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Abstract: Currently, the lowest formal taxon in virus classification is species; however, unofficial
lower-level units are commonly used in everyday work. Tick-borne encephalitis virus (TBEV) is a species
of mammalian tick-borne flaviviruses that may cause encephalitis. Many known representatives
of TBEV are grouped into subtypes, mostly according to their phylogenetic relationship. However,
the emergence of novel sequences could dissolve this phylogenetic grouping; in the absence of
strict quantitative criterion, it may be hard to define the borders of the first TBEV taxonomic unit
below the species level. In this study, the nucleotide/amino-acid space of all known TBEV sequences
was analyzed. Amino-acid sequence p-distances could not reliably distinguish TBEV subtypes.
Viruses that differed by less than 10% of nucleotides in the polyprotein-coding gene belonged to the
same subtype. At the same time, more divergent viruses were representatives of different subtypes.
According to this distance criterion, TBEV species may be divided into seven subtypes: TBEV-Eur,
TBEV-Sib, TBEV-FE, TBEV-2871 (TBEV-Ob), TBEV-Him, TBEV-178-79 (TBEV-Bkl-1), and TBEV-886-84
(TBEV-Bkl-2).
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1. Introduction

Historically, viruses were classified according to phenotypical features, such as virion shape,
replication strategy, and host range [1,2]. Recently, the International Committee on Taxonomy of
Viruses (ICTV) proposed that viruses should be incorporated into official classification only on the
basis of genomic data [1].

Currently, there is no universal system to classify viruses below the species level [3]. Various terms,
such as subtype, lineage, clade, group, subgroup, genotype, serotype, and type, among others, may be
used for different viruses. The meaning of these terms is not universal among distinct viruses but a
commonly accepted convention in each group of researchers, developed decades ago and reproduced
ever since [4]. Unification of nomenclature under the species level was proposed for several filoviruses
and coronaviruses [3,4], but does not seem to be a universal trend. Notably, according to the current state
of viral taxonomy, each of 6590 formally accepted species requires separate and careful consideration
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at the subspecies level. Thus, a consensus has yet to be reached on the classification of viruses below
the species level.

For some viruses, historically accepted terms are used for subspecies classification. Over 50 years
ago, Clarke et al. proposed the division of Tick-borne encephalitis virus species (TBEV) into two distinct
subtypes (Russian spring-summer encephalitis and Central European encephalitis) on the basis of
serological analyses [5]. The third serotype, Aina/1448, was described in an immunological study
published in 1981 [6]. In 1999, phylogenetic analysis demonstrated the segregation of TBE viruses
into three subtypes according to their primary geographical distribution: European (Eur), Siberian
(Sib), and Far-Eastern (FE) [7]. Hereinafter, we adhere to the traditional term, subtype, to designate
the first taxonomic unit below the TBEV species level. In recent decades, there has been a growing
body of evidence that subtypes can be isolated far from their nominal geographic region [8–17].
Subspecies taxonomy of TBEV was further complicated by the discovery of viruses that could not be
unambiguously assigned to known subtypes. In 2001, divergent TBEV strains 178-179 and 886-84 were
found in Eastern Siberia near Baikal [18]. These virus groups were provisionally termed genotypes 4
(strain 178–79) and 5 (strain 886-84) [19]. Recently, “886−84-like” viruses were named the “Baikalian
subtype” [20–22]. The taxonomic position of the sole known “genotype 4” representative, strain 178–79,
remains debated [23]. In 2017, a highly divergent strain, TBEV2871 (prospectively termed Obskaya),
was found in Western Siberia in the vicinity of the Ob’ river [24]. In 2018, representatives of the
Himalayan subtype were described in rodents in the Tibetan Highlands [25]. The status of these novel
viruses in terms of subtypes remains uncertain and varies in different publications.

According to the ICTV, species criteria in the Flavivirus genus are based on multiple factors,
such as sequence data, association with a host, vector, disease, and geographic distribution [26].
Solely phylogenetic data may not be sufficient to distinguish one specific virus from another.
For example, the Eur subtype of TBEV (TBEV-Eur) is closer to Louping ill virus (LIV) than to other
TBEV subtypes in terms of genetic distance. Despite this, LIV is classified as a separate species
according to geographical, pathogenetic, and environmental peculiarities [27]. At the same time,
a quantitative criterion for taxonomic assignment at different levels may clarify the relationships among
members of the genus Flavivirus [28]. Several genetic distance-based species criteria were proposed
for the genus Flavivirus. Kuno et al. suggested that nucleotide sequence differences over 16% may
indicate distinct species [28]. Grard et al. demonstrated a multimodal distribution of amino-acid
distances between members of the genus Flavivirus that corresponded to intraspecies, intragroup,
and intergroup distances [29]. To the best of our knowledge, strict criteria for TBEV species demarcation
into subtypes remain unclear. Herein, we analyzed all available TBEV sequences to test the possibility
of distinguishing TBEV subtypes according to genomic sequence data.

2. Materials and Methods

Sequence data were processed as described previously [8] with some modifications.
Briefly, all available TBEV sequences represented in GenBank as of July 2020 that contained E
gene fragment sequences (genome positions 1147–2176 in the reference sequence #NC_001672) were
selected (n = 987). Alternatively, all available complete open reading frames (ORFs) of TBEV sequences
represented in GenBank as of July 2020 were retrieved (n = 236 ORFs). Identical sequences were
omitted. Synthetic TBEV strain sequences were also excluded. Final datasets consisted of 684 E gene
fragment (1030 nt) and 216 full ORF (10248 nt) sequences. For further analysis, unrooted maximum
likelihood (ML) phylogenetic inference was performed using IQ-TREE [30]. The divergent groups of
TBEV (different colors in Figure 1) were extracted into independent datasets. An uncorrected pairwise
genetic distance (p-distance) distribution was calculated and visualized in the R environment using
ape [31], seqinr [32], scales [33], gdata [34], and ggplot [35] packages.
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Figure 1. Unrooted maximum likelihood tree for Tick-borne encephalitis virus (TBEV; E gene fragment—
left panel, complete open reading frame (ORF)—right panel). Black circles indicate high-level nodes 
that were supported by UFBoot values over 95% [36]. The scale bar and branch lengths represent the 
expected number of substitutions per site. 
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profile rather than genetic distance [27]. This study did not address species demarcation; thus, TBEV 
was analyzed separately from LIV. Classification of a virus ideally requires a full-genome sequence. 
For some viruses, partial sequences are traditionally used, mainly due to different variation and 
recombination profiles in distinct genome regions. Even though there have been reports of 
recombination in TBEV [37], there is no evidence that it is systematic and affects the segregation of 
subtypes. Thus, a complete ORF sequence was primarily used. There were more than 40 nonidentical 
full ORF sequences for each of the three major subtypes; however, the number of known sequences 
for novel provisional subtypes was much smaller (Table 1). In field studies, a fragment of the E 
protein encoding sequence (colloquially termed the E-gene) is commonly used for virus 
identification; thus, it is important to verify that full ORF criteria are reproduced in the E protein 
coding sequence. There is no convention regarding the precise borders of the E gene fragment used 
for analysis. For this study, a sequence of 1030 nt (genome positions 1147–2176, according to 
#NC_001672) was chosen as a tradeoff between sequence length (resolution) and the number of 
available sequences (Table 1). Unrooted maximum likelihood trees demonstrated that all TBEV 
sequences segregated into seven groups (different colors in Figure 1) with high UFBoot support 
values [37]. Further analysis suggested that these seven groups may be regarded as subtypes (first 
TBEV subspecies taxonomic level), according to the genetic distance distribution. 

Table 1. Number of known nonidentical sequences for provisional TBEV subtypes. 

Subtype Name E gene Fragment Sequences  ORF Sequences  
TBEV-Eu 242 73 
TBEV-Sib 295 40 
TBEV-FE 133 92 

TBEV-Him 2 2 
TBEV-Bkl-1 (178-79) 1 1 
TBEV-Bkl-2 (886-84) 9 7 

TBEV-Ob 2 1 

Figure 1. Unrooted maximum likelihood tree for Tick-borne encephalitis virus (TBEV; E gene fragment—left
panel, complete open reading frame (ORF)—right panel). Black circles indicate high-level nodes that
were supported by UFBoot values over 95% [36]. The scale bar and branch lengths represent the
expected number of substitutions per site.

3. Results

TBEV is distinguished from its nearest sister species, LIV, according to the host and pathogenic
profile rather than genetic distance [27]. This study did not address species demarcation; thus, TBEV was
analyzed separately from LIV. Classification of a virus ideally requires a full-genome sequence. For some
viruses, partial sequences are traditionally used, mainly due to different variation and recombination
profiles in distinct genome regions. Even though there have been reports of recombination in TBEV [37],
there is no evidence that it is systematic and affects the segregation of subtypes. Thus, a complete ORF
sequence was primarily used. There were more than 40 nonidentical full ORF sequences for each of the
three major subtypes; however, the number of known sequences for novel provisional subtypes was
much smaller (Table 1). In field studies, a fragment of the E protein encoding sequence (colloquially
termed the E-gene) is commonly used for virus identification; thus, it is important to verify that full
ORF criteria are reproduced in the E protein coding sequence. There is no convention regarding the
precise borders of the E gene fragment used for analysis. For this study, a sequence of 1030 nt (genome
positions 1147–2176, according to #NC_001672) was chosen as a tradeoff between sequence length
(resolution) and the number of available sequences (Table 1). Unrooted maximum likelihood trees
demonstrated that all TBEV sequences segregated into seven groups (different colors in Figure 1) with
high UFBoot support values [37]. Further analysis suggested that these seven groups may be regarded
as subtypes (first TBEV subspecies taxonomic level), according to the genetic distance distribution.

Phylogenetic grouping is a fragile taxonomic criterion since the discovery of additional sequences
can affect it dramatically. The distributions of pairwise nucleotide and amino-acid distances were
plotted to visualize the sequence space occupied by TBEV (Figures 2 and 3). Each sequence pair in a
dataset was represented by a dot with coordinates reflecting the nucleotide and amino-acid sequence
distance between these sequences. The density of possible distance values was indicated by color
(Figure 2). Using a heatmap plot in pairwise nucleotide/amino-acid distance coordinates from one
hand showed the density; from the other, such a demonstration was possible by summarizing all dots
in a picture element. This led to the “averaging” of real data. To reveal the level of such averaging,
all virus pairs were divided into intrasubtype pairs (viruses from the same subtype, indicated by the
red color at Figure 3) and intersubtype pairs (viruses from different subtypes, indicated by the blue
color at Figure 3). Furthermore, these pairs were plotted with appropriate coordinates without any
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averaging. Intersubtype pairs were indicated by blue circles, while intrasubtypes were indicated by
red circles (Figure 3). The overall situation has not changed in comparison to heatmap plot (Figure 2,
two upper panels).
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fragments (left panels) and ORF (right panels). First panel: all TBEV sequences. Second
panel: all TBEV sequences except “2871” group viruses. Third panel: three major TBEV
subtypes. The three bottom panels demonstrate the distribution of intrasubtype virus
pairs for TBEV-Eur, TBEV-Sib, and TBEV-FE. Axes show uncorrected amino-acid and
nucleotide sequence distances; dots correspond to distances between each possible pair
of sequences in the dataset. Color indicates the density of dots according to the scale
bar. The dotted line at 10% nucleotide difference indicates the proposed threshold for the
division of TBEV species into subtypes.

Table 1. Number of known nonidentical sequences for provisional TBEV subtypes.

Subtype Name E gene Fragment Sequences ORF Sequences

TBEV-Eu 242 73
TBEV-Sib 295 40
TBEV-FE 133 92

TBEV-Him 2 2
TBEV-Bkl-1 (178-79) 1 1
TBEV-Bkl-2 (886-84) 9 7

TBEV-Ob 2 1
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Figure 3. Concordance between nucleotide and amino-acid pairwise distances for TBEV sequences in
E gene fragment (left panel) and ORF (right panel). First panel: all TBEV sequences. Second panel:
all TBEV sequences except “2871” group viruses. Axes show uncorrected amino-acid and nucleotide
sequence distances; dots correspond to distances between each possible pair of sequences in the dataset.
The dotted line at 10% nucleotide difference indicates the proposed threshold for segregation of TBEV
species into subtypes. Virus pairs were divided into intrasubtype pairs (viruses from the same subtype,
indicated by the red color) and intersubtype pairs (viruses from different subtypes, indicated by the
blue color).

Uncorrected distances were used to provide consistent conclusions and reduce the effect of sample
bias. All intersubtype virus pairs between three major subtypes (Sib, Eur, and FE) had nucleotide (nt)
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distances above 10% (Figure 2, x-axis, third panel), whereas all intrasubtype distances were below
10% (Figure 2, three bottom panels). There was a very clear border between inter- and intrasubtype
nucleotide sequence distances, as none of the 20,910 ORF sequence pairs had distances in the range of
10–13% and none of the 183,921 E gene sequence pairs had values between 10% and 11% (Figure 2,
third panel). Just one pair of viruses did not meet the proposed criterion when fragments of the E
gene were used. #KT321397 and #MK284389 both belonged to TBEV-Sib but differed in 10.02% of
nt (105 out of 1030 nt) in the analyzed E gene fragment (black arrow at bottom panel at Figure 3).
Amino-acid distances of the E protein (Figure 2, y-axis, left part of the third panel) did not distinguish
major subtypes. Full ORF amino-acid sequence distances distinguished major TBEV subtypes with
few overlaps (Figure 2, y-axis, right part of the third panel).

Across all TBEV sequences (three major types and novel provisional subtypes), intersubtype
nucleotide distances were above the 10% threshold (dotted line at Figures 2 and 3), whereas intrasubtype
virus pairs were below. This pattern was observed both for full ORF sequences and for the E gene
fragment. In the latter case, the separation was not ideal, but the overlap between inter- and intrasubtype
distances was produced solely by two “2871” group representatives. Omitting them resulted in clear
segregation of inter- and intrasubtype distances, even in the E protein fragment (two upper panels at
Figures 2 and 3).

The 10% nucleotide sequence distance threshold clearly supported the segregation of four
provisional novel subtypes (Figure 1) as distinct entities. Similar to the three major subtypes,
amino-acid sequence distances could not unambiguously distinguish seven provisional TBEV subtypes
in the E gene (two upper panels at Figures 2 and 3, y-axis). In the full ORF, the number of overlaps
involving amino-acid sequences of putative new subtypes (Figure 2, two upper panels) was higher
than among the three major types (Figure 2, third panel); thus, amino-acid sequences cannot be
recommended as a subspecies criterion in TBEV.

4. Discussion

Currently, species are the lowest taxonomic level in the viral hierarchy approved by ICTV.
Yet, lower taxonomic levels do not have a standard designation. TBEV groups below the species level
may be called “subtype” [7], “lineage” [38,39], or “genotype” [40,41]. These terms indicate the same
entity. Of these, “subtype” is the most widely used term. As of August 2020, Scopus searches with
keywords “TBEV AND subtype” yielded 161 papers, “TBEV AND genotype” yielded 47, and “TBEV
AND lineage” yielded 25. Therefore, the statistics of traditional usage suggests using the term “subtype”
for the designation of the first taxon below TBEV species. TBEV subtype abbreviations are also not
unified (Table 2). Considering the most common usage and reasonable unification, TBEV-Eur can be
suggested to abbreviate the European subtype, with TBEV-Sib for the Siberian subtype, TBEV-FE for
the Far-Eastern subtype, TBEV-Bkl-1 for 178–79 (“genotype 4”), TBEV-Bkl-2 for 886–84 (“genotype 5”),
and TBEV-Ob for 2871 (“Obskaya lineage”) (Table 2).

Table 2. Variants of TBEV subtype abbreviations.

European Subtype

TBEV-Eu [24,42–46]
TBEV-EU [47–49]
TBEV-Eur [50–55]
W-TBEV [56,57]
Eu-TBEV [23,25,58]

Siberian Subtype

Sib-TBEV [23,25]
TBEV-Sib [24,36,44–46,48,50,52]
TBEV-S [59,60]
S-TBEV [11,57,58]
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Table 2. Cont.

Far-Eastern Subtype

TBEV-FE [16,24,42,45,48,50,52]
TBEV-Fe [44,46,61–63]
FE-TBEV [23,25,56,57,64]

“178-79”, or “Genotype 4”

Genotype 4 [18]
strain 178-79 [23]

“178-79” strain [22]

“886-84”, or “Genotype 5”, or “Baikalian Subtype”

Genotype 5 [18]
TBEV-Bkl [21]
TBEV-Blk [65]
TBEV-B [20]

“group 886” [23]
“886-84-like” strains [22]

Himalayan Subtype

Him-TBEV [25,66]
TBEV-Him [45,67]

2871 (“Obskaya Lineage”)

Obskaya lineage; TBEV-2871 strain [13,24]

The distribution of all possible TBEV pairwise distances indicated that the three major subtypes
were clearly distinguished by a 10% nucleotide sequence threshold. Applying this threshold to
prospective subtypes supported their segregation as distinct subtypes, not variants of the three major
types. Thus, according to this simple nucleotide distance cutoff, known representatives of the TBEV
species may be divided into seven subtypes.

TBEV subtypes could be perfectly distinguished by nucleotide sequences but not so well by
amino-acid sequences. Several important conclusions follow from this observation. A higher rate of
synonymous substitutions [68] suggests that the selection pressure in TBEV is mainly stabilizing [69].
Nucleotide sequence distances, both within and between subtypes, were below the level of synonymous
mutation saturation (about 20%). This is concordant with the hypothesis that TBEV is a rather “young”
virus that emerged recently, 1000–10,000 years ago, according to various estimates of substitution
rates [13,24,50,70].

It is not unlikely that our knowledge of TBEV sequences remains limited (e.g., rare variants
remain undiscovered), but the remarkably stark separation of subtypes observed so far requires an
explanation. If the virus was gradually changing over time, there would have been a smooth gradient
of genetic distances. The actual bimodal distribution of nucleotide distances can be explained by
either (1) quantum events (rapid adaptation of a subtype to a new host or niche, possibly a factor for
TBEV-Eur that has its distinct vector) or (2) the relatively long persistence of a virus in a limited focus
and subsequent extinction of intermediate lineages and global spread of the few contemporary ones,
or a combination of the two mechanisms.

The protein E encoding region is historically the most commonly sequenced TBEV genome
fragment. However, the analysis of pairwise distances among TBEV representatives suggested that it
has evolutionary patterns distinct from most other genomic regions. In the complete ORF, there was
a correlation between nucleotide and amino-acid distances, suggesting that their accumulation was
ruled by similar mechanisms (random mutation and fixation). In the E gene, there were examples
of remarkable conservation in amino-acid sequences, even between distinct subtypes. For example,
#KT001070 (TBEV-FE) and #MH481365 (TBEV-Bkl-2) differed by 13% of nucleotides (134 out of 1030 nt)
and 0.3% of amino acids (one out of 343 aa). Thus, even minor amino-acid substitutions involving
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similar amino acids were purged by negative selection. This observation implies that stabilizing
selection and random sorting, rather than adaptation, could be the evolutionary force shaping TBEV
subtypes. Notably, such negative selection was much less pronounced in the full ORF compared to E
gene. For example, #KT001070 and #MH481365 differed by 12% of nucleotides (1289 out of 10,245 nt)
and 4% of amino acids (124 out of 3414 aa).

Some microevolutionary studies suggested that the TBEV E protein coding gene may change
more rapidly than other genome regions [71]. At the same time, on the amino-acid level, it turned
out to be one of the most conserved TBEV proteins. The E protein is responsible for binding to host
receptors [72] and largely influences TBEV serology. A high level of E protein sequence conservation
between subtypes means that TBEV subtypes are not necessarily associated with serological properties
and herd immunity is an unlikely evolutionary pressure force in subspecies differentiation of the virus.
Indeed, pronounced cross-reactivity between TBEV subtypes supports this notion [73].

The discrete distribution of traits within a species, including genetic distance, is not natural.
The 10% subtype cutoff is a convenient number today, but it is unlikely to persist for a prolonged time
due to both accumulation of substitutions in circulating viruses and the discovery of novel viruses.
The first possibility is exemplified by two viruses belonging to the TBEV-Sib subtype but differing in
10.02% of the E gene fragment (arrow in Figure 3).The latter possibility is highlighted by the discovery
of divergent TBEV-Eur variants in The Netherlands [47] and United Kingdom [65], which extended
the known nucleotide sequence variation within the TBEV-Eur subtype from around 3% to 9% in the
ORF region.

5. Conclusions

Herein, all viruses belonging to the species TBEV were investigated in nucleotide/protein
divergence coordinates. Whenever the ORF of two viruses differed by less than 10% nucleotide
sequence, these viruses belonged to the same subtype. According to this cutoff, suggested as the
subtype border, TBEV species can be divided into seven subtypes: TBEV-Eur, TBEV-Sib, TBEV-FE,
TBEV-Ob (TBEV-2871), TBEV-Him, TBEV-Bkl-1 (178–79), and TBEV-Bkl-2 (886–84).
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