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Abstract: Particulate matter (PM2.5) pollution is a threat to public health, and environmental taxation
is an important regulatory mode controlling PM2.5 pollution. In 2018, China implemented the
Environmental Protection Tax Law (EPTL) targeting PM2.5 pollution. Based on in-situ monitoring
and emission inventory data, a Bayesian hierarchical spatiotemporal model combining a two-period
trends difference method was employed to measure the abatement effects of China’s EPTL on PM2.5

pollution (AEEPTLPM). On this basis, a spatial spillover index (SSI) of the AEEPTLPM is proposed.
Applying this index, we calculated the spatial spillover characteristics of the AEEPTLPM in mainland
China at a provincial scale in 2018–2019. The results show that the EPTL has had significant abatement
effects on both in-situ-monitored PM2.5 concentrations and local total industrial PM2.5 emissions.
Additionally, the two types of AEEPTLPM display distinct spatial heterogeneity. A correlation
between the AEEPTLPM and the degree of PM2.5 pollution was observed; areas with serious PM2.5

pollution have higher AEEPTLPM levels, and vice versa. The SSI indicates that the AEEPTLPM
exhibits significant spatial spillover characteristics, and spatial heterogeneity is also present.

Keywords: environmental protection tax; PM2.5 pollution; abatement effect; spatial spillover; bayesian
statistics; emission inventory

1. Introduction

Fine particulate matter (PM2.5) poses a serious threat to human health worldwide [1].
In China, with high levels of PM2.5 pollution and a large population, the harm is extensive
and far-reaching, causing sickness and economic burdens [2]. In response, China launched
the Pollution Prevention and Control Battle to control atmospheric pollution by focusing
on limiting pollution emissions, adjusting industrial and energy structures, improving
policies and regulations, exercising strict supervision and management, and strengthening
scientific research, and it has achieved results [3–5]. Although annual PM2.5 concentrations
and the frequency of “heavy haze” events in China have decreased since 2013 [6], in some
regions PM2.5 pollution remains severe. Premature deaths and a loss of quality of life
due to PM2.5 totalled approximately 852,000 and 19.98 million people, respectively, in
mainland China in 2017. The number of people affected represented 30% of all victims
worldwide [7], and the above risks are showing an overall increasing trend in China [8].
However, most of China’s long-term “iron-fisted pollution control” measures are command-
and-control environmental regulatory policies. Their effective implementation requires
a large investment of human, material, and financial resources, even at the expense of
economic development and residents’ quality of life. Without reasonable expectations
and market price signals, such measures are ineffective in encouraging polluters to reduce
emissions [9]. Although the strict policies have achieved a short-term abatement of PM2.5
emissions, a marginal diminishing effect will gradually appear.

As early as 1920, Pigou proposed internalising the external costs of pollution into the
production costs of the polluter through government taxation [10]. Pigou’s ideas were
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adopted by the member states of the Organization for Economic Co-operation and Develop-
ment. While many scholars have since studied the abatement effects of environmental taxes,
a unified view has not been formed. Although few studies have questioned the abatement
effects of environmental taxes [11,12], some studies have adopted different methods to
demonstrate the emission-reduction effects of different environmental taxes. Consumption
taxes such as fuel taxes and vehicle registration taxes can regulate consumers’ consump-
tion behaviour, thereby reducing emissions of pollutants such as CO2 and SO2. Resource
taxes can improve resource utilisation efficiency and reduce pollutant emissions [13,14].
Other taxes for the purpose of pollution prevention and control, such as carbon, garbage,
and agricultural pollution taxes, can adjust pollution behaviour and achieve the aim of
environmental protection [15–18].

In 2018, China began to implement the Environmental Protection Tax Law (EPTL).
Whether the EPTL can achieve continuous reductions in atmospheric pollutant emissions
by effectively guiding polluters to rationally discharge pollutants has attracted widespread
concern. Researchers have dedicated in-depth discussion to the significance of the EPTL
and related problems in the collection and management of taxes. Dasgupta et al. [19] found
that strict environmental taxes were significantly associated with low pollution levels,
based on time series analysis. Hettige et al. [20] studied the enterprises of 12 developed and
developing countries to discover that strict, effective environmental taxation can reduce
sewage discharge. A study by Larsen and Khurshee [21] revealed that the implementation
of an environmental tax may improve air quality in the United States. González and
Hosoda [22] employed a Bayesian structural time series model and reported that a fuel
tax can effectively cut the carbon dioxide emissions of aircrafts. Murray and Rivers [15]
researched the effect of a carbon tax in British Columbia to discover that it may reduce
greenhouse gas emissions by 5–15%. However, few studies have presented the abatement
effects of the EPTL (AEEPTL) on PM2.5 pollution (AEEPTLPM). Han and Li [23] explored
the AEEPTLPM and annual concentrations in China for 2018. However, as the AEEPTLPM
could have temporal hysteresis and spatial spillover, it should be investigated further.
Evidence of the spatial spillover effects of the AEEPTLPM is lacking, but a number of
studies have researched the spatial spillover of other environmental regulations and PM2.5
pollution in urban agglomeration areas of China. Gray and Shadbegian [24] concluded that
a company preferred to move production capacity to regions with slack environmental
regulations. Zeng and Zhao [25] employed a spatial model to verify the pollution shelter
hypothesis. Feng et al. [26] used the spatial Durbin model (SDM) to identify the spatial
spillover effects on environmental regulations to PM2.5 in 3 urban agglomerations in China.
More researchers have focused on the spatial spillovers of PM2.5 pollution itself. For
example, Shao et al. [27] tested the spatial spillover of PM2.5 pollution in China at the
province level. Yan et al. [28] used a simple spatial autocorrelation method to analyse the
spatial spillovers of PM2.5 concentrations in the Beijing-Tianjin-Hebei region in 2016. Other
researchers have adopted atmospheric transportation models or econometric models to
explore spatial spillovers affected by natural factors, e.g., wind speed and direction [29–33].
Generally, most previous studies have mainly focused on the spatial spillovers of PM2.5
pollution itself; those of environmental regulations are less known. Moreover, spatial
heterogeneity was not considered in existing studies that examined spatial spillovers.

This study has two targets. The first is to evaluate the average AEEPTLPM in China
at the provincial level during 2018–2019 from 2 perspectives: in-situ-monitored PM2.5
concentrations and local industrial PM2.5 emissions inventories. The other is to establish an
index measuring the spatial spillover of the AEEPTLPM under full consideration of spatial
heterogeneity and then to calculate the spatial spillover in provinces during 2018–2019.

2. Materials and Methods
2.1. Materials and Pre-Processing

Four types of data were involved in this study. The first was PM2.5 concentration
data retrieved through remote sensing. China has monitored air quality in situ since
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2013, and only 27% of the 429 prefecture-level cities established in-situ monitoring sites
in the first phase. By 2014, the number of prefecture-level cities with ground monitor-
ing stations had increased to 157, accounting for 36.9%. In 2015, 1497 in-situ monitors
covered all 429 prefecture-level cities. Table S1 summarises the number of prefecture-level
cities in China covered by in-situ monitoring sites in 2013–2019. To improve estima-
tion accuracy for the AEEPTLPM, remote sensing PM2.5 concentrations data from 2013
and 2014 were included. The remote sensing PM2.5 data, the resolution of which is
0.01◦ × 0.01◦ (~1 km× 1 km), were produced by van Donkelaar’s team [34,35]. The ac-
curacy of the remotely sensed PM2.5 annual concentrations at the provincial level for 2015
and 2016 was assessed in this study. The validation results (Table S2) show the root mean
square errors in 2015 and 2016 were 1.37 and 1.26 µg/m3, respectively. The maximums
of relative errors were 4.9% and 4.8% in 2015 and 2016, respectively. The absolute and
relative errors for the remotely sensed PM2.5 annual concentration data in the 31 provincial
regions were all under 1.40 µg/m3 and 5.0%. Thus, the validation results certified that the
remotely sensed PM2.5 annual concentrations from 2013 to 2014 can be integrated with the
in-situ monitored data from 2015 to 2018.

The second type of data was in-situ-monitored PM2.5 concentrations. Figure S1 shows
the spatial distribution of China’s in-situ monitoring sites. To ensure the stability of the
results, this paper used the PM2.5 concentrations monitored in situ from the 1497 ground
sites in mainland China from 1 January 2015 to 31 December 2019, although the number
of sites has increased since 2017. The data of PM2.5 concentrations corresponding to the
1497 ground sites from 2013 to 2014 were extracted from the remote sensing data. The PM2.5
annual concentrations for each provincial region were obtained by zonal average statistics.

The third type of data was industrial PM2.5 emission inventory data at the provincial
level. The industrial PM2.5 emission inventory data sets were collected from the multi-
resolution emission inventory for China (MEIC) produced by Tsinghua University [36,37].
This article uses the latest version (v 1.3) of MEIC data, which contains the total annual
PM2.5 emissions of the 5 sectors of agriculture, industry, electricity, residence, and trans-
portation. Considering that most objects of the EPTL are industrial enterprises, our study
used the total annual PM2.5 emissions of the industrial and electric sectors. For convenience,
these 2 types of PM2.5 emission inventory data are collectively referred to as industrial
PM2.5 emissions inventory in this paper. As the time range of the latest version (v 1.3) of
MEIC data is 2008 and 2010–2017, the provincial annual total industrial PM2.5 emissions
(PATIPME) from 2018 to 2019 were estimated based on influencing factors.

The fourth type of data was the influencing factors data of the PATIPME. These data
include seven covariates: GDP, the proportion of secondary industry (PSI), disposable
income per capita (DIPC), urbanisation rate (UR), total foreign investment (TFI), energy
conservation and environmental protection expenditure (ECEPE), and total electricity
consumption (TEC). These data were collected from the China Statistical Yearbook and
provincial statistical yearbooks.

2.2. Estimating the PATIPME of China in 2018 and 2019

A Bayesian spatiotemporally varying coefficients model (BSTVCM) [38] was used
to estimate the PATIPME of China in 2018 and 2019. The process involved two steps.
First, the regression coefficients were estimated by the BSTVCM, based on the association
between the PATIPME data, yit, and the provincial influencing factor variable Xit in 2008
and 2010–2017. The specific mathematical expression can be shown as follows:

yit ∼ N
(

µit, σ2
y

)
(1)

µit = γi + b0t +
k

∑
i=1

bikXitk +
K

∑
i=1

BiK ln(XitK) + εit (2)

γi, bik, BiK ∼ CAR.Normal
(

adj.Syi , adj.Sni , adj.SWi , τ2
s

)
(3)
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b0 ∼ Flat(−∞, ∞) (4)

where the likelihood distribution of yit is assigned normal distribution; µit and σ2
y are the

corresponding expectation and variance; γi is the coefficient of spatial fixed effect; bik and
BiK represent the regression coefficients of the k-th and K-th corresponding influential
variables of the i-th provincial area; Xitk and ln(XitK) represent the k-th proportional influ-
ential variable and K-th logarithm influential variable, respectively, of the i-th provincial
area in the t-th year. Considering the spatial structure and non-structural effects, the prior
distributions of the coefficients γi, bik, BiK were assigned using the Besag-York- MOLLIé
(BYM) model prior [39]. b0 represents the overall trend, and the prior is taken as the
non-information prior. εit is Gaussian noise.

Second, the PATIPME data of China in 2018 and 2019, Yit, can be estimated using
the above estimated coefficients and the data for the influencing factors in 2018 and 2019,
expressed as follows:

Yit = γ̂i + b̂0t +
k

∑
i=1

b̂ikXitk +
K

∑
i=1

B̂iK ln(XitK) (5)

Seven covariates are included: GDP, PSI, DIPC, UR, TFI, ECEPE, and TEC, of which
the four total amount indexes, GDP, TFI, ECEPE, and TEC, are all logarithmic.

2.3. Estimating the AEEPTLPM
2.3.1. The Overall Idea

Previous studies [40–43] have concluded that the drivers of the annual trends of PM2.5
concentrations were dominated by abatements in anthropogenic emissions rather than by
meteorological conditions. On 1 January 2018, China began to implement the EPTL, which
reduces PM2.5 emissions by regulating the behaviour of polluting enterprises. The Three-
year Action Plan for Defending the Blue Sky (TAPDBS) also began to be publicly released
on 3 July 2018. Each provincial government (such as Tianjin, Beijing, Chongqing, Henan)
drew up implementation plans for the TAPDBS based on their own economic and social
development and implemented them successively after September 2018. According to a
public report of the Ministry of Ecological Environment, the TAPDBS is a continuation of the
Air Pollution Prevention and Control Action Plan (also known as the “Ten Atmosphere”)
implemented from 2013 to 2017. In terms of the intensity of regulation, the TAPDBS is
stricter than the Ten Atmosphere. Hence, our study assumes that the average annual effect
of the TAPDBS implemented from beginning in autumn in 2018 to 2019 is approximate to
that of the “Ten Atmosphere” in reducing PM2.5 pollution from 2013 to 2017. It should also
be noted that, except for the two major administratively ordered environmental regulations,
there were other minor administratively ordered environmental regulations. Considering
the temporal continuity of these administratively ordered environmental regulations, we
assumed that the abatement effects of the primary and other administratively ordered
environmental regulations on PM2.5 pollution were approximately equal in 2013–2017
and 2013–2019. Under these two assumptions, the extra average annual reduction of
PM2.5 pollution in 2018–2019 compared with that in 2013–2017 can be regarded as the
AEEPTL. Therefore, based on estimation of the local trends of PM2.5 concentrations and
emissions during 2013–2017 and 2013–2019, the AEEPTL can be measured by 2-period
trends difference, and the corresponding mathematical expression is as follows:

∆ARi = k(0)i (6)

∆AR′i + ∆EPLi = k(1)i (7)

where ∆ARi and ∆AR′i represent the average annual effects of the “Ten Atmosphere”
from 2013 to 2017 and that of the TAPDBS from 2018 to 2019. According to the above two
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assumptions, ∆ARi equals ∆AR′i; therefore, by subtracting (6) from (7), the following can
be obtained:

∆EPLi = k(1)i − k(0)i (8)

where k(0)i and k(1)i represent the local trends of PM2.5 pollution (monitored concentrations
and emissions) in 2013–2017 and 2013–2019, respectively. ∆EPLi is the average annual
AEEPTLPM of the i-th provincial region during 2018–2019.

2.3.2. Estimating Local Trends

The Bayesian hierarchical spatiotemporal model (BHSTM) [44] was used to estimate
the local trends of provincial annual PM2.5 concentrations and PATIPME in China dur-
ing 2013–2017 and 2013–2019 from the complex spatiotemporal evolution process. The
BHSTM is a synthesis of the Bayesian hierarchical model and the spatiotemporal inter-
action model [44,45] that fully considers spatiotemporal correlations. The mathematical
expression is as follows:

ρ
(0)
it ∼ N

(
γ
(0)
it , σ2

ρ(0)

)
I(0) (9)

ρ
(1)
it ∼ N

(
γ
(1)
it , σ2

ρ(1)

)
I(0) (10)

where ρ
(0)
it and ρ

(1)
it , whose likelihoods are assigned normal distribution, represent the

monitored annual PM2.5 concentrations and PATIPME of the i-th provincial region in the
t-th year of two time ranges, 2013–2017 and 2013–2019, respectively; γ

(0)
it , γ

(1)
it , σ2

ρ(0)
, σ2

ρ(1)

are the corresponding means and variances; I(0) means greater than 0; the corresponding
spatiotemporal evolution model is expressed as follows:

γ
(0)
it = α(0) + s(0)i +

(
K(0)

0 t + v(0)t

)
+ k(0)1i t + ε

(0)
it ∀ t ∈ 2013–2017 (11)

γ
(1)
it = α(1) + s(1)i +

(
K(1)

0 t + v(1)t

)
+ k(1)1i t + ε

(1)
it ∀ t ∈ 2013–2019 (12)

where the priors of α(0) and α(1) are assigned with non-information priors, representing
the general fixed effects; s(0)i and s(1)i represent the overall spatial relative risk of PM2.5

pollution during the two periods;
(

K(0)
0 t + v(0)t

)
and

(
K(1)

0 t + v(1)t

)
describe the overall

trend of PM2.5 pollution in 2013–2017 and 2013–2019; v(0)t and v(1)t describe the nonlinear

overall trends. The priors of s(0)i , s(1)i , k(0)1i , k(1)1i adopt the BYM model prior [35], and v(0)t

and v(1)t adopt BYM model priors in the temporal dimension. ε
(0)
it and ε

(1)
it represent the

corresponding Gaussian errors, where the priors are allocated by the Gaussian distribution.
The priors of 1/σ2

p(0), 1/σ2
p(1), 1/τ2

s , 1/τ2
T , 1/σ2

ε adopt the gamma distribution. The related
Bayesian statistics estimations in this study were implemented by WinBUGS 14.0.

2.4. A Spatial Spillover Index of the AEEPTLPM

Due to atmospheric flow, the monitored PM2.5 concentrations are the synthetic obser-
vation results integrating PM2.5 emissions from local and surrounding areas. However,
the PATIPME reflect PM2.5 emissions from local industrial enterprises. To measure the
spatial spillover of the AEEPTLPM, we established a spatial spillover index (SSI) of the
AEEPTLPM. The mathematical form is as follows:

∅i =
E(GM)

i /WE(GM)
i(

1
αi
·E(EI)

i

)
/
(

1
βi
·WE(EI)

i

) (13)

where E(EI)
i and WE(EI)

i represent the AEEPTL on industrial PM2.5 emissions of the i-th
provincial region and its surrounding regions; the parameters αi and βi represent the
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proportions of the AEEPTL on industrial PM2.5 emissions in the AEEPTL on the total PM2.5
emissions (including five sectors) in the i-th provincial region and its surrounding regions.
E(GM)

i and WE(GM)
i represent the AEEPTL on in-situ-monitored PM2.5 concentrations of

the i-th provincial region and its surrounding regions. WE(EI)
i and WE(GM)

i are, respectively,

calculated on average from E(EI)
i and E(GM)

i of the spatial adjacency areas of the i-th
provincial region. The criterion of the spatial neighbourhood adopted a combination with
a maximum distance of 750 km and “Queen contiguity”, including common borders and
vertices. This combined criterion can rationally extend the spatial adjacency range; for
example, Hainan, an island province, has three spatial neighbourhood provinces.

If there exist no spatial spillovers in the i-th provincial area and its surrounding regions,
the in-situ-monitored PM2.5 concentrations in this region and its surrounding regions are
completely determined by the corresponding total PM2.5 emissions. Under this assumption,
the ratio between E(GM)

i and WE(GM)
i is equal to that between

(
1
αi
·E(EI)

i

)
and

(
1
βi
·WE(EI)

i

)
,

that is, ∅ = 1.
If spatial flow exists, two scenarios will arise for one provincial region. The first

scenario is local PM2.5 pollutants overflowing into surrounding regions due to atmo-
spheric circulation. The PM2.5 annual concentrations caused by PM2.5 emissions in the i-th
provincial region in t year are denoted as PMit, and the decreased value of PM2.5 annual
concentrations of this region caused by spatial overflowing into its surrounding areas is
denoted as pmit. Then, the monitored PM2.5 annual concentrations in this region can be
expressed as follows:

PM′it = PMit − pmit (14)

Similarly, the monitored PM2.5 annual concentrations in the i-th provincial area in the
t − 1 year can be expressed as

PM′it−1 = PMit−1 − pmit−1 (15)

Subtracting (15) from (14), the AEEPTL on the monitored PM2.5 annual concentrations
of the i-th area can be expressed as follows:

E(GM)′

i = E(GM)
i − ∆E(GM)

i (16)

Similarly, the monitored PM2.5 annual concentrations in the surrounding areas of the
i-th provincial region in the t and t − 1 year, WPM′it and WPM′it−1, can be expressed as

WPM′it = WPMit + pmit (17)

WPM′it−1 = WPMit−1 + pmit−1 (18)

Subtracting (18) from (17) yields

WE(GM)′

i = WE(GM)
i + ∆E(GM)

i (19)

Combining formula (13) results in the following:

∅i =
E(GM)′

i /WE(GM)′
i(

1
αi
·E(EI)

i

)
/
(

1
βi
·WE(EI)

i

) (20)

Substituting (16) and (19) into (20) gives

∅i =

(
E(GM)

i − ∆E(GM)
i

)
/
(

WE(GM)
i + ∆E(GM)

i

)
(

1
αi
·E(EI)

i

)
/
(

1
βi
·WE(EI)

i

) (21)
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Since ∆E(GM)
i > 0, therefore,

E(GM)
i − ∆E(GM)

i

WE(GM)
i + ∆E(GM)

i

<
1
αi
·E(GM)

i
1
βi
·WE(GM)

i

(22)

Combining (21) and (22) yields
∅i < 1 (23)

This means the spatial spillover phenomena occurred in the i-th provincial region if
the corresponding ∅i < 1.

The second scenario is PM2.5 pollutants emitted from surrounding regions overflowing
into the local area due to atmospheric circulation. Based on the similar mathematical
derivation, the following can be obtained:

∅i =

(
E(GM)

i + ∆WE(GM)
i

)
/
(

WE(GM)
i − ∆WE(GM)

i

)
(

1
αi
·E(EI)

i

)
/
(

1
βi
·WE(EI)

i

) (24)

Since ∆WE(GM)
i > 0, therefore,

E(GM)
i + ∆WE(GM)

i

WE(GM)
i − ∆WE(GM)

i

>
1
αi
·E(GM)

i
1
βi
·WE(GM)

i

(25)

and

∅i =

(
E(GM)

i + ∆WE(GM)
i

)
/
(

WE(GM)
i − ∆WE(GM)

i

)
(

1
αi
·E(EI)

i

)
/
(

1
βi
·WE(EI)

i

) > 1 (26)

In summary, the value ranges of ∅i indicate three scenarios of spatial spillover: ∅i = 1,
no spatial spillover; ∅i < 1, local PM2.5 pollutants overflowing into surrounding regions;
∅i > 1, PM2.5 pollutants emitted from surrounding regions overflowing into the local area.

3. Results
3.1. AEEPTL on In-Situ-Monitored PM2.5 Concentrations

As mentioned, the AEEPTL on in-situ-monitored PM2.5 concentrations were estimated
based on the corresponding local trends, k(0)1i and k(1)1i , in 2 stages, 2013–2017 and 2013–2019.
Figures S2 and S3 illustrate the posterior median estimations of the local trends of in-
situ monitored PM2.5 annual concentrations in 2013–2017 and 2013–2019, by the BHSTM.
Subsequently, the AEEPTL on in-situ-monitored PM2.5 concentrations may be obtained
through making difference between the 2 local trends in the 2 phases, k(1)1i − k(0)1i .

Figure 1 shows the spatial distribution of the AEEPTL on monitored annual PM2.5
concentrations at the provincial level in mainland China during 2018–2019. The spatial
patterns of the AEEPTL on the monitored PM2.5 annual concentrations have significant
spatial heterogeneity. Specifically, the foremost seven AEEPTL levels of monitored PM2.5
concentrations were observed in Beijing, Hebei, Tianjin, Shandong, Henan, Chongqing,
and Shanghai; the corresponding values are –3.05, –2.40, –2.71, –2.33, –2.18, –2.12, and
–2.13 µg/m3 per year, respectively. The AEEPTL on PM2.5 concentrations in the southern
coastal, western, and southwestern regions were lower, and the lowest values occurred in
Hainan, Yunnan, and Tibet, with corresponding values of –0.80, –0.38, and –0.25 µg/m3

per year, respectively. The AEEPTL on PM2.5 concentrations of Inner Mongolia, Shaanxi,
and Sichuan were at a moderate level.
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in-situ monitored PM2.5 annual concentrations of the 31 provincial regions of the Chinese mainland
in 2018–2019.

3.2. AEEPTL on Local Industrial PM2.5 Emissions
3.2.1. Estimation Accuracy of the PATIPME

Table 1 lists the estimated relative errors of the PATIPME in mainland China from
2013 to 2017. The maximum and minimum were 0.2% and 13.1%. The estimated root mean
square error (RMSE) of each province from 2013 to 2017 was less than 10%; the maximum
RMSE for the 31 provinces was 9.5%; the overall RMSE was 5%. Figure 2 illustrates the
scatters and fitting line of the real and estimated PATIPME from 2013 to 2017. It can be
seen that the estimation and real values are closely distributed on the diagonal. The fitting
line is also highly coincident with the diagonal. Its corresponding fitted slope is 0.9936,
which is very close to 1, and the fitting R2 is as high as 0.9970. The results indicate that the
BSTVCM can obtain high accuracy in estimating the PATIPME of mainland China.
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Table 1. Relative errors and root mean square errors (RMSE) for annual total industrial PM2.5

emissions in mainland China from 2013 to 2017.

Provincial
Region 2013 2014 2015 2016 2017 RMSE

Beijing −0.7% 2.9% 3.4% −0.3% −7.4% 3.9%
Tianjin −5.5% 0.2% 12.6% 11.5% −11.5% 9.5%
Hebei −3.1% 4.4% −2.7% 8.1% −3.7% 4.8%
Shanxi −6.5% −0.3% 0.5% 1.9% 4.9% 3.8%

Inner Mongolia −1.3% 1.2% −2.6% 8.0% 0.7% 3.8%
Liaoning −7.9% −2.3% 8.6% 12.3% 1.6% 7.7%

Jilin −10.5% 12.0% 6.0% 8.8% −3.6% 8.7%
Heilongjiang −1.7% 0.7% 3.6% 8.3% −1.1% 4.1%

Shanghai 3.2% 2.3% 5.5% 3.6% −7.3% 4.7%
Jiangsu −1.8% −6.5% 3.1% 5.0% 4.4% 4.5%

Zhejiang −2.3% −4.3% −3.9% 10.9% −0.4% 5.6%
Anhui −2.4% −2.0% −1.1% 4.7% 0.3% 2.6%
Fujian −1.2% 0.3% −0.4% 2.6% −0.6% 1.3%
Jiangxi −3.7% −0.9% −1.5% 4.6% 3.8% 3.2%

Shandong −1.0% −0.7% −1.4% 4.1% 1.5% 2.1%
Henan 0.7% 0.4% −0.4% 3.3% −2.8% 2.0%
Hubei −4.1% 7.5% −3.2% 5.6% −1.4% 4.8%
Hunan −3.7% 3.5% 3.1% 3.5% −1.8% 3.2%

Guangdong −2.3% −0.2% 2.6% 1.1% −1.0% 1.7%
Guangxi −1.0% −3.7% −1.5% 9.4% −1.2% 4.6%
Hainan −9.5% −4.3% 7.1% −5.6% 7.3% 7.0%

Chongqing −6.0% −6.9% −0.7% 6.9% 5.8% 5.8%
Sichuan −5.5% 3.0% 6.8% 4.9% −7.1% 5.7%
Guizhou −4.8% −0.2% 1.3% −2.3% 6.2% 3.7%
Yunnan −3.8% 4.0% 1.9% 3.2% −2.9% 3.3%

Tibet −0.3% 0.5% 0.4% −4.3% 3.4% 2.5%
Shaanxi −8.5% −6.1% −6.9% 8.4% 13.1% 9.0%
Gansu −4.9% 2.5% −1.9% 7.1% 2.0% 4.2%

Qinghai −7.2% 1.6% 2.3% 0.1% 3.2% 3.8%
Ningxia −3.8% −3.0% −4.3% 10.5% −0.3% 5.5%
Xinjiang −4.6% 0.8% 5.9% 2.6% −5.3% 4.3%

3.2.2. Estimation of the AEEPTL on Local Industrial PM2.5 Emissions

Based on the PATIPME collected from 2013 to 2017 and the PATIPME estimated for
2018 to 2019, the AEEPTL on industrial PM2.5 emissions was assessed. Before estimating
the AEEPTL on industrial PM2.5 emissions, the 2 local trends or annual changes in the
PATIPME in two stages, 2013–2017 and 2013–2019, had to be calculated by the BHSTM. The
results of the annual changes in the PATIPME in the 2 periods are shown in Figures S4 and
S5. The annual change from 2013–2019, k(1)1i , subtracting measures for 2013–2017, k(0)1i , can
generate the AEEPTL on the PATIPME in mainland China at the provincial level during
2018–2019.

The spatial distribution of the AEEPTL on the PATIPME in mainland China in
2018–2019 is illustrated in Figure 3. In general, the highest level of the AEEPTL on the
PATIPME occurred in the southeast region of China, in Hebei, Shanxi, Shandong, and
Hubei, with corresponding values of −740.10, −693.60, −598.60, and −457.80 million
tonnes per year. Beijing, Zhejiang, Jiangxi, Fujian, and Chongqing had lower AEEPTL
levels, with corresponding values of −44.53, −94.03, −10.44, −7.90, and −5.97 million
tonnes per year. Except for Xinjiang, five provincial regions (Tibet, Qinghai, Inner Mongo-
lia, Ningxia, and Shaanxi) located in western China had lower levels of AEEPTL on the
PATIPME, at −2.63, −21.7, −4.58, −62.63, and −38.71 million tonnes per year, respectively.
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The 10 provincial regions of Hebei, Shanxi, Shandong, Hubei, Sichuan, Jilin, Jiangsu,
Hunan, Guangxi, and Yunnan experienced the highest AEEPTL on the PATIPME (red series
in Figure 3). However, the 10 provinces with the highest PATIPME were Shandong, Henan,
Anhui, Guangdong, Hebei, Shanxi, Jiangsu, Inner Mongolia, Liaoning, and Guangxi. By
comparison, five (Henan, Anhui, Guangdong, Inner Mongolia, and Liaoning) were among
the ten provinces with the highest industrial PM2.5 emissions but not the ten provinces
with the highest AEEPTL on industrial PM2.5 emissions.

3.3. SSI of the AEEPTLPM

According to the SSI proposed in this study, we calculated the SSI of the AEEPTLPM in
China at the provincial scale from 2018–2019 (Table 2). It should be noted that 2 provinces,
Hainan, and Gansu, had no AEEPTL on industrial PM2.5 emissions but had AEEPTL on
in-situ-monitored annual PM2.5 concentrations. According to the idea of constructing the
SSI, the corresponding SSIs for these two provinces should be larger, so the SSIs of Gansu
and Hainan were classified as at the highest level (dark red in Figure 4).

Table 2. Spatial spillover index values of the abatement effects of the Environmental Protection Tax
Law on PM2.5 pollution in provincial Chinese regions.

Province E(GM) WE(GM) 1
α ·E

(EI) 1
β ·WE(EI) E(GM)

WE(GM)

1
α ·E

(EI)

1
β ·WE(EI) SSI

Beijing 3.05 2.56 139.99 703.26 1.19 0.20 5.98
Tianjin 2.71 2.48 173.29 1010.76 1.09 0.17 6.36
Hebei 2.40 1.96 1231.31 654.16 1.22 1.88 0.65
Shanxi 1.23 1.70 980.99 281.19 0.72 3.49 0.21
Inner

Mongolia 1.38 1.61 8.74 285.82 0.86 0.03 28.11

Liaoning 1.59 1.74 365.22 505.25 0.91 0.72 1.26
Jilin 1.66 1.52 660.98 412.06 1.09 1.60 0.68

Heilongjiang 1.20 1.56 492.67 354.91 0.77 1.39 0.55
Shanghai 2.13 2.03 127.88 328.46 1.05 0.39 2.70
Jiangsu 2.02 2.08 472.65 442.61 0.97 1.07 0.91

Zhejiang 2.04 1.67 131.99 218.65 1.22 0.60 2.02
Anhui 1.92 1.96 308.94 477.40 0.98 0.65 1.51
Fujian 0.82 1.41 13.68 145.54 0.58 0.09 6.17
Jiangxi 1.52 1.64 17.22 437.64 0.93 0.04 23.63

Shandong 2.33 2.05 1003.52 498.06 1.14 2.01 0.57
Henan 2.18 1.82 357.92 467.68 1.20 0.77 1.57
Hubei 1.98 1.76 1047.31 344.77 1.12 3.04 0.37
Hunan 1.74 1.49 616.23 313.67 1.17 1.96 0.60

Guangdong 1.05 1.29 233.62 280.08 0.82 0.83 0.98
Guangxi 1.10 1.04 444.46 277.23 1.06 1.60 0.66
Hainan 0.80 1.16 -8.88 236.74 0.69 \ \

Chongqing 2.12 1.44 11.46 438.58 1.47 0.03 56.26
Sichuan 1.42 1.12 1027.05 174.14 1.27 5.90 0.22
Guizhou 1.25 1.09 375.24 319.19 1.14 1.18 0.97
Yunnan 0.38 0.88 437.78 213.38 0.43 2.05 0.21

Tibet 0.25 1.13 5.29 158.41 0.22 0.03 6.59
Shaanxi 1.29 1.62 73.09 244.37 0.80 0.30 2.67
Gansu 1.97 1.39 -77.44 181.36 1.41 \ \

Qinghai 1.25 1.23 32.24 200.43 1.02 0.16 6.34
Ningxia 1.50 1.54 79.02 251.67 0.97 0.31 3.09
Xinjiang 1.27 1.25 190.38 184.41 1.02 1.03 0.99
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Specifically, an SSI of less than 1.0 was observed for 14 provincial regions (blue in Figure 4),
namely Shanxi, Yunnan, Sichuan, Hubei, Guangxi, Shandong, Hebei, Hunan, Xinjiang, Jilin,
Guangdong, Jiangsu, Guizhou, and Heilongjiang, where the minimum and maximum are
0.21 and 0.99. There are 17 provincial regions where the SSIs were greater than 1.0 (red in
Figure 4): Liaoning, Henan, Zhejiang, Anhui, Ningxia, Shanghai, Shaanxi, Qinghai, Tianjin,
Tibet, Fujian, Beijing, Jiangxi, Inner Mongolia, Chongqing, Gansu, and Hainan, with a
minimum of 1.26. Excepting Gansu and Hainan, the 3 highest SSIs occurred in Jiangxi
(23.63), Inner Mongolia (28.11), and Chongqing (56.26), and the lowest three occurred in
Liaoning (1.26), Anhui (1.51), and Henan (1.57).

In recent years, Beijing and Tianjin have been vigorously controlling atmospheric
pollution, and many industrial enterprises have moved to the surrounding areas (mainly
Hebei Province). As a result, the locally emitted PM2.5 pollutants in both places have been
significantly reduced, but, due to natural conditions such as terrain, the AEEPTLPM of
the two provinces is greatly affected by the spatial spillover of atmospheric circulation.
This study has also empirically proved that the corresponding SSIs of Beijing and Tianjin
were greater than 1.0. Regarding Sichuan and Chongqing, the former is located on the west
and the latter on the east of the Sichuan Basin. Due to the prevailing northwest wind in
winter, part of the PM2.5 pollutants emitted in Sichuan naturally overflow into Chongqing.
Therefore, the SSI of Sichuan was less than 1.0; correspondingly, the SSI of Chongqing was
greater than 1.0. The SSIs for Henan, Anhui, Jiangxi, and Fujian were greater than 1.0. We
suspect that these 4 provinces would be affected by the spatial spillover of PM2.5 emissions
from their surrounding areas also due to the prevailing northwest wind in winter. For
Hainan, its industrial structure is dominated by tertiary industries, such as tourism, and
its local emissions of PM2.5 pollutants are relatively low. However, because Hainan has
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an island terrain with the lowest altitude, it is vulnerable to the spatial spillover of PM2.5
pollution in the northern region.

4. Discussion

Based on in-situ monitoring data and emission inventory data, this study proved
that the EPTL has had reduction effects on the in-situ-monitored PM2.5 concentrations
and on local industrial PM2.5 emissions. The statistical results produced by this study
fully affirm the importance of the EPTL in improving air quality and provide evidence for
further deepening China’s green tax reform against the background of carbon neutrality.
China has long used pollutant discharge fees to control pollution. However, due to factors
such as their size and lack of enforcement, the abatement effect of pollutant discharge
fees is not significant. The EPTL was implemented in 2018. It adopts a taxation design of
“paying more for more emissions, paying less for fewer emissions, and paying nothing
for no emissions” to restrict emissions behaviour and reduce the emissions of polluting
enterprises. In practice, the EPTL is deemed only a translation of the pollution discharge
fee system, and its abatement effects have been questioned. However, the results of this
paper confirm that the EPTL has a significant abatement effect on PM2.5 pollution and
provides references for those seeking to reform China’s green tax system to achieve “carbon
neutrality” and “carbon peak”. Additionally, the paper provides quantified evidence for
countries around the world developing policies to control air pollution.

The results show that the AEEPTLPM has significant spatial heterogeneity, which
is likely caused by differing EPTL rates, the efficiency of collection and administration,
and so on. The EPTL stipulates that provincial governments can set local EPTL rates
(according to their priorities) and that environmental protection tax revenues belong to
the local government. However, the legislation is unclear on specific operation rules, and
local governments are also unclear in practice, which leads to significant heterogeneity of
the AEEPTLPM. Therefore, the conclusions of this study can provide an empirical basis
for improving the EPTL. In addition, the environmental protection tax rate should be set
scientifically. The tax rate standard is the price of pollution; only if it is set reasonably can
polluter discharge behaviour be better regulated. Moreover, local governments should
strengthen the collection and management of environmental protection taxes. Although the
results show that five provinces (Henan, Anhui, Guangdong, Inner Mongolia, and Liaoning)
are among the highest ten in PATIPME value, the AEEPTL on their industrial PM2.5
emissions are not among the ten highest. This shows that the collection and administration
of the environmental protection tax in these areas might not be strict enough, resulting in
a serious loss of tax revenues. Therefore, the local administration of environmental taxes
should be strengthened to improve the AEEPTL.

Based on measuring the AEEPTL on in-situ-monitored PM2.5 concentrations and
industrial PM2.5 emissions, the SSI of the AEEPTLPM was established to quantise the
spatial spillovers of the AEEPTLPM in mainland China. Previous studies have investigated
the spatial spillovers of environmental regulations in China, for instance, in verifying the
pollution shelter hypothesis [20,21]. Feng et al. [22] used the SDM to explore the spatial
spillovers of environmental regulations in three urban agglomeration areas. However,
researchers have not focused on the AEEPTLPM instead of the abatement effects of the syn-
thetical environmental regulations. Furthermore, our study estimated the spatial spillover
of each region by fully considering spatial heterogeneity. The results of the SSI calculated
at the provincial level show that the AEEPTLPM has had significant spatial spillovers
and that the degree and direction of spatial spillovers vary by region. This provides a
new perspective for the regional coordination of atmospheric pollution control in China.
Due to atmospheric circulation, local in-situ-monitored PM2.5 concentrations might not
coincide with local industrial PM2.5 emissions. Thus, the existence of the spatial spillover
of the AEEPTL indicates that regionally coordinated mechanisms should be considered in
controlling atmospheric pollution, especially in assessing atmospheric pollution costs. In
addition, if pollution increases in one region due to spatial spillover from neighbouring



Int. J. Environ. Res. Public Health 2022, 19, 1440 14 of 16

areas, the governments of neighbouring areas should use their environmental protection
tax revenues to compensate for pollution spillover into other regions for pollution control.

5. Conclusions

Firstly, the EPTL has had significant abatement effects on in-situ-monitored PM2.5
annual concentrations and the total annual emissions of industrial PM2.5. Secondly, the
AEEPTL on the monitored PM2.5 concentrations and local industrial PM2.5 emissions
exhibit significant spatial heterogeneity. Thirdly, the AEEPTLPM in mainland China is cor-
related with the degree of PM2.5 pollution. Specifically, the AEEPTL is better in areas with
more serious levels of PM2.5 pollution, and vice versa. Fourthly, the AEEPTLPM display
significant spatial spillover characteristics, and SSI values differ by province. This study
has the following three limitations. (1) The research period is relatively short. Researchers
should continue to collect data and carry out long-term research. (2) Due to the availability
of data, the PM2.5 emissions data in 2018–2019 were obtained through estimation. Although
the accuracy is high, obtaining actual survey data would be preferable. (3) The method
estimating AEEPTLPM in this paper needs assumptions, it should be developed in the
future study.
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