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In this paper, a new two-parameter logistic testlet response theory model for

dichotomous items is proposed by introducing testlet discrimination parameters to

model the local dependence among items within a common testlet. In addition, a

highly effective Bayesian sampling algorithm based on auxiliary variables is proposed

to estimate the testlet effect models. The new algorithm not only avoids the

Metropolis-Hastings algorithm boring adjustment the turning parameters to achieve an

appropriate acceptance probability, but also overcomes the dependence of the Gibbs

sampling algorithm on the conjugate prior distribution. Compared with the traditional

Bayesian estimation methods, the advantages of the new algorithm are analyzed from

the various types of prior distributions. Based on the Markov chain Monte Carlo (MCMC)

output, two Bayesian model assessment methods are investigated concerning the

goodness of fit between models. Finally, three simulation studies and an empirical

example analysis are given to further illustrate the advantages of the new testlet effect

model and Bayesian sampling algorithm.

Keywords: bayesian inference, deviance information criterion, logarithm of the pseudomarignal likelihood, item

response theory, testlet effect models, slice-Gibbs sampling algorithm, Markov chain Monte Carlo

1. INTRODUCTION

In education and psychological tests, a testlet is defined as that a bundle of items share a common
stimulus (a reading comprehension passage or a figure) (Wainer and Kiely, 1987). For example, in
a reading comprehension test, a series of questions may be based on a common reading passage.
The advantages of the testlet design are not only to allow for more complicated and interrelated
set of items, but also to improve the testing efficiency (Thissen et al., 1989). Namely, with several
items embedded in a testlet, test takers need not waste a considerable amount of time and energy
in processing a long passage just to answer a single item. Despite their appealing features, this
testing format poses a threat to item analysis because items within a testlet often violate the local
independence assumption of item response theory (IRT). The traditional item response analysis
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tends to overestimate the precision of person ability obtained
from testlets, and overestimate test reliability\information, and
yields biased estimation for item difficulty and discrimination
parameters (Sireci et al., 1991; Yen, 1993; Wang and Wilson,
2005a;Wainer et al., 2007; Eckes, 2014; Eckes and Baghaei, 2015).

In the face of these problems, two methods have been
proposed to cope with the local item dependence. One method
is to estimate a unidimensional model but treat items within a
testlet as a single polytomous item (Sireci et al., 1991; Yen, 1993;
Wainer, 1995; Cook et al., 1999) and then apply polytomous item
response models such as the generalized partial-credit model
(Muraki, 1992), the graded response models (Samejima, 1969),
or the nominal response model (Bock, 1972). This method is
appropriate when the local dependence between items within a
testlet is moderate and the test contains a large proportion of
independent items (Wainer, 1995), but it becomes impractical as
the number of possible response patterns increases geometrically
with the number of items in a testlet and thus is not frequently
used (Thissen et al., 1989). An alternative method is testlet effects
can be taken into account by incorporating specific dimensions in
addition to the general dimension into the IRTmodels. Two such
multidimensional IRTmodels are often used by researchers. That
is, the bi-factor models (Gibbons and Hedeker, 1992) and the
random-effects testlet models (Bradlow et al., 1999; Wainer et al.,
2007). However, Li et al. (2006), Rijmen (2010), and Min and He
(2014) find that the random-effects testlet models can be used as a
special case of the bi-factor models. It is obtained by constraining
the loadings on the specific dimension to be proportional to the
loading on the general dimension within each testlet. In practice,
researchers prefer to use simple random-effects testlet models if
the two models are available and the model fit is not too much
damage. Next, we discuss the specific forms of some commonly
used testlet effect models.

Several literatures on testlet structure modeling have been
proposed to capture the local item dependence from different
perspectives for the past two decades. Bradlow et al. (1999)
and Wainer et al. (2000) extend the traditional IRT models
including a random effect parameter to explain the interaction
between testlets and persons. The probit link function of the

above model is formulated as 8

[
aj

(
θi − bj + ηid(j)

)]
, where

8 is the normal cumulative distribution function, θi denotes
the the ability for the ith examinee, aj and bj, respectively
denote the discrimination parameter and difficulty parameter for
the jth item, and ηid(j) is a random effect that represents the

interaction of examinee iwith testlet d
(
j
)
[d
(
j
)
denotes the testlet

d contains item j]. Further, Li et al. (2006) propose a general
two parameter normal ogive testlet response theory (2PNOTRT)
model from the perspective of multidimensionality. Each item
response in the multidimensional model depends on both
the primary dimension and the secondary testlet dimensions.
Under the 2PNOTRT model, the basic form of probit link

function is expressed as 8

[
aj1θi − tj + aj2ηid(j)

]
, where tj is a

threshold parameter related to the item difficulty. The latent traits
underlying examinees’ responses to items in testlets consist of
general ability θ and several secondary dimensions, one for each

testlet. Item parameters aj1 and aj2 indicate the discriminating
power of an item with respect to the primary ability θ and the
secondary dimension ηd, respectively. Because the secondary
dimension ηid(j) is a random effect that represents the interaction

of examinee i with testlet d
(
j
)
, it is believed that the loading

of the secondary dimensions ηd should be the discriminating
power of the testlet with respect to it, and it should be related
to the discrimination parameters of the items in the testlet
with respect to the intended ability, θ . The above two testlet
effect models are constructed in the framework of probit link
function. On this basis, Zhan et al. (2014) propose the concept
of within-item multidimensional testlet effect. In this paper,
we introduce a new item parameter as a testlet discrimination
parameter and propose a new two parameter logistic testlet model
in the framework of logit link function for dichotomously scored
items, as detailed in the next section. Moreover, testlet response
theory modeling has also been extended to the other field of
educational and psychological measurement such as large-scale
language assessments (Rijmen, 2010; Zhang, 2010; Eckes, 2014),
hierarchical data analysis (Jiao et al., 2005, 2013), cognitive
diagnostic assessments (Zhan et al., 2015, 2018).

One of the most commonly used estimation methods for
the above-mentioned testlet effect models is the marginal
maximum likelihood method via the expectation-maximization
(EM; Dempster et al., 1977) algorithm (Bock and Aitkin, 1981;
Mislevy, 1986; Glas et al., 2000; Wang and Wilson, 2005b). The
ability parameters and testlet effects are viewed as unobserved
data (latent variables), and then we can find the maximum
of a complete data likelihood (the responses and unobserved
data) marginalized over unobserved data. However, the marginal
maximum likelihood estimation of testlet models has been
hampered by the fact that the computations often involve
analytically intractable high dimensional integral and hence
it is hard to find the maximum likelihood estimate of the
parameters. More specifically, when the integrals over latent
variable distributions are evaluated using Gaussian quadrature
(Bock and Aitkin, 1981), the number of calculations involved
increases exponentially with the number of latent variable
dimensions. Even though the number of quadrature points
per dimension can be reduced when using adaptive Gaussian
quadrature (Pinheiro and Bates, 1995), the total number
of points again increases exponentially with the number of
dimensions. In addition, when the EM algorithm is employed
to compute marginal maximum likelihood estimates with
unobserved data, the convergence of EM algorithm can be very
slow whenever there is a large fraction of unobserved data, and
the estimated information matrix is not a direct by product
of maximization.

An alternative method is to use a fully Bayesian formulation,
coupled with a Markov Chain Monte Carlo (MCMC) procedure
to estimate the testlet model parameters (e.g., Wainer et al.,
2000, 2007). The Bayesian method, including Metropolis-
Hastings algorithm (Metropolis et al., 1953; Hastings, 1970;
Tierney, 1994; Chib and Greenberg, 1995; Chen et al., 2000)
and Gibbs algorithm (Geman and Geman, 1984; Tanner and
Wong, 1987; Albert, 1992), has some significant advantages over
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classical statistical analysis. It allows meaningful assessments
in confidence regions, incorporates prior knowledge into the
analysis, yields more precise estimators (provided the prior
knowledge is accurate), and follows the likelihood and sufficiency
principles. In this current study, an effective slice-Gibbs sampling
algorithm (Lu et al., 2018) in the framework of Bayesian is used
to estimate the model parameters. The slice-Gibbs sampling, as
the name suggests, can be conceived of an extension of Gibbs
algorithm. The sampling process consists of two parts. One part
is the slice algorithm (Damien et al., 1999; Neal, 2003; Bishop,
2006; Lu et al., 2018), which samples the two parameter logistic
testlet effect models from the truncated full conditional posterior
distribution by introducing the auxiliary variables. The other
part is Gibbs algorithm which updates variance parameters based
on the sampled values from the two parameter logistic testlet
effect models. The motivation for this sampling algorithm is
manifold. First, the slice-Gibbs sampling algorithm is a fully
Bayesian method, which averts to calculate multidimensional
numerical integration compared with the marginal maximum
likelihood method. Second, the slice algorithm has the advantage
of a flexible prior distribution being introduced to obtain samples
from the full conditional posterior distributions rather than being
restricted to using the conjugate distributions, which is required
in Gibbs sampling algorithm and limited using the normal ogive
framework (Tanner andWong, 1987; Albert, 1992; Bradlow et al.,
1999; Wainer et al., 2000; Fox and Glas, 2001; Fox, 2010; Tao
et al., 2013). The detailed discussions about the informative priors
and non-informative priors of item parameters are shown in
the simulation 2. Third, it is known that the Metropolis-Hasting
algorithm (Metropolis et al., 1953; Hastings, 1970; Tierney, 1994;
Chib and Greenberg, 1995; Chen et al., 2000) severely depends
on the standard deviation (tuning parameter) of the proposal
distributions, and it is sensitive to step size. More specifically, if
the step size is too small random walk, the chain will take longer
to traverse the support of the target density; If the step size is
too large there is great inefficiency due to a high rejection rate.
However, the slice algorithm automatically tunes the step size to
match the local shape of the target density and draws the samples
with acceptance probability equal to one. Thus, it is easier and
more efficient to implement.

The remainder of this article is organized as follows. Section
2 describes the two parameter logistic testlet effect model,
the prior assumptions and model identifications. A detailed
description of the slice-Gibbs sampling algorithm and Bayesian
model assessment criteria are presented in section 2. In section 3,
three simulation studies are given, the first of which considers
the performances of parameter recovery using the slice-Gibbs
algorithm under different design conditions. In the second
simulation, the prior sensitivity of the the slice-Gibbs sampling
algorithm is assessed using the simulated data. In the third
simulation, based on the Markov chain Monte Carlo (MCMC)
output, two Bayesian model assessment methods are used to
evaluate the model fit. In section 5, an empirical example is
analyzed in detail to further demonstrate the applicability of
the testlet structure models and the validity of the slice-Gibbs
sampling algorithm. At last, we conclude with a few summary
remarks in section 6.

2. THE NEW TWO PARAMETER LOGISTIC
TESTLET MODEL AND PRIOR
ASSUMPTIONS

The new two parameter logistic testlet model (N2PLTM):

pij = p
(
yij = 1

∣∣∣θi, aj, bj, ηid(j)
)

=
exp

[
aj
(
θi − bj

)
+ αd(j)ηid(j)

]

1+ exp
[
aj
(
θi − bj

)
+ αd(j)ηid(j)

] , (1)

In Equation (1), i = 1, . . . , n. indicates persons. Suppose a
text contains J items, items in such tests are grouped into
K (1 ≤ K ≤ J)mutually exclusive and exhaustive testlets. Denote
testlet d containing item by d

(
j
)
and the size of each testlet by

nk
(
1 ≤ k ≤ K

)
which can be written as with d (1) and d (J) = K.

yij represents the response of the ith examinee answering the
jth item, and the correct response probability is expressed as
pij. And θi denotes ability parameter for the ith examinee. aj
is the discrimination parameter of the item j. bj denotes the

difficulty parameter of the item j, and αd(j) =
∑

j∈Sd(j)

aj
nd(j)

is

the testlet discrimination parameter where nd(j) is the numbers

of items in testlet (testlet d contains item j) and Sd(j) is the

set of the serial numbers of item in the testlet. The purpose
of using the testlet discrimination parameter is to consider the
interaction between the discrimination parameters for all Sd(j)
items in the same testlet and the testlet effect, rather than
just examining the influence of the jth item discrimination
parameter on the testlet effect for the traditional testlet models.
The random effect ηid(j) represents the interaction of individual

i with testlet d
(
j
)
. It can be interpreted as a random shift in

individuals’ ability or another ability dimension (Li et al., 2006).
The following priors and hyper-priors are used to estimate the
parameters of N2PLTM. The latent ability θ and the testlet effect
η are assumed to be independently and normally distributed
under the testlet model. That is, η∗ = (θi, ηi1, . . . , ηiK)′ has
a multivariate normal distribution N (µ,6), where µ is mean

vector, 6 is a diagonal matrix, 6 = diag
(
σ 2

θ , σ
2
η1
, . . . , σ 2

ηK

)
.

The variances of ηik
(
k = 1, 2, . . . ,K

)
, which can be allowed to

vary across testlets, indicate the amount of local dependence
in each testlet. If the variance of ηik is zero, the items within
the testlet can be considered conditionally independent. As the
variance increases, the amount of local dependence increases.
The priors to the discrimination parameters are set from
truncated normal priors, N

(
µa, σ

2
a

)
I (0,+∞), where I (0,+∞)

denotes the indicator function that the values range from zero
to infinity, and the difficulty parameters are assumed to follow
the normal distribution, bk ∼ N

(
µb, σ

2
b

)
. In addition, the hyper-

priors for σ 2
a , σ

2
b
and σ 2

ηk

(
k = 1, 2, . . . ,K

)
are assumed to follow

inverse Gamma distribution with shape parameter v and scale
parameter τ . Let � = (θ , a, b, η) represents the collection of the
unknown parameters in model (1), where θ = (θ1, . . . , θn)

′, a =(
a1, . . . , aJ

)′
, b =

(
b1, . . . , bJ

)′
and η =

(
η1d(1), . . . ., ηd(J)

)′
. The
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joint posterior distribution of � given the data is represented by

p (� |Y ) ∝

n∏

i=1

J∏

j=1

p
(
yij

∣∣∣θi, aj, bj, ηid(j)
)
p (θi)

p
(
aj
∣∣µa, σ

2
a

)
I
(
aj > 0

)
p
(
bj
∣∣µb, σ

2
b

)

× p
(
σ 2
a

)
p
(
σ 2
b

)
p
(
ηid(j)

∣∣∣µη, σ
2
ηd(j)

)
p
(
σ 2

ηd(j)

)

∝





n∏

i=1

J∏

j=1

[
p
yij
ij

(
1− pij

)1−yij
]




[
n∏

i=1

exp

(
−

θ2i

2

)]

(
σ 2
a σ 2

b

)− J
2

J∏

j=1

exp

[
−

(
aj − µa

)2

2σ 2
a

]

× exp

[
−

(
bj − µb

)2

2σ 2
b

]
I
(
aj > 0

) (
σ 2
a

)−(v1+1)

(
σ 2
b

)−(v2+1)
exp

[
−

τ1

σ 2
a

−
τ2

σ 2
b

]

×

n∏

i=1

J∏

j=1

exp


−

η2
id(j)

2σ 2
ηd(j)



(
σ 2

ηd(j)

)−(v3+1)

exp

(
−

τ3

σ 2
ηd(j)

)
. (2)

2.1. Model Identifications
In Equation 1, the linear part of the testlet effect model,
aj
(
θi − bj

)
+ αd(j)ηid(j), can be rewritten as follows

aj

(
θi − bj +

ηid(j)

nd(j)

)
+

∑

k∈Sd(j)−{j}

ak

nd(j)
ηid(j),

where the testlet discrimination αd(j) consists of the

discrimination parameters aj. That is, αd(j) =
∑

j∈Sd(j)

aj
nd(j)

,

and k ∈ Sd(j) −
{
j
}
means that k belongs to the set Sd(j)

excluding the index j. To eliminate the trade offs among the
ability θ , difficulty parameter b and testlet effect ηid(j) in location,

we fix the mean population level of ability to zero and restrict a
item difficulty parameter to zero. Meanwhile, to eliminate the
trade off between the ability θ and the discrimination parameter
a in scale, we need restrict the variance population level of ability

to one. However, ajbj, aj
ηid(j)
nd(j)

and

∑

k∈Sd(j)−{j}

ak

nd(j)
ηid(j) still have the

trade offs in scale. In fact, we only need fix a item discrimination
parameter to one. In summary, the required identification
conditions are as follows:

θi ∼ N (0, 1) , a1 = 1 and b1 = 0.

Several identification restriction methods of two parameter IRT
models have been widely used. The identification restrictions of
our model are based on the following methods.

(1) To fix the mean population level of ability to zero and the
variance population level of ability to one (Lord and Novick,
1968; Bock and Aitkin, 1981; Fox and Glas, 2001; Fox, 2010).
That is, θ ∼ N (0, 1);

(2) To fix the item difficulty parameter to a specific value, most
often zero, and restrict the discrimination parameter to a
specific value, most often one (Fox and Glas, 2001; Fox,
2010). That is, b1 = 0 and a1 = 1.

3. BAYESIAN INFERENCES

3.1. Slice-Gibbs Algorithm to Estimate
Model Parameters
The motivation for the slice-Gibbs sampling algorithm is that the
inferred samples can easily be drawn from the full conditional
distribution by introducing the auxiliary variables. Before giving
the specific Bayesian sampling process, we give the definition
of auxiliary and its role in the sampling process. Auxiliary
variables are variables that can help to make estimates on
incomplete data, while they are not part of the main analysis.
Basically, the auxiliary variables are latent unknown parameters
without any direct interpretation which are introduced for
technical/simulation reasons or for the reason of making
an analytically intractable distribution tractable. Within the
Bayesian framework, in the method of auxiliary variables,
realizations from a complicated distribution can be obtained by
augmenting the variables of interest by one or more additional
variables such that the full conditionals are tractable and easy to
simulate from. The construction of sampling algorithms via the
introduction of auxiliary variable received much attention since
it resulted in both simple and fast algorithms (Tanner andWong,
1987; Higdon, 1998; Meng and van Dyk, 1999; Fox, 2010).

For each of the response variable yij, we introduce two
mutually independent random auxiliary variables λij and ϕij. The
random variables λij and ϕij are assumed to follow a Uniform
(0,1). The following two cases must be satisfied.
Case 1: When yij = 1, an equivalent condition for yij = 1 is the
indicator function I

(
0 < λij ≤ pij

)
must be equal to 1, as opposed

to I
(
0 < ϕij ≤ qij

)
is set to 0, where qij = 1−pij. In addition, if the

joint distribution (λij and pij) integrate out the auxiliary variables
λij, the obtained marginal distribution is just equal to the correct
response probability of the ith individual answering the jth item.
Case 2: Similarly, when yij = 0, an equivalent condition for
yij = 0, that is, the indicator function I

(
0 < ϕij ≤ qij

)
must be

equal to 1, as opposed to is I
(
0 < λij ≤ pij

)
set to 0.

Therefore, the joint posterior distribution based on the auxiliary
variables is given by

p (�,λ,ϕ |Y ) ∝

n∏

i=1

J∏

j=1

[
I
(
yij = 1

)
I
(
0 < λij ≤ pij

)

+I
(
yij = 0

)
I
(
0 < ϕij ≤ qij

)]
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×
(
σ 2
a σ 2

b

)− J
2

J∏

j=1

exp

[
−

(
aj − µa

)2

2σ 2
a

−

(
bj − µb

)2

2σ 2
b

]

I
(
aj > 0

)
[

n∏

i=1

exp

(
−

θ2i

2

)]

×
(
σ 2
a

)−(v1+1) (
σ 2
b

)−(v2+1)
exp

[
−

τ1

σ 2
a

−
τ2

σ 2
b

]

×

n∏

i=1

J∏

j=1

exp


−

η2
id(j)

2σ 2
ηd(j)



(
σ 2

ηd(j)

)−(v3+1)

exp

(
−

τ3

σ 2
ηd(j)

)
. (3)

We find that the Equation (2) can be obtained by taking
expectations about the auxiliary variables for the Equation (3).
Each step of the algorithm needs to satisfy the Equation (3). The
detailed slice-Gibbs sampling algorithm is given by

Step 1: Sample the auxiliary variables λij and ϕij given the
response variable Y and the parameters �. The full conditional
posterior distributions can be written as

λij |Y , � ∼ Uniform
(
0, pij

)
, if yij = 1,

ϕij |Y , � ∼ Uniform
(
0, qij

)
, if yij = 0.

(4)

Step 2: Sample the discrimination parameter aj. The prior of the
discrimination parameters is N

(
µa, σ

2
a

)
I (0,+∞). According to

the Equation (3), for all i, if 0 < λij ≤ pij,
(
θi − bj +

ηid(j)
nd(j)

)
>

0 or 0 < ϕij ≤ qij,
(
θi − bj +

ηid(j)
nd(j)

)
< 0. The following

inequalities are established

aj
(
θi − bj

)
+ αd(j)ηid(j) ≥ log

(
λij

1− λij

)
,

Or equivalently,

aj ≥

(
θi − bj +

ηid(j)

nd(j)

)−1



log

(
λij

1− λij

)
−

∑

k∈Sd(j)−{j}

ak

nd(j)
ηid(j)



,

And,

aj
(
θi − bj

)
+ αd(j)ηid(j) ≥ log

(
1− ϕij

ϕij

)
,

Or equivalently,

aj ≥

(
θi − bj +

ηid(j)

nd(j)

)−1



log

(
1− ϕij

ϕij

)
−

∑

k∈Sd(j)−{j}

ak

nd(j)
ηid(j)



.

Similarly, for all i, if 0 < λij ≤ pij,
(
θi − bj +

ηid(j)
nd(j)

)
< 0 or

0 < ϕij ≤ qij,
(
θi − bj +

ηid(j)
nd(j)

)
> 0. The following inequalities

are established

aj
(
θi − bj

)
+ αd(j)ηid(j) ≥ log

(
λij

1− λij

)
,

Or equivalently,

aj ≤

(
θi − bj +

ηid(j)

nd(j)

)−1



log

(
λij

1− λij

)
−

∑

k∈Sd(j)−{j}

ak

nd(j)
ηid(j)



,

And,

aj
(
θi − bj

)
+ αd(j)ηid(j) ≥ log

(
1− ϕij

ϕij

)
,

Or equivalently,

aj ≤

(
θi − bj +

ηid(j)

nd(j)

)−1



log

(
1− ϕij

ϕij

)
−

∑

k∈Sd(j)−{j}

ak

nd(j)
ηid(j)



.

Let

1j =

{
i

∣∣∣∣∣0 < λij ≤ pij,

(
θi − bj +

ηid(j)

nd(j)

)
> 0

}
,

Gj =

{
i

∣∣∣∣∣0 < ϕij ≤ pij,

(
θi − bj +

ηid(j)

nd(j)

)
< 0

}
,

∇j =

{
i

∣∣∣∣∣0 < λij ≤ pij,

(
θi − bj +

ηid(j)

nd(j)

)
< 0

}
,

3j =

{
i

∣∣∣∣∣0 < ϕij ≤ pij,

(
θi − bj +

ηid(j)

nd(j)

)
> 0

}
.

When given the response variable Y , the auxiliary variable λ, ϕ
and other parameters�1 (all of the parameters except aj), the full
conditional distribution is represented by

aj

∣∣∣λ, ϕ, �1 ∼ N
(
µa, σ

2
a

)
I
(
0 < aLj ≤ aj ≤ aUj

)
. (5)

In Equation (5),

aLj = max



max

i∈1j

(
θi − bj +

ηid(j)

nd(j)

)−1



log

(
λij

1− λij

)
−

∑

k∈Sd(j)−{j}

ak

nd(j)
ηid(j)




,
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max
i∈Gj

(
θi − bj +

ηid(j)

nd(j)

)−1



log

(
1− ϕij

ϕij

)
−

∑

k∈Sd(j)−{j}

ak

nd(j)
ηid(j)







.

And

aUj = min



min

i∈∇j

(
θi − bj +

ηid(j)

nd(j)

)−1



log

(
λij

1− λij

)
−

∑

k∈Sd(j)−{j}

ak

nd(j)
ηid(j)




,

min
i∈3j

(
θi − bj +

ηid(j)

nd(j)

)−1



log

(
1− ϕij

ϕij

)
−

∑

k∈Sd(j)−{j}

ak

nd(j)
ηid(j)







.

Step 3: Sample the difficulty parameter bj. The prior of the
difficulty parameters is N

(
µb, σ

2
b

)
. According to the Equation

(3), for ∀i, if we have 0 < λij ≤ pij, the following inequalities
are established,

aj
(
θi − bj

)
+ αd(j)ηid(j) ≥ log

(
λij

1− λij

)
,

Or equivalently,

bj ≤ θi −
1

aj

[
log

(
λij

1− λij

)
− αd(j)ηid(j)

]
.

Similarly, for all i, if 0 < ϕij ≤ qij, the following inequalities
are established

aj
(
θi − bj

)
+ αd(j)ηid(j) ≥ log

(
1− ϕij

ϕij

)
,

Or equivalently,

bj ≤ θi −
1

aj

[
log

(
1− ϕij

ϕij

)
− αd(j)ηid(j)

]
.

Let Dj =
{
i
∣∣yij = 1, 0 < λij ≤ pij

}
, Ej ={

i
∣∣yij = 0, 0 < ϕij ≤ qij

}
. Thus, given the response variable Y ,

the auxiliary variable λ, ϕ and other parameters �2 (all of the
parameters except bj). The full conditional posterior distribution
is given by

bj

∣∣∣λ, ϕ, �2 ∼ N
(
µb, σ

2
b

)
I
(
bLj ≤ bj ≤ bUj

)
, (6)

In Equation (6),

bLj = max
i∈Ej

{
θi −

1

aj

[
log

(
1− ϕij

ϕij

)
− αd(j)ηid(j)

]}
,

And

bUj = min
i∈Dj

{
θi −

1

aj

[
log

(
λij

1− λij

)
− αd(j)ηid(j)

]}
.

Step 4: Sample the latent ability θi, the prior of the latent ability
is assumed to follow a normal distribution with mean µθ and
variance σ 2

θ . Given the response variable Y , the auxiliary variable
λ, ϕ and other parameters �3 (all of the parameters except θi).
The full conditional posterior distribution of θi is

θi
∣∣λ, ϕ, �3,Y ∼ N

(
µθ , σ

2
θ

)
I
(
θLi ≤ θi ≤ θUi

)
, (7)

In Equation (7),

θLi = max
j∈Ci

{
1

aj

[
log

(
λij

1− λij

)
− αd(j)ηid(j)

]
+ bj

}
,

where Ci =
{
j
∣∣yij = 1, 0 < λij ≤ pij

}
,

θUi = min
j∈Bi

{
1

aj

[
log

(
1− ϕij

ϕij

)
− αd(j)ηid(j)

]
+ bj

}
,

where Bi =
{
j
∣∣yij = 0, 0 < ϕij ≤ qij

}
.

Step 5: Sample the testlet random effect ηid(j). Assuming that the

jth term comes from the kth testlet [i.e., d
(
j
)
= k] and the order

of the terms in the kth testlet is form jk to nk + jk − 1. Then, the
joint posterior distribution can be rewritten as

p (�,λ,ϕ |Y ) ∝

n∏

i=1

K∏

k=1

nk+jk−1∏

j=jk

[
I
(
yij = 1

)
I
(
0 < λij ≤ p∗ij

)

+I
(
yij = 0

)
I
(
0 < ϕij ≤ q∗ij

)]

×
(
σ 2
a σ 2

b

)− J
2

J∏

j=1

exp

[
−

(
aj − µa

)2

2σ 2
a

−

(
bj − µb

)2

2σ 2
b

]
I
(
aj > 0

)
[

n∏

i=1

exp

(
−

θ2i

2

)]

×
(
σ 2
a

)−(v1+1) (
σ 2
b

)−(v2+1)
exp

[
−

τ1

σ 2
a

−
τ2

σ 2
b

]

×

n∏

i=1

J∏

j=1

exp

(
−

η2
ik

2σ 2
ηk

)(
σ 2

ηk

)−(v3+1)
exp

(
−

τ3

σ 2
ηk

)
.

where p∗ij =
exp[aj(θi−bj)+αkηik]

1+exp[aj(θi−bj)+αkηik]
, q∗ij = 1 − p∗ij. The prior

of the testlet random effect ηik is assumed to follow a normal
distribution with mean µη and variance σ 2

η . Given the response
variable Y , the auxiliary variable λ, ϕ and other parameters
�4 (all of the parameters except ηik). The full conditional
distribution of ηik is given by

ηik

∣∣∣λ, ϕ, �4,Y ∼ N
(
µη, σ

2
η

)
I
(
ηLik ≤ ηik ≤ ηUik

)
, (8)
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In Equation (8),

ηLik =
1

αk

[
log

(
λij

1− λij

)
− aj

(
θi − bj

)]
, and

ηUik =
1

αk

[
log

(
1− ϕij

ϕij

)
− aj

(
θi − bj

)]
.

Step 6: Sample the variance parameter σ 2
a , the variance is

assumed to follow a Inverse-Gamma(v1, τ1) hyper prior. Given
the discrimination parameters a, the hyper parameters v1 and τ1.
The full conditional posterior distribution of σ 2

a is given by

p
(
σ 2
a |a, v1, τ1

)
∝ p

(
a
∣∣µa, σ

2
a

)
p
(
σ 2
a

)

∝
∣∣σ 2

a

∣∣− J
2 exp





−

J∑

j=1

(
aj − µa

)2

2σ 2
a





∣∣σ 2
a

∣∣−(v1+1)
exp

{
−

τ1

σ 2
a

}
.

Thus,

σ 2
a |a, v1, τ1 ∼ Inverse− Gamma




J

2
+ v1,

J∑

j=1

(
aj − µa

)2

2
+ τ1



.

Step 7: Sample the variance parameter σ 2
b
, the variance is

assumed to follow a Inverse-Gamma(v2, τ2) hyper prior. Given
the difficulty parameters b, the hyper parameters v2 and τ2. The
full conditional posterior distribution of σ 2

b
is given by

p
(
σ 2
b |b, v2, τ2

)
∝ p

(
b
∣∣µb, σ

2
b

)
p
(
σ 2
b

)

∝
∣∣σ 2

b

∣∣− J
2 exp





−

J∑

j=1

(
bj − µb

)2

2σ 2
b





∣∣σ 2
b

∣∣−(v2+1)
exp

{
−

τ2

σ 2
b

}
.

Thus,

σ 2
b |b, v2, τ2 ∼ Inverse− Gamma




J

2
+ v2,

J∑

j=1

(
bj − µb

)2

2
+ τ2



.

(9)

Step 8: Sample the random effect variance parameter σ 2
ηk
,

the variance is assumed to follow a Inverse-Gamma (v3, τ3)
hyper prior. Given the random effect parameters η, the hyper
parameters v3 and τ3. The full conditional posterior distribution
of σ 2

ηk
is given by

p
(
σ 2

ηk
|η, v3, τ3

)
∝ p

(
η

∣∣∣µη, σ
2
ηk

)
p
(
σ 2

ηk

)

∝

∣∣∣σ 2
ηk

∣∣∣
− n

2
exp




−

n∑

i=1

(
ηik − µη

)2

2σ 2
ηk





∣∣∣σ 2
ηk

∣∣∣
−(v3+1)

exp

{
−

τ3

σ 2
ηk

}
.

Thus,

σ 2
ηk
|η, v3, τ3 ∼ Inverse− Gamma




n

2
+ v3,

N∑

i=1

(
ηik − µη

)2

2
+ τ3



.

(10)

3.2. Bayesian Model Assessment
Within the framework of Bayesian, Bayes factor has played a
major role in assessing the goodness of fit of competing models
(Kass and Wasserman, 1995; Gelfand, 1996). It is defined as the
ratio of the posterior odds of model 1 to model 2 divided by the
prior odds of model 1 to model 2

BF =
p
(
M1

∣∣y
)
/p
(
M2

∣∣y
)

p (M1) /p (M2)
=

p
(
y |M1

)

p
(
y |M2

) , (11)

In Equation (11), y denotes the observation data, p (Mh) denotes
the model prior likelihood, and p

(
Mh

∣∣y
)
are the marginal

likelihoods of the data matrix y for model h, h = 1, 2. The Bayes
factor (BF) provide a summary of evidence for M1 compared
to M2. M1 is supported when BF>1, and M2 is supported
otherwise. A value of BF between 1 and 3 is considered as
minimal evidence for M1, a value between 3 and 12 as positive
evidence for M1, a value between 12 and 150 as strong evidence
forM1, and a value >150 as very strong evidence (Raftery, 1996).
However, one of the obstacles to use of the Bayes factors is
the difficulty associated with calculating them. As we known,
while the candidate model with high-dimensional parameters
are used to fit the data, it is not possible integrate out the all
parameters of models to obtain the closed-form expression of
marginal distribution. In addition, it are acutely sensitive to the
choice of prior distributions. If the use of improper priors for
the parameters in alternative models results in Bayes factors that
are not well defined. However, numerous approaches have been
proposed for model comparison with improper priors (Aitkin,
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1991; Gelfand et al., 1992; Berger and Pericchi, 1996; Ando, 2011).
In our article, Based on the noninformative priors, a “pseudo-
Bayes factor” approach is implemented, which provides a type of
approximation to the BF.

3.2.1. Pseudo-Bayes Factor
The pseudo-Bayes factor (PsBF) method (Geisser and Eddy,
1979) overcome BF sensitive to the choice of prior distributions.
It can be obtained by calculating the cross-validation predictive
densities. Considering i = 1, . . . , n individuals response to items.
Let y−(ij) be the observed data without the ijth observation and

let 4 denote all the parameters under the assumed model. The
cross-validation predictive density (CVPD) can be defined by

p
(
yij

∣∣∣y−(ij)

)
=

∫
p
(
yij

∣∣∣y−(ij),4
)
p
(
4

∣∣∣y−(ij)

)
d4, (12)

In Equation (12), the density p
(
yij

∣∣∣y−(ij)

)
denotes supporting

the possibility of values of yij when the model is fitted to
observations except yij. According to conditional independence

hypothesis, the equation p
(
yij

∣∣∣y−(ij),4
)

= p
(
yij |4

)
can be

established, the responses on the different items are independent
given ability and the responses of the individuals are independent
of one another. The Pseudo Bayes factor (PsBF) for comparing
two models (M1 and M2) is expressed in terms of the product of
cross-validation predictive densities and can be written as

PsBF =
∏

i,j

p
(
yij

∣∣∣y−(ij),M1

)

p
(
yij

∣∣∣y−(ij),M2

) . (13)

In practice, we can calculate the logarithm of the numerator
and denominator of the PsBF and it can be used for comparing
different models. The model with a larger PsBF has a better
fit of the data. Gelfand and Dey (1994) and Newton and
Raftery (1994) proposed an importance sampling to evaluate the
marginal likelihood (CVPD) of the data. Given the sample size R,
r = 1, . . . ,R, the samples 4(m) from the posterior distribution

p
(
4

∣∣∣y−(ij)

)
often easily obtained via an MCMC sampler. The

estimated likelihood function is

̂
p
(
yij

∣∣∣y−(ij)

)
=

[
1

M

M∑

m=1

1

p
(
yij
∣∣4(m)

)
]−1

=




1

M

M∑

m=1

1
(
p
(m)
ij

)yij (
1− p

(m)
ij

)1−yij




−1

.(14)

3.2.2. The Deviance Information Criteria (DIC)
A model comparison method is often based on a measure of
fit and some penalty function based on the number of free
parameters for the complexity of the model. Two well-known
criteria of model selection based on a deviance fit measure are the
Bayesian information criterion (BIC; Schwarz, 1978) andAkaike’s
information criterion (AIC; Akaike, 1973). These criteria depend

on the effective number of parameters in the model as a measure
of model complexity. However, in Bayesian hierarchical models,
it is not clear how to define the number of parameters due
to the prior distribution imposes additional restrictions on the
parameter space and reduces its effective dimension. Therefore,
Spiegelhalter et al. (2002) proposed the deviance information
criterion (DIC) for model comparison when the number of
parameters is not clearly defined in hierarchical models. The DIC
is defined as the sum of a deviancemeasure and a penalty term for
the effective number of parameters based on a measure of model
complexity. This term estimates the number of effective model
parameters and equals

PD = E4|y
{
−2 log p

(
y |4

)}
+ 2 log p

(
y
∣∣4̂
)

= D (4) − D
(
4̂
)
. (15)

The DIC can be defined as

DIC = D (4) + PD

= D (4) +
(
D (4) − D

(
4̂
))
. (16)

In Equation (15),4 is the parameter of interest in the model. The
complexity is measured by the effective number of parameters,
PD. D (4) is the posterior expectation of the deviance. It is
calculated from the MCMC output by taking the sample mean of
the simulated values of the deviance, D

(
4̂
)
= −2 log p

(
y
∣∣4̂
)
.

That is defined as the deviance of the posterior estimation mean.
Here 4̂ denotes the posterior means of the parameters. The
model with a smaller DIC has a better fit of the data.

4. SIMULATION STUDY

4.1. Simulation 1
This simulation study is conducted to evaluate the recovery
performance of the slice-Gibbs sampling algorithm under
different simulation conditions.

The following design conditions are considered: (a) testlet
type: 20 dichotomous items in 2 or 4 testlets (J = 20, each
testlet has 10 or 5 dichotomous items); (b) number of examinees,
N = 500 and 1,000; and (c) testlet effect: the variances of the
testlet random effect are 0.25 and 1.00. That is, σ 2

ηik
= 0.25 or

1.00, where i = 1, . . . ,N, k = 1, 2, or k = 1, 2, 3, 4. The true
values of item discrimination parameters ajs are generated from
a truncated normal distribution, that is, aj ∼ N (0, 1) I (0,+∞),
and the item difficulty parameters bjs are generated fromN (0, 1).
Ability parameters θis for N = 500 or 1,000 examinees are drawn
from a standard normal distribution. The testlets random effect
parameters ηiks are also generated from a normal distribution.

That is, ηik ∼ N
(
0, σ 2

ηik

)
. Response data are simulated using the

N2PLTM in Equation (1). The non-informative priors and hyper
priors of parameters are considered as follows:

aj ∼ N (0, 100) I (0,+∞) , bj ∼ N (0, 100) , j = 1, . . . , J,

σ 2
a ∼ IG (0.001, 0.001) , σ 2

b ∼ IG (0.001, 0.001) , σ 2
ηik

∼ IG (0.001, 0.001) .
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FIGURE 1 | The trace plots of the arbitrarily selected item parameters.

The non-informative priors and hyper priors are often used in
many educational measurement studies (e.g., van der Linden,
2007; Wang et al., 2018). In this paper, the prior specification will
be uninformative enough for the data to dominate the priors, so
that the influence of the priors on the results will be minimal.

4.1.1. Convergence Diagnostic for Slice-Gibbs

Algorithm
As an illustration, we only consider the convergence in the case of
20 dichotomous items in 4 testlets, the number of individuals is
500, and the variance of the random testlet variables is 0.25. Two
methods are used to check the convergence of our algorithm. One
is the “eyeball” method to monitor the convergence by visually
inspecting the history plots of the generated sequences (Zhang
et al., 2007), and another method is to use the Gelman-Rubin
method (Gelman and Rubin, 1992; Brooks and Gelman, 1998) to
check the convergence of the parameters. Bayesian computation
procedure is implemented by R software. The convergence of
slice-Gibbs algorithm algorithm is checked by monitoring the
trace plots of the parameters for consecutive sequences of 20,000
iterations. We set the first 10,000 iterations as the burn-in
period. Four chains started at overdispersed starting values are
run for each replication. The trace plots of item parameters
randomly selected are shown in Figure 1. In addition, we find
the potential scale reduction factor (PSRF; Brooks and Gelman,

1998) values of all parameters are <1.1, which ensures that all
chains converge as expected. As an illustration, the PSRF values
of all item parameters are shown in Figure 2. On a desktop
computer [AMD EPYC 7542 32-Core Processor] with 2.90 GHz
dual core processor and 1TB of RAM memory, the average
convergence times for our new algorithm and the traditional
Metropolis-Hastings algorithm based on 50 replications, are
shown in Table 1.

4.1.2. The Accuracy Evaluation of Parameter

Estimation
The accuracy of the parameter estimates is measured by two
evaluation methods, namely, Bias and mean squared error
(MSE). The recovery results are based on the 50 replications in
each simulation condition. The number of replication we choose
is based on the previous research in educational psychological
assessments. For example, Wang et al. (2013) proposed a semi-
parametric approach, specifically, the Cox proportional hazards
model with a latent speed covariate to analyze the response
time data. In their simulation study, 10 replications (Page 15,
section 4.1) are used for each simulation condition. Zhan et al.
(2017) proposed joint modeling of attributes and response speed
using item responses and response times simultaneously for
cognitive diagnosis to provide more refined diagnostic feedback
with collateral information in item response times. In their
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FIGURE 2 | The trace plots of R̂ for the simulation study 1.

TABLE 1 | Convergence times for all 8 simulation conditions in simulation study 1.

Sample size Variance of Time for convergence (Hours)

× testlet type testlet effect Slice-Gibbs algorithm MH algorithm

500× 2 0.2624 0.3182

500× 4 0.25 0.4428 0.5864

1,000×2 0.3261 0.4639

1,000×4 0.6354 0.7882

500× 2 0.2781 0.3325

500× 4 1 0.6262 0.7691

1,000×2 0.4045 0.5952

1,000×4 0.8827 1.1201

MH denotes the Metropolis-Hastings.

simulation study, they used 30 replications (Page 276) in each
condition to reduce the random error. Lu et al. (2020) proposed
a new mixture model for responses and response times with
a hierarchical ability structure, which incorporates auxiliary
information from other subtests and the correlation structure
of the abilities to detect examinees’ rapid guessing behavior.
The recovery of the estimates was based on 20 replications
(Page 14, section 5). Lu and Wang (2020) proposed to use an
innovative item response time model as a cohesive missing data
model to account for the two most common item nonresponses:
not-reached items and omitted items. They considered 20
replications (Page 21) for each simulation condition. Therefore,
based on the previous empirical conclusions, we adopt 50
replications in our simulation studies. If we consider a large
number of replications, it is impossible to check the R̂ values

(potential scale reduction factor; PSRF, Brooks and Gelman,
1998) calculated from each simulated dataset (replication) to
ensure the parameter convergence. It will be a huge work when
the simulated conditions increase. Let ϑ be the parameter of
interest. S = 50 data sets are generated. Also, let ϑ̂ (s) denotes
the posterior mean obtained from the sth simulated data set
for s = 1, . . . , S.

The Bias for parameter ϑ is defined as

Bias (ϑ) =
1

S

S∑

s=1

(
ϑ̂ (s) − ϑ

)
, (17)

and the mean squared error (MSE) for parameter ϑ is defined as

MSE (ϑ) =
1

S

S∑

s=1

(
ϑ̂ (s) − ϑ

)2
. (18)

From Tables 2–4, the Bias is between −0.3267 and 0.2769 for
the discrimination parameters, between –0.2259 and 0.2071 for
the difficulty parameters, between −0.0132 and 0.0161 for the
variance parameters of a, between −0.0219 and 0.1303 for
the variance parameters of b, between −0.2932 and 0.0332 for
the variance parameter of testlet effect η. the MSE is between
0.0000 and 0.1162 for the discrimination parameters, between
0.0000 and 0.0552 for the difficulty parameters, between 0.0002
and 0.0005 for the variance parameters of a, between 0.0002
and 0.0449 for the variance parameters of b, between 0.0000
and 0.1848 for the variance parameter of testlet effect η. In
summary, the slice-Gibbs algorithm provides accurate estimates
of the parameters in term of various numbers of examinees
and items.
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TABLE 2 | Evaluating accuracy of the item parameter estimates based on different simulation conditions in the simulation study 1.

The testlet effect with small variance
(
σ 2

ηk
= 0.25

)

Two testlets (k = 2) Four testlets (k = 4)

N = 500 N = 1,000 N = 500 N = 1,000

Testlets Para. Bias MSE Bias MSE Testlet Para. Bias MSE Bias MSE

a1 0* 0* 0* 0* a1 0* 0* 0* 0*

a2 –0.0220 0.0122 –0.0596 0.0085 a2 –0.0901 0.0320 –0.0331 0.0036

a3 0.1079 0.0259 0.0371 0.0053 a3 –0.0437 0.0172 –0.1163 0.0299

a4 0.1293 0.0269 –0.0194 0.0100 a4 –0.0517 0.0116 –0.0217 0.0046

a5 0.1430 0.0340 0.0201 0.0029 1 a5 0.0375 0.0080 0.0209 0.0030

a6 0.0735 0.0211 0.0969 0.0236 b1 0* 0* 0* 0*

a7 0.0296 0.0156 –0.0170 0.0058 b2 –0.0229 0.0012 –0.1338 0.0194

a8 0.1060 0.0238 0.1418 0.0414 b3 –0.0100 0.0016 –0.0489 0.0027

a9 0.0043 0.0119 –0.1767 0.0418 b4 0.0678 0.0059 0.0084 0.0013

1 a10 0.0044 0.0162 0.0155 0.0050 b5 –0.0338 0.0043 0.1382 0.0216

b1 0* 0* 0* 0* a6 0.0013 0.0055 -0.0099 0.0043

b2 0.0784 0.0066 0.0595 0.0046 a7 –0.0321 0.0080 –0.0526 0.0121

b3 –0.0999 0.0121 0.1838 0.0346 a8 –0.1421 0.0314 –0.0682 0.0195

b4 –0.1049 0.0120 –0.0586 0.0043 a9 –0.1936 0.0484 –0.1320 0.02678

b5 0.0572 0.0064 0.0648 0.0081 2 a10 –0.0459 0.0107 0.0698 0.0067

b6 –0.0441 0.0030 –0.1098 0.0125 b6 0.0621 0.0088 –0.0551 0.0041

b7 0.0233 0.0021 0.0139 0.0018 b7 –0.0227 0.0049 0.0557 0.0034

b8 –0.0780 0.0078 –0.0950 0.0093 b8 0.0470 0.0042 0.0461 0.0024

b9 0.0061 0.0007 –0.0145 0.0007 b9 –0.0519 0.0039 –0.1125 0.0129

b10 0.0309 0.0018 0.0711 0.0073 b10 –0.0754 0.0105 0.1889 0.0382

a11 –0.0930 0.0273 –0.0404 0.0079 a11 0.0132 0.0080 –0.0040 0.0064

a12 –0.0566 0.0188 –0.0543 0.0109 a12 –0.0766 0.0253 –0.0105 0.0100

a13 –0.0092 0.0112 0.0431 0.0266 a13 –0.0444 0.0111 0.0010 0.0077

a14 0.0824 0.0223 –0.1066 0.0241 a14 –0.0838 0.0255 0.0694 0.0086

a15 0.0670 0.0154 0.1983 0.0461 3 a15 –0.1910 0.0489 –0.0047 0.0060

a16 0.0681 0.0201 –0.0650 0.0170 b11 –0.0746 0.0069 0.0572 0.0039

a17 –0.0427 0.0116 0.2769 0.1023 b12 –0.0766 0.0064 0.0149 0.0006

a18 0.0872 0.0183 0.1844 0.0403 b13 0.0983 0.0128 0.0247 0.0015

a19 –0.0731 0.0164 –0.0246 0.0078 b14 –0.0384 0.0020 0.1116 0.0140

2 a20 0.0856 0.0149 –0.1472 0.0302 b15 0.1051 0.0121 –0.0203 0.0012

b11 0.0018 0.0008 –0.1063 0.0120 a16 –0.1907 0.0522 –0.0602 0.0071

b12 0.0254 0.0018 0.0042 0.0005 a17 0.0069 0.0057 –0.0596 0.0064

b13 0.0404 0.0029 –0.1164 0.0137 a18 –0.0233 0.0084 –0.0467 0.0069

b14 0.0545 0.0082 –0.0481 0.0032 a19 –0.1432 0.0368 –0.0512 0.0088

b15 0.0118 0.0029 0.1903 0.0365 4 a20 –0.0780 0.0157 –0.1109 0.0276

b16 –0.0168 0.0064 –0.0048 0.0006 b16 0.0351 0.0020 0.0784 0.0071

b17 –0.0871 0.0084 0.1171 0.0139 b17 –0.1779 0.0372 –0.1403 0.0213

b18 0.1374 0.0203 0.2071 0.0437 b18 0.0465 0.0052 –0.0353 0.0023

b19 0.0175 0.0015 –0.0419 0.0030 b19 –0.0441 0.0029 –0.0976 0.0115

b20 –0.0676 0.0091 –0.0582 0.0038 b20 0.0672 0.0057 0.0706 0.0054

Asterisks (*) indicates the constraints for model identifications. In fact, we need fix an item discrimination and difficulty parameters to one and zero due to model identifiability limitations.

That is, a1 =1, b1 =0. In Bayesian estimation process, the Bias and MSE for the discrimination parameter a1 are blackened 0. Similarly, the Bias and MSE for the difficulty parameter

b1 are also blackened 0.

4.2. Simulation 2
This simulation study is designed to show that the slice-
Gibbs sampling algorithm is sufficiently flexible to recover

various prior distributions of the item parameters and
address the sensitivity of our slice-Gibbs algorithm with
different priors.
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TABLE 3 | Evaluating accuracy of the item parameter estimates based on different simulation conditions in the simulation study 1.

The testlet effect with large variance
(
σ 2

ηk
= 1.00

)

Two testlets (k = 2) Four testlets (k = 4)

N = 500 N = 1,000 N = 500 N = 1,000

Testlets Para. Bias MSE Bias MSE Testlet Para. Bias MSE Bias MSE

a1 0* 0* 0* 0* a1 0* 0* 0* 0*

a2 0.1068 0.0532 –0.0423 0.0060 a2 –0.0206 0.0128 0.0762 0.0109

a3 0.0399 0.0122 0.0120 0.0023 a3 0.0562 0.0201 –0.0674 0.0210

a4 0.0665 0.0164 0.0684 0.0130 a4 0.0447 0.0137 0.0751 0.0137

a5 0.0898 0.0185 0.0541 0.0096 1 a5 0.1790 0.0411 0.0915 0.0118

a6 –0.0190 0.0139 0.1984 0.0573 b1 0* 0* 0* 0*

a7 –0.0810 0.0258 0.0352 0.0063 b2 –0.0045 0.0008 –0.1139 0.0138

a8 0.0113 0.0150 0.2475 0.0768 b3 0.0020 0.0011 –0.0247 0.0011

a9 –0.1398 0.0369 –0.0888 0.0217 b4 0.0832 0.0079 0.0365 0.0024

1 a10 –0.1216 0.0358 0.0595 0.0061 b5 –0.0402 0.0040 0.1794 0.0338

b1 0* 0* 0* 0* a6 0.0562 0.0087 0.0709 0.0109

b2 0.0777 0.0065 0.0795 0.0071 a7 0.0629 0.0155 –0.0408 0.0133

b3 –0.0727 0.0086 0.1899 0.0367 a8 –0.1050 0.0237 –0.0317 0.0139

b4 –0.0751 0.0063 –0.0479 0.0029 a9 –0.1127 0.0269 –0.0780 0.0225

b5 0.0535 0.0067 0.1047 0.0136 2 a10 0.0696 0.0128 0.1520 0.0259

b6 –0.0293 0.0017 –0.1021 0.0107 b6 0.1359 0.0237 –0.0591 0.0045

b7 0.0236 0.0020 0.0503 0.0042 b7 0.0162 0.0028 0.0435 0.0022

b8 –0.0498 0.0039 –0.0962 0.0094 b8 0.0954 0.0110 0.0344 0.0016

b9 0.0044 0.0009 0.0047 0.0004 b9 –0.0048 0.0007 –0.0918 0.0086

b10 0.0291 0.0020 0.1053 0.0130 b10 –0.0405 0.0045 0.1919 0.0398

a11 –0.1291 0.0416 –0.0248 0.0064 a11 0.2072 0.0521 0.1561 0.0371

a12 –0.0855 0.0248 –0.0099 0.0092 a12 0.0261 0.0241 0.1212 0.0288

a13 –0.0509 0.0204 0.0114 0.0120 a13 0.0070 0.0086 0.1183 0.0262

a14 0.0745 0.0147 –0.0630 0.0124 a14 0.0525 0.0187 0.2235 0.0569

a15 0.0388 0.0098 0.2199 0.0528 3 a15 –0.3267 0.1162 0.1419 0.0311

a16 0.0719 0.0139 –0.0337 0.0127 b11 –0.1127 0.0143 0.0245 0.0011

a17 0.0412 0.0331 0.2466 0.0734 b12 –0.0932 0.0093 –0.0246 0.0011

a18 0.1039 0.0226 0.2060 0.0462 b13 0.1460 0.0230 –0.0192 0.0018

a19 –0.1304 0.0333 0.0110 0.0102 b14 –0.0334 0.0020 0.0751 0.0066

2 a20 0.0585 0.0105 –0.1228 0.0251 b15 0.1157 0.0152 –0.0727 0.0059

b11 –0.0149 0.0015 –0.1035 0.0117 a16 –0.1712 0.0499 0.0534 0.0091

b12 0.0055 0.0014 –0.0064 0.0005 a17 0.1437 0.0265 0.0320 0.0052

b13 0.0277 0.0024 –0.0992 0.0100 a18 0.0859 0.0176 0.0934 0.0141

b14 0.0286 0.0064 –0.0508 0.0032 a19 –0.1100 0.0306 0.0515 0.0080

b15 –0.0027 0.0033 0.1773 0.03176 4 a20 –0.0396 0.0180 –0.1562 0.0377

b16 –0.0326 0.0062 –0.0109 0.0006 b16 0.0542 0.0037 0.1187 0.0151

b17 –0.0887 0.0087 0.1086 0.0121 b17 –0.2259 0.0552 –0.1822 0.0344

b18 0.1242 0.0168 0.1821 0.0336 b18 0.0843 0.0099 –0.0397 0.0023

b19 0.0057 0.0015 –0.0529 0.0040 b19 –0.0275 0.0020 –0.1136 0.0137

b20 –0.0580 0.0073 –0.0641 0.0046 b20 0.1055 0.0123 0.0684 0.0050

Asterisks (*) indicates the constraints for model identifications. In fact, we need fix an item discrimination and difficulty parameters to one and zero due to model identifiability limitations.

That is, a1 =1, b1 =0. In Bayesian estimation process, the Bias and MSE for the discrimination parameter a1 are blackened 0. Similarly, the Bias and MSE for the difficulty parameter

b1 are also blackened 0.

Response pattern with 500 examinees and 4 testlets (5 items
per testlet) is generated by N2PLTM as given by Equation (1).
The true values of item parameters and ability parameters are

generated same as in simulation 1. The true value of the testlet
effect variance is set equal to 0.25. The specified types of item
parameter priors are given by the following:
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TABLE 4 | Evaluating accuracy of the variance parameter estimates.

The testlet effect with small variance
(
σ 2

ηk
= 0.25

)

Two testlets (k = 2) Four Testlets (k = 4)

N = 500 N = 1,000 N = 500 N = 1,000

Para. Bias MSE Bias MSE Para. Bias MSE Bias MSE

σ 2
a 0.0161 0.0005 0.0080 0.0003 σ 2

a 0.0079 0.0002 –0.0092 0.0002

σ 2
b –0.0219 0.0005 0.2119 0.0449 σ 2

b 0.0572 0.0033 0.1303 0.0170

σ 2
η1

0.0283 0.0008 0.0209 0.0004 σ 2
η1

–0.0051 0.0000 –0.0029 0.0000

σ 2
η2

0.0234 0.0005 0.0332 0.0011 σ 2
η2

–0.0021 0.0000 –0.0024 0.0000

σ 2
η3

–0.0102 0.0001 –0.0054 0.0000

σ 2
η4

–0.0059 0.0000 –0.0092 0.0000

The testlet effect with large variance
(
σ 2

ηk
= 1.00

)

Two testlets (k = 2) Four testlets (k = 4)

N = 500 N = 1,000 N = 500 N = 1,000

Para. Bias MSE Bias MSE Para. Bias MSE Bias MSE

σ 2
a 0.0106 0.0005 0.0094 0.0002 σ 2

a 0.0053 0.0002 –0.0132 0.0003

σ 2
b –0.0135 0.0002 0.2181 0.0475 σ 2

b 0.0398 0.0016 0.1336 0.0178

σ 2
η1

–0.1955 0.0382 –0.1953 0.0382 σ 2
η1

–0.2333 0.1112 –0.2104 0.0964

σ 2
η2

–0.2254 0.0509 –0.2014 0.0405 σ 2
η2

–0.2932 0.0863 –0.2241 0.1051

σ 2
η3

–0.2194 0.1760 –0.2298 0.1848

σ 2
η4

–0.2024 0.1622 –0.2177 0.1745

Type I: Informative priors, aj ∼ N (0, 1) I (0,+∞) and bj ∼
N (0, 1);
Type II: Noninformative priors, aj ∼ N (0, 100) I (0,+∞) and
bj ∼ N (0, 100);
Type III: Noninformative priors, aj ∼ Uniform (0, 100) and
bj ∼ Uniform (0, 100).

Prior specifications for the other parameters are identical to
the simulation study 1. To implement the MCMC sampling
algorithm, chains of length 20,000 with an initial burn-in period
10,000 are chosen, and the PSRF values of all parameters are<1.1.
Based on 25 replications, the average times for all parameters to
converge in Type I, Type II and Type III are 0.4597, 0.4428, and
0.4506 h, respectively.

The average Bias and MSE for item parameters based on 50
replication are shown in Table 5. We find that the average Bias
and MSE for item parameters are relatively unchanged under
the three different prior distributions. The slice-Gibbs sampling
algorithm allows for informative (Type I) or non-informative
(Type II, Type III) priors of the item parameters and is not
sensitive to the specification of priors. Moreover, a wider range
of prior distributions is also appealing.

4.3. Simulation 3
In this simulation study, we will investigate the power of the
model assessmentmethods. Namely, whether the Bayesianmodel
comparison criteria based on the MCMC output could identify

the truemodel fromwhich the data are generated. The simulation
design is as follows.

A data set with 500 examinees from standard normal
distribution and four testlets (five items per testlet) is generated
from the N2PLTM model. For the true values of parameters, the
discrimination parameters ajs are generated from the truncated
normal distribution, that is, aj ∼ N (0, 1) I (0,+∞). The
difficulty parameters bjs are generated from normal distribution,
that is, bj ∼ N (0, 1). The independent-items model as Model
1 is used to model assessment in which the random effects are
set to zero. Model 1 is known as two parameter logistic model
(2PLM; Birnbaum, 1957). In addition, the testlets random effect
parameters ηiks are generated from a normal distribution. That
is, ηik ∼ N (0, 0.25), k = 1, 2, 3, 4. Model 2 is the traditional two
parameter logistic testlet model (T2PLTM; Bradlow et al., 1999),
which is give by

pij = p
(
yij = 1

∣∣∣θi, aj, bj, ηid(j)
)
=

exp
[
aj

(
θi − bj + ηid(j)

)]

1+ exp
[
aj

(
θi − bj + ηid(j)

)] .

(19)

Model 3 is the N2PLTM in Equation (1). The parameter priors are
identical to the simulation study 1. The parameters are estimated
based on 20,000 iterations after a 10,000 burn-in period, and the
PSRF values of all parameters are <1.1. Two Bayesian model
assessment methods are used to model fitting. That is, DIC and

Frontiers in Psychology | www.frontiersin.org 13 August 2021 | Volume 12 | Article 509575

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Lu et al. Bayesian Inferences Testlet Effect Models

TABLE 5 | Average Bias and MSE for the item parameter estimates using three prior distributions in the simulation study 2.

Type I Type II Type III

Parameter Bias MSE Bias MSE Bias MSE

Discrimination a –0.0757 0.0250 –0.0641 0.0245 –0.0695 0.0260

Difficulty b –0.0039 0.0064 –0.0038 0.0064 –0.0038 0.0065

TABLE 6 | The results of Bayesian model assessment in the simulation 3.

Fitted model Model 1 (2PL) Model 2 (T2PLT) Model 3 (N2PLT)

True Model 3 Q1 11380.77 11124.27 11065.03

model (N2PLT) DIC Median 11412.16 11153.87 11098.49

Q3 11488.77 11226.28 11159.71

IQR 107.99 102.01 94.67

Q1 −5-903.97 –5658.31 –5634.16

log-PsBF Median –5870.39 –5620.26 –5595.36

Q3 –5856.31 –5604.20 –5590.11

IQR 47.65 54.11 44.05

log-PsBF. The results of Bayesian model assessment based on 50
replications are shown in Table 6.

From Table 6, we find that when the Model 3 (N2PLTM
model) is the true model, the Model 3 is chosen as the best-
fitting model according to the results of the DIC and log-PsBF,
which is what we expect to see. Themedians of DIC and log-PsBF
are respectively 11098.49 and −5595.36. The Model 2 (T2PLTM
model) is the second best fitting model, which is attributed to
the fact that the Model 2 with testlet random effect as well as
the Model 3 also can capture the dependency structure between
items. The differences between Model 3 and Model 2 in the
median of DIC and log-PsBF are −55.38 and 24.9, respectively.
However, compared the T2PLTM model, the N2PLTM model
with the testlet discrimination parameter α is more flexible and
the fitting is more sufficient. The Model 1 (2PL model) is worst-
fitting model. The medians of DIC and log-PsBF are respectively
11412.16 and−5870.39. The differences between Model 3 model
and Model 1 in the median of DIC and log-PsBF are −313.67
and 275.03, respectively. This is because the Model 1 do not
consider the complicated and interrelated sets of items, thus it
can not improve the model fitting for the testlet item response
data. In summary, the Bayesian assessment criteria is effective for
identifying the true models and it can be used in the subsequent
empirical example analysis.

5. EMPIRICAL EXAMPLE

To illustrate the applicability of the testlet IRT modeling method
to large-scale test assessments, we consider a data set of students’
English reading comprehension test forMaryland university (Tao
et al., 2013). A total of 1,289 students take part in the test and
answer 28 items. The 28 items consist of 4 testlets. Testlet 1 is
formed by Items 1 to 8, that is, d (1) = · · · = d (8) = 1; Testlet
2 by Items 9 to 15, that is, d (9) = · · · = d (15) = 2; Testlet 3 by

TABLE 7 | The results of Bayesian model assessment in the real data.

Model DIC log-PsBF

2PLM 44179.93 –22021.39

T2PLTM 40796.35 –20794.23

N2PLTM 40632.52 –20708.47

The meaning of the bold values is the best fitting model.

Items 16 to 23, that is, d (16) = · · · = d (23) = 3; and Testlet 4
by Items 24–28, that is, d (24) = · · · = d (28) = 4. The following
prior distributions are used to analyze the data. That is,

aj ∼ N (0, 100) I (0,+∞) , bj ∼ N (0, 100) , j = 1, . . . , 28,

θi ∼ N (0, 1) , ηid(j) ∼ N (0, 1) , i = 1, . . . , 1289, j = 1, . . . , 28.

We consider three models to fit the real data. The three models
are 2PLM, T2PLTM and N2PLTM, respectively. The slice-Gibbs
algorithm is applied to estimate the parameters of the three
models. The slice-Gibbs sampling is iterated 20,000 iterations,
with a burn-in period of 10,000 iterations. The convergence of the
chains is checked by PSRF, which are <1.1. The item parameters
of the N2PLTM are estimated and the item parameter estimators
and the corresponding standard deviations are provided in
Table 7. In the Bayesian frame work, the 95% highest posterior
density intervals (HPDI) are calculated as confidence regions for
the item parameters and are given in the columns labeled HPDIa
and HPDIb in Table 8.

Based on the results of Bayesian model selection form Table 7,
we find that the N2PLTM is the best fitting model compared to
the other two models. The DIC and log-PsBF are respectively
40632.52 and −20708.47. The second best fitting model is
T2PLTM. The differences between N2PLTM and T2PLTM in
the DIC and log-PsBF are −163.83 and 85.76, respectively. The
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TABLE 8 | The estimation results of item parameter for the real data.

Testlets Para. EAP SD HPDI

a b â b̂ SDa SDb HPDIa HPDIb

1 a1 b1 1.0000 0.0000 0.0000 0.0000 [1.0000, 1.0000] [0.0000, 0.0000]

1 a2 b2 1.6319 0.2606 0.0116 0.0001 [1.4281, 1.8411] [0.2308, 0.2845]

1 a3 b3 0.7215 0.7808 0.0053 0.0017 [0.5837, 0.8673] [0.6971, 0.8575]

1 a4 b4 0.6302 -0.2913 0.0033 0.0015 [0.5278, 0.7525] [−0.3747,−0.2197]

1 a5 b5 0.8039 0.6052 0.0062 0.0007 [0.6385, 0.9471] [0.5509, 0.6577]

1 a6 b6 0.7998 0.6283 0.0046 0.0010 [0.6667, 0.9380] [0.5528, 0.6832]

1 a7 b7 1.1367 0.2697 0.0066 0.0004 [0.9717, 1.2945] [0.2261, 0.3114]

1 a8 b8 1.1849 –0.0253 0.0053 0.0006 [1.0291, 1.3164] [−0.0760, 0.0236]

2 a9 b9 0.8047 –0.7197 0.0018 0.0013 [0.7168, 0.8845] [−0.7981,−0.6511]

2 a10 b10 0.6128 –0.7850 0.0016 0.0030 [0.5314, 0.6864] [−0.8908,−0.6853]

2 a11 b11 1.6674 –0.0463 0.0069 0.0002 [1.5081, 1.8327] [−0.0772,−0.0140]

2 a12 b12 1.0907 –0.2133 0.0076 0.0024 [0.9463, 1.2035] [−0.3290,−0.1994]

2 a13 b13 1.7084 0.0546 0.0099 0.0001 [1.5124, 1.9014] [0.0292, 0.0800]

2 a14 b14 1.0951 –0.0775 0.0047 0.0007 [0.9635, 1.2267] [−0.1271,−0.0213]

2 a15 b15 0.9024 –0.1817 0.0042 0.0013 [0.7719, 1.0226] [−0.2476,−0.1093]

3 a16 b16 0.6347 0.5639 0.0057 0.0011 [0.4895, 0.7859] [0.4997, 0.6370]

3 a17 b17 0.7751 0.1933 0.0058 0.0011 [0.6331, 0.9295] [0.1275, 0.2588]

3 a18 b18 1.5116 –0.6624 0.0045 0.0004 [1.3786, 1.6420] [−0.7092,−0.6226]

3 a19 b19 0.4526 0.5646 0.0040 0.0023 [0.3234, 0.5688] [0.4703, 0.6521]

3 a20 b20 0.6325 0.7146 0.0054 0.0017 [0.4886, 0.7769] [0.6321, 0.7972]

3 a21 b21 0.9391 –0.7392 0.0024 0.0011 [0.8374, 1.0301] [−0.8025,−0.6775]

3 a22 b22 1.0175 –0.2715 0.0036 0.0008 [0.8983, 1.1347] [−0.3266,−0.2105]

3 a23 b23 1.0722 –0.3727 0.0037 0.0009 [0.9526, 1.1831] [−0.4389,−0.3178]

4 a24 b24 2.0055 –0.0069 0.0116 0.0002 [1.7917, 2.2080] [−0.0349, 0.0216]

4 a25 b25 0.7821 0.4765 0.0052 0.0011 [0.6391, 0.9178] [0.4068, 0.5391]

4 a26 b26 1.5236 0.2656 0.0103 0.0002 [1.3277, 1.7270] [0.2388, 0.2969]

4 a27 b27 1.1934 0.3662 0.0084 0.0003 [1.0189, 1.3794] [0.3316, 0.4050]

4 a28 b28 0.6847 –0.1442 0.0045 0.0016 [0.5563, 0.8153] [−0.2222,−0.0667]

Para. denotes the interest parameters. EAP denotes the expected a priori estimation. SD denotes the standard deviation. HPDI denotes the 95% highest posterior density intervals.

2PL model is worst-fitting model. The DIC and log-PsBF are
respectively 44179.93 and –22021.39.

From Table 8, we find that for each testlet, the four items with
highest discrimination are 2, 13, 18, and item 24, respectively.
The expected a posteriori (EAP) estimations for the four item
discrimination parameters are 1.6319, 1.7084, 1.5116, and 2.0055.
The four most difficult items in each testlet are 3, 13, 20,
and item 25 in turn. The EAP estimations for the four item
difficulty parameters are 0.7808, 0.0546, 0.7146, and 0.4765.
Compared to the items in the other three testlets, the items
in the testlet 2 are relatively easy because the EAP estimates
of the difficulty parameters (b9, b10, b11, b12, b14, and b15) are
<0. In addition, the SD is between 0.0000 and 0.0116 for the
discrimination parameters, between 0.0000 and 0.0030 for the
difficulty parameters.

6. CONCLUDING REMARKS

To explore the relations between items with dependent
structure, this current study proposes a N2PLTM and presents

a effective Bayesian sampling algorithm. More specifically,
an improved Gibbs sampling algorithm based on auxiliary
variables is developed for estimating N2PLTM. The slice-
Gibbs sampling algorithm overcomes the traditional Gibbs
sampling algorithm’s dependence on the conjugate prior for
complex IRT model, and avoids some shortcomings of the
Metropolis algorithm (such as sensitivity to step size, severe
dependency on the candidate function or tuning parameter).
Based on different simulation conditions, we find that the
slice-Gibbs sampling algorithm can provide accurate parameter
estimates in the sense of having small Bias and MSE values.
In addition, the average Bias and MSE for item parameters are
relatively unchanged under the three different prior distributions.
The slice-Gibbs sampling algorithm allows for informative
or non-informative priors of the item parameters and is
not sensitive to the specification of priors. In summary,
the algorithm is effective and can be used to analyze the
empirical example.

However, the computational burden of the slice-Gibbs
sampling algorithm becomes intensive especially when a large
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number of examinees or the items is considered, or a large
number of the MCMC sample size is used. Therefore, it is
desirable to develop a standing-alone R package associated
with C++ or Fortran software for more extensive large-scale
assessment program.

In addition, the new algorithm based on auxiliary variables
can be extended to estimate some more complex item response
and response time models, e.g., graded response model, Weibull
response time model and so on.
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