotective properties of COST. The results obtained in this study corroborated those
of preceding studies.

Apoptosis was also identified as one of the several mechanisms associated with
DXB-induced cardiorenal injury. Several apoptotic proteins were shown to be critically
upregulated in cardiorenal tissue toxicity following DXB intoxication [3,4]. Exposure to
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DXB significantly increased cardiorenal expression of p53, an important apoptotic mediator.
Earlier studies demonstrated that DXB toxicity induces up-regulation in p53 protein in
the kidney, testes and cardiac tissues [37–40]. However, COST treatment down-regulated
cardiorenal apoptosis by inhibiting increases in p53 intensity, thus showing protective
effects against DXB-mediated toxicity.

4. Materials and Methods
4.1. Chemicals and Reagents

Costunolide was gratefully provided by Professor Jian Tang (Bozhou University,
China). DXB was the product of Fresenius Kabi Oncology Ltd., Haryana, India. The kits
used for assaying superoxide dismutase (SOD), malondialdehyde (MDA), catalase (CAT)
and glutathione (GSH) were products of Jiancheng Biotechnology Science, Nanjing, China.
ELISA kits for the estimation of tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6
were procured from Abcam (Cambridge, UK).

4.2. Animals and Experimental Treatment

A total of 24 Sprague–Dawley rats (aged 8 weeks) of specific pathogen-free grade were
accommodated in cages with six rats each in an air-conditioned room with the temperature
set at 22± 2 ◦C, and a 12 h/12 h light/darkness diurnal cycle. The animals had unrestricted
access to food and water and were acclimatized for 7 days prior to the commencement
of the experiment. The experimental protocol was approved by the Ethics Committee of
Wannan Medical College Affiliated Yijishan Hospital, China (WNYXYYJSYY-2021-1008).
After the period of acclimatization, the rats were unbiasedly allotted into four groups
as follows:

Group 1: Healthy control group (HCG), received 5% DMSO orally for 4 weeks
Group 2: DXB control group (DXB), received 5% DMSO orally for 4 weeks
Group 3: COST + DXB group, received COST (50 mg/kg) orally for 4 weeks.
Group 4: COST group (COST), received COST (50 mg/kg body weight) orally for 4 weeks.

The rats in the DXB and COST + DXB groups were intraperitoneally administered with
5 mg/kg of DXB once a week for three weeks (total dose: 15 mg/kg) from the second week
to the fourth week of treatment to induce cardiorenal toxicity, while the rats in the HCG and
COST groups were also intraperitoneally administered with the same volume of normal
saline instead of DXB during the same period. The doses of COST and DXB used in this
study were adopted from previous studies [6,41,42]. After the treatment, the animals were
fasted overnight, anesthetized with thiopental sodium and blood samples were collected
for serum biochemical analysis. The cardiac and renal tissues were harvested, weighed and
preserved at −80 ◦C for biochemical assays. Fresh tissue samples were also preserved in
10% buffered formalin solution for histopathological and immunohistochemical analyses.

4.3. Biochemical Assays

The blood samples were centrifuged, and the serum obtained was used for determining
lactate dehydrogenase (LDH), troponin T (TnT), aspartate transaminase (AST), creatine
kinase-MB (CK-MB), blood urea nitrogen (BUN), uric acid, creatinine (Scr), lipids (total
cholesterol (TC), triglycerides (TG), low density lipoprotein cholesterol (LDL-C) and high
density lipoprotein (HDL)).

4.4. Antioxidant and Proinflammatory Cytokines Parameters

The cardiorenal tissues were centrifuged in phosphate-buffered saline and then cen-
trifuged at 12,000× g for 15 min at 4 ◦C. The tissue homogenate obtained after decanting
was used for further assessing oxidative stress parameters (MDA, SOD, CAT and GSH) us-
ing biochemical kits. Moreover, the levels of TNF-α, IL-6 and IL-1β in the cardiac and renal
tissue homogenates were assayed using ELISA kits following the manufacturer’s protocol.
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4.5. Hematoxylin and Eosin Staining

Cardiorenal tissues fixed in 10% buffered formalin were dehydrated with alcohol,
embedded in paraffin wax and cut into 5 µM sections. The tissues were further stained with
hematoxylin and eosin. The stained sections were visualized under a light microscope.

4.6. Immunohistochemical Expression of p53 and Myeloperoxidase

For immunohistochemistry analysis, the paraffin embedded tissue sections were rehy-
drated in xylene and then rehydrated by utilizing graded ethanol solutions. Following this,
sections were immunostained with primary antibodies (anti-p53 and anti-MPO antibodies)
at 4 ◦C overnight. Thereafter, the slides were washed with PBS and further incubated
with secondary antibodies at 4 ◦C for 2 h. Sections were further treated with a solution of
3,3′-diaminobenzidine with 0.03% hydrogen peroxide for 10 min and counter stained with
hematoxylin. The slides were visualized under a light microscope and immunohistochemi-
cal quantification was performed with image-J software.

4.7. Statistical Analysis

All data were presented as mean ± standard deviation (SD) and analyzed using
GraphPad Prism 5 software (San Diego, CA, USA). Statistical differences between groups
were analyzed using one-way ANOVA with Bonferroni post-test. Statistical significance
was set at p < 0.05.

5. Conclusions

In conclusion, the present study demonstrated that COST exerted cardiorenal pro-
tective effects by modulating antioxidant defense, reducing inflammation, apoptosis and
preventing damage to cardiorenal structures. Since oxidative stress is considered to play
a vital role in the pathophysiology of DXB-induced cardiorenal toxicity, and consider-
ing that COST significantly ameliorated oxidative stress and inflammatory biomarkers
in DXB treated rats, it is therefore reasonable to hypothesize that the cardiorenal pro-
tective effects of COST may be largely mediated through its antioxidant activity and
anti-inflammatory properties.
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