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A B S T R A C T   

Background: This study sought to develop an artificial intelligence-derived model to detect the dilated phase of 
hypertrophic cardiomyopathy (dHCM) on digital electrocardiography (ECG) and to evaluate the performance of 
the model applied to multiple-lead or single-lead ECG. 
Methods: This is a retrospective analysis using a single-center prospective cohort study (Shinken Database 
2010–2017, n = 19,170). After excluding those without a normal P wave on index ECG (n = 1,831) and adding 
dHCM patients registered before 2009 (n = 39), 17,378 digital ECGs were used. Totally 54 dHCM patients were 
identified of which 11 diagnosed at baseline, 4 developed during the time course, and 39 registered before 2009. 
The performance of the convolutional neural network (CNN) model for detecting dHCM was evaluated using 
eight-lead (I, II, and V1-6), single-lead, and double-lead (I, II) ECGs with the five-fold cross validation method. 
Results: The area under the curve (AUC) of the CNN model to detect dHCM (n = 54) with eight-lead ECG was 
0.929 (standard deviation [SD]: 0.025) and the odds ratio was 38.64 (SD 9.10). Among the single-lead and 
double-lead ECGs, the AUC was highest with the single lead of V5 (0.953 [SD: 0.038]), with an odds ratio of 
58.89 (SD:68.56). 
Conclusion: Compared with the performance of eight-lead ECG, the most similar performance was achieved with 
the model with a single V5 lead, suggesting that this single-lead ECG can be an alternative to eight-lead ECG for 
the screening of dHCM.   

1. Introduction 

Hypertrophic cardiomyopathy (HCM) is one of the most common 
genetic heart diseases. In most patients with HCM, their systolic function 
is normal and they are asymptomatic for a long time. However, a life- 
long process of left ventricular remodeling and progressive dysfunc-
tion can occur in a minority of HCM patients [1–3]. This stage of HCM, 
called dilated phase HCM (dHCM), was reported to be associated with a 

poor prognosis [4,5]. Because of the slowly evolving nature of HCM, the 
timely identification of patients with a risk of left ventricular dysfunc-
tion or heart failure might improve the poor prognosis [6]. Although it is 
useful to perform echocardiography, cardiac magnetic resonance, or 
genetic screening in the diagnosis of dHCM, these tests are rather costly 
for annual check-ups of all patients with HCM. Therefore, there is a need 
to develop readily available and cost-effective methods for screening 
patients with dHCM. Electrocardiogram (ECG), which is a non-invasive 
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and readily available test, is widely performed for the detection and 
management of cardiac diseases. Recently, mobile and smartwatch ECG 
technologies using artificial intelligence (AI) were developed [7,8]. 
Mobile ECG system are generally a more simple and more available 
method for physicians in the clinic, regardless of whether or not they are 
a cardiologist. 

In the present study, we developed CNN models to detect dHCM from 
multiple-lead or single-lead ECG, with the aim of increasing the 
knowledge on the difference in the performance of CNN models using 
different ECG leads. For this work, we used a single-center ECG 
database. 

2. Methods 

2.1. Ethics and informed consent 

This study was performed in accordance with the Declaration of 
Helsinki (revised in 2013) and the Ethical Guidelines for Medical and 
Health Research Involving Human Subjects (Public Notice of the Min-
istry of Education, Culture, Sports, Science and Technology, and the 
Ministry of Health, Labour and Welfare, Japan, issued in 2017). Written 
informed consent was obtained from all participants. The study protocol 
was reviewed by the Institutional Review Board of the Cardiovascular 
Institute. 

2.2. Study population 

The Shinken database includes all patients who newly visited the 
Cardiovascular Institute, Tokyo, Japan, except for foreign travelers and 
patients with active cancer. This single-hospital database was estab-
lished in June 2004, and details of this database have been described 
elsewhere [9]. In the present study, 19 170 subjects registered between 
February 2010 and March 2018 were extracted from the Shinken 
database, because it has included a computerized electrocardiogram 
database since February 2010. We excluded 1831 subjects without a 
normal P wave (P wave duration = 0 on the automatic measurement by 
the GE system) because we put priority on existence of the P wave in the 
disease prediction model. 

Due to a too small number of patients who were diagnosed as dHCM 
at baseline in the original database (dHCM1), we added 43 patients with 
dHCM as follows: (1) four patients who were registered as having HCM 
at baseline in the original database and progressed to dHCM later during 
the time course (dHCM2; for these patients, the index ECG was chosen 
on the day of or on the nearest day after the ultrasound cardiogram in 
which left ventricular systolic dysfunction was firstly observed), and (2) 
39 patients with a diagnosis of dHCM who were included in our database 
before 2009 and with available ECG recorded between February 2010 
and March 2018 (dHCM3). Consequently, ECG data from 17 378 sub-
jects (54 dHCM, 17 324 non-dHCM) were included in the present study. 

2.3. Diagnosis of dHCM 

The diagnostic definition of dHCM was left ventricular systolic 
dysfunction (defined as left ventricular ejection fraction [LVEF] < 50%) 
with a diagnosis of HCM, which included (1) intraventricular septal 
thickness (IVST) ≥ 15 mm without other causes of left ventricular hy-
pertrophy; (2) IVST ≥ 13 mm and a family history of HCM; and (3) 
hypertrophy in the apex of the left ventricle. 

2.4. ECG recording 

Twelve-lead ECG was recorded for 10 s in the supine position using 
an ECG machine (GE CardioSoft V6.71 and MAC 5500 HD; GE Health-
care, Chicago, IL, USA) at a sampling rate of 500 Hz, and raw data of the 
digital recordings were stored using the MUSE data management 
system. 

2.5. Dataset management 

In the present study, given the small number of the positive cases 
(dHCM), we employed the five-fold cross validation method to enable all 
data to be included in the testing dataset [10]. Management of the 
dataset with the five-fold cross validation method was shown in Sup-
plementary Fig. 1 and was as follows. First, the dataset was randomly 
divided into five groups. Second, one of the five groups was set as the 
testing dataset, and the others were set as the training dataset in which 
12.5% of the data were used as the internal-validation dataset. Third, 
the model was run five times using different combinations of training 
and testing datasets. Accordingly, model output was obtained from five 
testing datasets of five different models, in which all data were included 
in the testing dataset. 

2.6. Convolutional neural network (CNN) modeling 

We used a convolutional neural network (CNN) to develop an AI- 
enabled ECG analysis system to predict dHCM from sinus rhythm. The 
CNN was constructed using the Keras framework with a Tensorflow 
(Google; Mountain View, CA, USA) backend and Python. 

Of the eight physical leads and four augmented leads with a 10-sec-
ond duration on the 12-lead ECG recordings, we selected the eight in-
dependent leads (leads I, II, and V1–6) with a 10-second duration. 

The CNN model in the present study was constructed based on the 
model by Attia et al. [11–13]. The conceptual architecture of the CNN 
model is shown in Fig. 1 and the detail architecture of the CNN model is 
shown in Supplementary Fig. 2. This model included layers for a tem-
poral axis and a lead axis. The layers for the temporal axis were 
composed of two parts: a convolution part and a residual part. The 
convolution part included a convolution layer, a batch-normalization 
layer, a layer for non-linear Rectified Linear Unit (ReLU) activation, 
and a maximum pooling layer. The residual part included a combination 
of two residual blocks based on the Residual Network (ResNet) and 
average pooling, which was repeated N times, with the value of N being 
tuned to obtain the best performance (the method is outlined below). 
The layers for the lead axis were composed of a paired batch- 
normalization layer and a layer for non-linear ReLU activation, fol-
lowed by a convolution layer. Thereafter, a second paired batch- 
normalization layer and a layer for non-linear ReLU activation were 
included. Finally, the data were fed to a dropout layer with global 
average pooling and to the final output layer activated by the softmax 
function, which generated the probability of dHCM. 

The model was trained using the Keras software library on a com-
puter with 128 GB RAM and a single Quadro P-2200 (NVIDIA) graphics 
processing unit. In order to avoid over-training, we applied the early 
stopping while model training. The training was stopped if the loss was 
not decreased in 50 epochs in the internal-validation dataset, and 
employed the model with the lowest loss. Considering the class imbal-
ance between the positive and the negative cases, we set the weight of 
the loss function as 320 times higher (based on the ratio of the number of 
negative to positive data in the training dataset) for the positive class 
samples as for the negative class samples. 

A receiver operating characteristics (ROC) curve was created and the 
area under the curve (AUC) was used to evaluate the ability of the CNN 
model with ECG to determine whether dHCM was present or not. Using 
the ROC curve in the internal-validation dataset, we tuned the number 
of repetitions for the combination of the two residual blocks and average 
pooling described above (N). We determined the probability threshold 
for dHCM as the point on the ROC curve closest to the (0,1) point [14] in 
the internal-validation dataset. 

2.7. Outcome measurement and statistical analysis 

First, the performance of the CNN model applied to eight-lead (I, II, 
V1-6), single-lead, and double-lead (I, II) ECGs was assessed using AUC, 
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sensitivity, specificity, accuracy, and F1 score. Second, the model output 
was described as the proportion of the patients in dHCM and non-dHCM 
group per probability, according to the levels of diagnostic probability 
yielded by the CNN model. The proportion of dHCM was separately 
described by the three subtypes according to the different time course 
(dHCM1, 2, and 3). Third, the odds ratios (=[the ratio of true/false 
positives] / [the ratio of false/true negatives]) were described according 
to eight-lead, single-lead, and double-lead ECGs. Fourth, we used the 
gradient-weighted class activation mapping (Grad-CAM) method [15] 
for the multi-input models. 

The patient characteristics were summarized as mean (standard de-
viation [SD]) and n (%), and the differences of two groups were tested by 
unpaired t-test and Chi-squared test for continuous and categorical 
variables, respectively. The data of model performance and the odds 
ratios were presented as the mean (SD) of 5 model runs with five-fold 
cross validation. The statistical analyses were performed using R 
version 4.0.3 (The R Foundation, Vienna, Austria) and SPSS version 
28.0. (IBM Corp., Armonk, NY, USA). 

3. Results 

3.1. Patient characteristics 

The patient characteristics are listed in Table 1. Of a total of 17 378 
included subjects, 54 were classified to the dHCM group and 17 324 to 
the non-dHCM group. The mean (SD) of ages were 69.1 (13.5) years for 
the dHCM group and 57.5 (15.6) years for the non-dHCM group (p <
0.001), with 42 men (77.8%) in the dHCM group and 10 120 men 
(58.4%) in the non-dHCM group (p = 0.004). The mean left ventricular 
ejection fractions in the dHCM and non-dHCM groups were 40.3% (SD 
10.6%) and 66.2% (SD 9.7%), respectively (p < 0.001). The prevalences 
of congestive heart failure (admission within 90 days) in the dHCM and 
non-dHCM groups were 14.8% and 1.6%, respectively (p < 0.001). 

3.2. Evaluation of the CNN model to detect dHCM using the test dataset 

The performance of the CNN model to detect dHCM deriving from 
the training dataset was evaluated in the test dataset (n = 3477). 

3.2.1. Basic performance of the CNN model 
The basic performance of the CNN model for detecting dHCM on 

eight-lead, single-lead, and double-lead ECGs is shown in Table 2. The 
mean (SD) of AUCs of the 5 model runs were 0.929 (0.025) for eight-lead 

ECG and 0.897 (0.056) for double-lead ECG, with the AUCs for single- 
lead ECGs being around 0.9, and the highest for the single-lead of V5 
for which the AUC (SD) was 0.953 (0.038). 

The odds ratios for dHCM in the CNN models for eight-lead, single- 
lead, and double-lead ECGs are shown in Table 3. The CNN model with 
eight-lead ECG diagnosed dHCM with a mean odds ratio (SD) of 38.64 
(9.10). The mean odds ratios for dHCM with single-lead and double-lead 
ECGs were lower than that of eight-lead ECG, except for V4 and V5 with 
the odds ratios (SD) of 45.79 (12.57) and 58.89 (65.56), respectively. 

3.2.2. Distribution of the patients according to the CNN model outputs 
The proportions of patients in the CNN model outputs are shown in 

Figs. 2 and 3. For the model with eight-lead ECG (Fig. 2), the proportion 
of patients in the dHCM group sharply increased with higher probability 
(model output > 0.9), and inversely, those in the non-dHCM group 
sharply increased with lower probability (model output < 0.1). A similar 
distribution was observed with the model with single-lead or double- 
lead ECGs, especially with I, V3, V4, and V5 leads (Fig. 3). The distri-
bution was mostly similar among three dHCM subtypes with the 
different time course (dHCM1, 2, and 3; Figs. 2 and 3). 

3.2.3. GradCAM for the diagnosis of dHCM in the CNN models 
The locations on which the CNN model focused indicated by the 

GradCAM are displayed in Figs. 4 and 5. In Fig. 4, the images of Grad-
CAM on the eight-lead ECG with 5 CNN model runs with a true positive 
result in a dHCM patient are displayed. In Fig. 5, the images of GradCAM 
on single-lead and double-lead ECGs with 5 CNN model runs in the same 
patient are displayed. The results of the GradCAM in Figs. 4 and 5 
similarly indicated that the CNN model focused mainly on the QRS 
segment and partially on the ST-T segment and seemed to obtain the 
diagnostic information from any leads of the ECG. 

4. Discussion 

4.1. Major findings 

We evaluated the performance of a CNN model for detecting dHCM 
applied to eight-lead, single-lead, and double-lead ECGs. Using eight- 
lead ECG, the diagnostic performance was summarized by an AUC 
(SD) of 0.929 (0.025) and an odds ratio (SD) of 38.64 (9.10). For the 
single-lead and double-lead ECGs, the AUC (SD) was the highest when 
using the single lead of V5 (0.953 [0.038] with an odds ratio (SD) of 
58.89 (65.56). 

Fig. 1. Convolutional neural network (CNN) analysis.  
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4.2. Comparison with previous studies 

Many studies have focused on using ECG for the detection of car-
diomyopathy (including hypertrophic cardiomyopathy) [16–18], and 
recently, the number of such studies using AI applications has been 
growing [19,20]. However, we are only aware of one study evaluating 
the ECG characteristics of patients with dHCM, which was performed 
1999, and which showed that a gradual decrease in the amplitude of the 
S wave in V1 plus the R wave in V5 during 20-year follow up periods was 
associated with ventricular tachycardia or a poor prognosis [21]. To the 
best of our knowledge, our study is the first to use an AI algorithm to 
detect dHCM from snapshot ECG. 

In our study, the AUC for detecting dHCM using eight-lead ECG was 
0.929 and the odds ratio was 38.64. A high AUC generally indicates that 
a model has a good differentiation threshold with high sensitivity and 
high specificity, while a high odds ratio generally indicates that the 
threshold shows a high positive predictive value and a low false-positive 
rate. However, caution is needed when interpreting the odds ratio of our 
CNN model, because in our results the ratio of true/false positives was 
very low (number of true positive = 7 + 7 + 8 + 5 + 8 = 35; number of 
false positive = [3465 –3313] + [3465 –3316] + [3465 –3132] + [3465 
–3382] + [3464 –3291] = 890; ratio = 35 / 890 = 0.039: calculated 
from Table 3), while the ratio of false/true negatives was extremely low 
(number of false negative = [11 –7] + [11 –7] + [11 –8] + [10 –5] + [11 
–8] = 19; number of true negative = 3313 + 3316 + 3132 + 3382 +
3291 = 16434; ratio = 19 / 16434 = 0.0011: calculated from Table 3), 
and the latter therefore contributed strongly to the high odds ratio. 

4.3. Model performance according to differences in lead application 

The ECG change in a specific lead might be affected by the electrical 
or structural condition of the myocardium around the lead position 
[22,23]. For example, in the diagnosis of ST-segment elevation 
myocardial infarction, the elevation of the ST segment on ECG in a 
specific lead can be useful for predicting the infarction area. In the case 
of occlusion in the proximal left anterior descending artery, the eleva-
tion of the ST segment on ECG is generally observed in V1, V2, V3, V4, I, 
and/or aVL, which is expanded to V3, V4, V5, V6, I, II, and/or aVF in the 
case of occlusion in the mid-to-distal left anterior descending artery 
[24]. As such, the lead-dependent changes generally reflect the 
structurally-damaged sites in heart. Based on such understanding, we 
evaluated the performance of the CNN model on eight-lead (I, II, V1-6), 
single-lead, and double-lead (I, II) ECGs, and this study is therefore the 
first study to evaluate the performance of CNN models according to 
different ECG leads for dHCM. 

Compared with the performance of eight-lead ECG (AUC 0.929), the 
performance was mostly similar in any single-lead or double-lead ECGs 
(AUC was close to 0.9), suggesting that single-lead ECGs can be alter-
natives to eight-lead ECG for the screening of dHCM. According to the 
GradCAM, CNN models focused mainly on the QRS segment and 
partially on the ST-T segment and seemed to obtain the diagnostic in-
formation from any leads of the ECG. This suggests that the features of 
dHCM, generally accompanied by the left ventricular hypertrophy and 
the enlargement of left ventricle, would primarily be detected by the 
CNN-enabled ECG from any directions. 

Among the models with single-lead or double-lead ECGs, the AUC 
was the highest in the model with a single V5 lead (AUC 0.953). Lead V5 
is positioned on the left lateral side of the heart, and represents the 
myocardial condition in the mid to apical anterior to lateral wall of the 
left ventricle. The common left ventricular hypertrophic change in HCM 
patients is represented by a deep S wave in V1 or high R wave in V5 or 
V6 [25]. In the progression phase from HCM to dHCM, irreversible 
change such as systolic dysfunction and left ventricular dilatation 
(which resembles dilated cardiomyopathy) is observed, which can 
especially be identified in V5 to V6 leads. 

Table 1 
Patient characteristics.   

Total 
N =
17 378 

dHCM 
N = 54 

non- 
dHCM 
N =
17 324 

P-value 

Age, yeas 57.5 ±
15.7 

69.1 ±
13.5 

57.5 ±
15.6 

<0.001 

Male, n (%) 10 162 
(58.5) 

42 (77.8) 10 120 
(58.4) 

0.004 

Height, cm 163.7 ±
9.4 

164.0 ±
8.8 

163.7 ±
9.4 

0.390 

Weight, kg 62.6 ±
13.7 

65.0 ±
15.0 

62.6 ±
13.7 

0.104 

BMI, kg/m2 23.2 ± 3.9 24.0 ±
4.2 

23.2 ± 3.9 0.083 

Systolic BP, mmHg 127.8 ±
22.5 

128.5 ±
30.5 

127.8 ±
22.5 

0.452 

Diastolic BP, mmHg 75.5 ±
13.5 

79.0 ±
20.8 

75.5 ±
13.5 

0.228 

IVST, mm 9.6 ± 2.2 13.7 ±
3.6 

9.6 ± 2.2 <0.001 

PWT, mm 9.0 ± 1.6 10.8 ±
3.1 

8.9 ± 1.5 <0.001 

LVDd, mm 46.0 ± 5.6 54.0 ±
8.9 

45.9 ± 5.6 <0.001 

LVDs, mm 29.2 ± 6.2 42.0 ±
10.2 

29.1 ± 6.2 <0.001 

LVEF, % 66.1 ± 9.8 40.3 ±
10.6 

66.2 ± 9.7 <0.001 

LAD, mm 34.6 ± 6.3 47.6 ±
8.7 

34.6 ± 6.2 <0.001 

Congestive heart failure, n 
(%) 

279 (1.6) 8 (14.8) 271 (1.6) <0.001 

(Heart failure admission 
within 90 days) 

Heart failure with reduced EF, 
n (%) 

853 (4.9) 28 (51.9) 825 (4.8) <0.001 

Ischemic heart disease, n (%) 1788 
(10.3) 

2 (3.7) 1786 
(10.3) 

0.172 
(PCI within 90 days) 
Asymptomatic ischemia, n 

(%) 
407 (2.3) 1 (1.9) 406 (2.3) 1.000 

Old myocardial infarction, n 
(%) 

411 (2.4) 0 (0) 411 (2.4) 0.640 

Acute coronary syndrome, n 
(%) 

589 (3.4) 0 (0) 589 (3.4) 0.264 

Aortic stenosis, n (%) 526 (3.0) 1 (1.9) 525 (3.0) 0.999 
Aortic regurgitation, n (%) 369 (2.1) 2 (3.7) 367 (2.1) 0.318 
Mitral regurgitation, n (%) 375 (2.2) 5 (9.3) 370 (2.1) 0.006 
Mitral stenosis, n (%) 49 (0.3) 0 (0) 49 (0.3) 0.999 
Tricuspid regurgitation, n (%) 207 (1.2) 6 (11.1) 201 (1.2) <0.001 
Dilated cardiomyopathy, n 

(%) 
111 (0.6) 0 (0) 111 (0.6) 0.999 

Hypertrophic 
cardiomyopathy, n (%) 

152 (0.9) 54 (100) 98 (0.6) <0.001 

Hypertensive 
cardiomyopathy, n (%) 

1905 
(11.0) 

0 (0) 1905 
(11.0) 

0.003 

Ischemic cardiomyopathy, n 
(%) 

211 (1.2) 0 (0) 211 (1.2) 1.000 

Aortic aneurism, n (%) 271 (1.6) 3 (5.6) 268 (1.5) 0.051 
Aortic dissection, n (%) 135 (0.8) 0 (0) 135 (0.8) 0.999 
Hypertension, n (%) 7496 

(43.1) 
24 (44.4) 7472 

(43.1) 
0.893 

Diabetes, n (%) 2057 
(11.8) 

6 (11.1) 2051 
(11.8) 

1.000 

Smoking history, n (%) 7238 
(41.7) 

26 (48.1) 7212 
(41.6) 

0.337 

Chronic kidney disease, n (%) 2695 
(15.5) 

29 (53.7) 2666 
(15.4) 

<0.001 

Paroxysmal AF, n (%) 1459 (8.4) 30 (55.6) 1429 (8.2) <0.001 

Data are presented as mean ± SD unless otherwise stated. 
dHCM, dilated phase of hypertrophic cardiomyopathy; BMI, body mass index; 
BP, blood pressure; IVST, intraventricular septum thickness; PWT, posterior left 
ventricular wall thickness; LVDd, left ventricular end-diastolic diameter; LVDs, 
left ventricular end-systolic diameter; LVEF, left ventricular ejection fraction; 
LAD, left atrial diameter; EF, ejection fraction; PCI, percutaneous coronary 
intervention; AF, atrial fibrillation. 
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4.4. Clinical implications of our CNN model 

As we mentioned above, our study is the first to use an AI algorithm 
to detect dHCM from snapshot ECG. However, its clinical implications 
should be carefully interpreted by two critical viewpoints: the diagnostic 
accuracy and the small number of positive cases. 

In view of the diagnostic accuracy of our CNN model, we need to pay 
very close attention to that there were many patients with false positive 
results for dHCM diagnosis; the number of cases for whom the CNN 
model judged as dHCM was 925 in the model with all eight-lead ECG (In 
model 1, n = 7 + [3465 –3313] = 159; In total of 5 models, n = 159 +
156 + 341 + 88 + 181 = 925: calculated from the data in Table 3), while 
the number of true positive cases were 35 (=7 + 7 + 8 + 5 + 8; positive 
predictive rate, 4%). Meanwhile, as 35 cases were totally diagnosed by 
our CNN models out of 54 true dHCM cases (total of 5 models: calculated 
from Table 3), the total sensitivity can be calculated as 0.648. Therefore, 
the CNN model in our study can contribute as a screening tool for dHCM 
with a high odds ratio (38 times), a low positive predictive rate (4%), 
and a moderate sensitivity (65%). 

In view of the small number of positive cases in our dataset, we have 
two discussions. First, considering the small number of positive cases in 
the large dataset, we employed in our CNN model the weighting of 
judgement for the characteristics of the positive cases. We applied loss 
function weighting when training the model, to address class imbalance 
in the dataset. This is generally used as a countermeasure against class 
imbalance in a dataset and is a method of learning models to pay more 
attention to the minority class by making the weight of the loss function 
of the minority class larger than that of the majority class. In this study, 
the weight of the loss function was set as 320 times higher (the number 
of training data / the number of positive classes in the training data ≈
320) for the positive class samples as for the negative class samples. 
Second, the impact of our model can be roughly estimated based on the 
estimation of the number of dHCM patients in Japan. Miura et al. re-
ported that the number of HCM patients in Japan was estimated to be 21 
900 (95% confidence interval, 20 000 to 23 200)[26]. HCM patients has 
been reported to develop to dHCM by 5.3 per 1000 patient-years[4]. 
Then, simply talking, 116 HCM patients are estimated to newly progress 
to dHCM in Japan annually. Therefore, the number of dHCM in Japan is 
inherently small in total, and it is difficult to make a large-sized ECG 
dataset of dHCM patients. It is unclear whether our model deriving from 
54 dHCM patients can be applied to a majority of dHCM patients in 

Japan or can cover only a minority of them. It is a future task to increase 
the number of positive cases in our model. 

4.5. Future perspectives 

Our study confirmed the high performance of a CNN algorithm for 
detecting dHCM on eight-lead, single-lead, and double-lead ECGs. The 
AUCs for single leads (I, V4, V5, and V6) and double leads (I, II) were 
comparable to that for all eight leads. Our model could be helpful for 
screening of patients with dHCM, especially in situations where echo-
cardiography is unavailable, facilitating consultation to the cardiologist. 
The ECG with a smaller number of leads is generally regarded as using 
leads I or II, which can be recorded easily and would be useful especially 
when the patient has difficulty in undressing or ambulation to the bed in 
the clinic. Given the ease of recording, it would also be useful in mass 
screening. This would expand the possibility of using a mobile ECG with 
a single lead for screening dHCM. On the other hand, recording the lead 
V5 is somewhat inconvenient. Strictly speaking, V5 is not a single lead 
which requires the Wilson’s central terminal (determined by three po-
tentials) as a reference potential. Therefore, further studies investigating 
the use of lead V5 for screening dHCM in daily clinical practice will be 
necessary. These studies should, for example, assess whether a similar 
performance to the model using lead V5 can be achieved with CM5 or 
CC5, which are commonly used in ambulatory ECG recordings. 

4.6. Limitations 

There are several limitations to this study. First, this was a single- 
center study, and all participants were patients who visited a cardio-
vascular hospital in an urban area in Japan. Due to this selection bias, 
the application of our models might be limited only to Japanese popu-
lation. Second, the number of entries in the training dataset was rela-
tively small. Third, although we separated data for the entire cohort into 
a training dataset and test dataset to develop the models for internal 
validation, our model was not validated in an external cohort. Therefore, 
our findings should be validated in other populations from different 
hospitals or in the general population, or in large registries including 
Japanese patients with dHCM. Fourth, we chose patients with a sinus 
rhythm because we put priority on existence of the P wave in the disease 
prediction model. Actually, by the exclusion criteria in the present 
study, seven patients with dHCM were excluded from the analysis. 

Table 2 
Performance of the AI-enabled CNN algorithm for detecting dHCM on eight-lead, single-lead, and double-lead ECGs.  

Model pattern Leads  AUC Sensitivity Specificity F1 score Accuracy 

All leads (8 leads)  Mean  0.929  0.645  0.949  0.080  0.948   
SD  0.025  0.093  0.027  0.021  0.027 

Single lead I Mean  0.914  0.682  0.908  0.053  0.907   
SD  0.037  0.164  0.053  0.022  0.052 

Single lead II Mean  0.878  0.667  0.878  0.034  0.878   
SD  0.019  0.101  0.031  0.007  0.031 

Single lead V1 Mean  0.879  0.627  0.892  0.041  0.891   
SD  0.028  0.152  0.061  0.016  0.061 

Single lead V2 Mean  0.868  0.665  0.852  0.030  0.851   
SD  0.055  0.168  0.065  0.010  0.065 

Single lead V3 Mean  0.869  0.653  0.878  0.042  0.878   
SD  0.031  0.194  0.087  0.023  0.087 

Single lead V4 Mean  0.906  0.700  0.914  0.082  0.914   
SD  0.049  0.175  0.080  0.053  0.079 

Single lead V5 Mean  0.953  0.518  0.967  0.114  0.966   
SD  0.038  0.175  0.025  0.073  0.024 

Single lead V6 Mean  0.921  0.669  0.920  0.051  0.920   
SD  0.021  0.185  0.029  0.010  0.028 

Double leads I, II Mean  0.897  0.718  0.901  0.053  0.901   
SD  0.056  0.145  0.072  0.020  0.072 

The mean and SD of the performance values of 5 model runs by five-fold cross validation are displayed for models of all-lead ECG, single-lead ECGs, or double-lead 
ECG. Detail information of the 5 model runs are shown in Supplementary Table 1. 
AUC, area under the curve; SD, standard deviation. 
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Therefore, our model cannot be applied to patients with atrial fibrilla-
tion on ECG, which would be a topic for further analysis in a future 
study. Finally, our model was developed using ECG data only, and the 
patients’ characteristics such as cardiac anatomical information, 
comorbidities, concomitant medications, and frailty, were not included. 

4.7. Conclusions 

We evaluated the performance of a CNN model for detecting dHCM 
on eight-lead, single-lead, and double-lead ECGs. Compared with the 
performance of eight-lead ECG, the performance of the model with a 
single V5 lead was largely similar, suggesting that this single-lead ECG 
can be an alternative to eight-lead ECG for the screening of dHCM. 

Declarations 

Consent for publication 

Not applicable. 

Table 3 
The odds ratios for detecting dHCM with the AI-enabled CNN algorithm on 
eight-lead, single-lead, and double-lead ECGs.  

Model pattern Leads 5-fold 
models 

Sensitivity Specificity Odds 
ratio 

All leads (8 
leads)  

Model 1 64 (7/11) 96 (3313/ 
3465)  

37.96   

Model 2 64 (7/11) 96 (3316/ 
3465)  

38.89   

Model 3 73 (8/11) 90 (3132/ 
3465)  

25.08   

Model 4 50 (5/10) 98 (3382/ 
3465)  

40.67   

Model 5 73 (8/11) 95 (3291/ 
3464)  

50.60   

Mean    38.64   
SD    9.10 

Single lead I Model 1 55 (6/11) 96 (3340/ 
3465)  

32.07   

Model 2 91 (10/ 
11) 

88 (3035/ 
3465)  

70.57   

Model 3 73 (8/11) 84 (2924/ 
3465)  

14.41   

Model 4 50 (5/10) 96 (3326/ 
3465)  

24.00   

Model 5 73 (8/11) 89 (3097/ 
3464)  

22.46   

Mean    32.70   
SD    22.08 

Single lead II Model 1 64 (7/11) 84 (2921/ 
3465)  

9.38   

Model 2 64 (7/11) 91 (3160/ 
3465)  

18.11   

Model 3 82 (9/11) 86 (2966/ 
3465)  

26.72   

Model 4 70 (7/10) 87 (3021/ 
3465)  

15.90   

Model 5 55 (6/11) 91 (3149/ 
3464)  

11.96   

Mean    16.41   
SD    6.68 

Single lead V1 Model 1 46 (5/11) 96 (3330/ 
3465)  

20.57   

Model 2 73 (8/11) 81 (2821/ 
3465)  

11.65   

Model 3 64 (7/11) 90 (3112/ 
3465)  

15.38   

Model 4 50 (5/10) 94 (3247/ 
3465)  

14.87   

Model 5 82 (9/11) 85 (2937/ 
3464)  

25.07   

Mean    17.51   
SD    5.30 

Single lead V2 Model 1 91 (10/ 
11) 

79 (2734/ 
3465)  

37.35   

Model 2 46 (5/11) 91 (3160/ 
3465)  

8.65   

Model 3 64 (7/11) 78 (2685/ 
3465)  

6.02   

Model 4 60 (6/10) 88 (3049/ 
3465)  

11.00   

Model 5 73 (8/11) 90 (3131/ 
3464)  

25.08   

Mean    17.62   
SD    13.26 

Single lead V3 Model 1 36 (4/11) 95 (3285/ 
3465)  

10.43   

Model 2 64 (7/11) 95 (3278/ 
3465)  

30.61   

Model 3 73 (8/11) 75 (2602/ 
3465)  

8.03   

Model 4 90 (9/10) 92 (3195/ 
3465)  

106.38   

Model 5 64 (7/11) 82 (2854/ 
3464)  

8.18   

Mean    32.73   
SD    42.25  

Table 3 (continued ) 

Model pattern Leads 5-fold 
models 

Sensitivity Specificity Odds 
ratio 

Single lead V4 Model 1 73 (8/11) 94 (3257/ 
3465)  

41.72   

Model 2 55 (6/11) 98 (3392/ 
3465)  

55.84   

Model 3 91 (10/ 
11) 

80 (2758/ 
3465)  

38.98   

Model 4 50 (5/10) 98 (3410/ 
3465)  

61.50   

Model 5 82 (9/11) 87 (3024/ 
3464)  

30.90   

Mean    45.79   
SD    12.57 

Single lead V5 Model 1 64 (7/11) 93 (3216/ 
3465)  

22.52   

Model 2 73 (8/11) 99 (3413/ 
3465)  

174.87   

Model 3 46 (5/11) 97 (3347/ 
3465)  

23.72   

Model 4 50 (5/10) 96 (3340/ 
3465)  

26.78   

Model 5 27 (3/11) 99 (3436/ 
3464)  

46.56   

Mean    58.89   
SD    65.56 

Single lead V6 Model 1 46 (5/11) 96 (3337/ 
3465)  

21.73   

Model 2 91 (10/ 
11) 

89 (3080/ 
3465)  

80.00   

Model 3 55 (6/11) 93 (3236/ 
3465)  

16.95   

Model 4 80 (8/10) 90 (3122/ 
3465)  

36.40   

Model 5 64 (7/11) 92 (3170/ 
3464)  

18.81   

Mean    34.78   
SD    26.41 

Double leads I, II Model 1 64 (7/11) 93 (3229/ 
3465)  

23.95   

Model 2 82 (9/11) 91 (3164/ 
3465)  

47.17   

Model 3 82 (9/11) 78 (2685/ 
3465)  

15.48   

Model 4 50 (5/10) 95 (3281/ 
3465)  

17.87   

Model 5 82 (9/11) 94 (3256/ 
3464)  

70.41   

Mean    34.98   
SD    23.44 

SD, standard deviation. 
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in the study protocol and informed consent. Data are available from the 
Ethics Review Committee at the Cardiovascular Institute for researchers 
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corresponding author). 
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Fig. 2. The proportion of patients according to the 
model output in CNN-derived models using eight-lead 
ECGs The vertical scale indicates the proportion of the 
patients in dHCM group (orange) and non-dHCM 
group (blue). The horizontal scale indicates the diag-
nostic probability for dHCM yielded by CNN model. 
dHCM1 indicates patients diagnosed as dHCM at 
baseline in the original database (n = 11). dHCM2 
indicates patients registered as having HCM at base-
line in the original database and progressed to dHCM 
later during the time course (n = 4). dHCM3 indicates 
patients with a diagnosis of dHCM who were regis-
tered to our database before 2009 and with available 
ECG recorded between February 2010 and March 
2018 (n = 39). (For interpretation of the references to 
color in this figure legend, the reader is referred to the 
web version of this article.)   

Fig. 3. The proportion of patients according to the model output in CNN-derived models using single-lead or double-lead ECGs The vertical scale indicates the 
proportion of the patients in dHCM group (orange) and non-dHCM group (blue). The horizontal scale indicates the diagnostic probability for dHCM yielded by each 
CNN model. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 5. Representative images of GradCAM with single-lead and double-lead ECGs The difference in color chart cannot be compared between the models or leads, 
because the color chart was determined within each model or lead, 
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