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Introduction
Lung cancer is one of the deadliest diseases all around the 
world. The GLOBOCAN estimations by the International 
Agency for Research on Cancer predict approximately 13 mil-
lion new cancer cases by the year 2040. Currently, lung cancer 
is the most commonly diagnosed form of cancer (11.6% of 
total cases) and the leading cause of cancer deaths (18.4% of 
total deaths).1 Histologically, lung cancer can be divided into 
non-small cell lung cancer (NSCLC), which accounts for 
approximately 85% of lung cancer cases and small cell lung 
cancer.2 The lack of early-stage symptoms and effective diag-
nostic markers restrain the treatment success in NSCLC. Thus, 
most of the patients are diagnosed at an advanced stage,  
and half of them have distant metastatic disease at initial  
diagnosis.3 Over the last decade, there have been considerable 
improvements in chemotherapy, radiation therapy, surgery, and 
targeted therapy for lung cancer. Especially with the recent 
advances in molecular biology, significant progress has been 
made through molecule-targeted therapy in NSCLC. For 
instance, it has been shown that about 20% of Caucasian and 
50% of Asian NSCLC patients had mutations on their EGFR 
(epidermal growth factor receptor) genes.4 However, with the 
application of EGFR targeting small tyrosine kinase inhibitors 
(EGFR-TKIs) erlotinib and gefitinib, both response rate and 
median survival of these patients were found to be improved.5 
Also, approximately 7% of NSCLC patients bear an activated 
ALK gene, but treatment with ALK inhibitor crizotinib has 
been shown to improve both response and 6-month 

progression-free survival rates in these patients.6 Nonetheless, 
the 5-year survival rates of NSCLC patients remain low with a 
poor prognosis due to the development of intrinsic or acquired 
chemoresistance against therapeutic drugs.7

Non-small cell lung cancer is a result of the accumulation of 
several genetic and epigenetic modifications, which could have 
originated from multiple reasons.8 The discovery and charac-
terization of new prognostic or diagnostic markers together 
with enhanced therapeutic approaches for NSCLC are of top 
priority for the successful treatment of this disease. 
Unfortunately, information on the heterogeneous nature of the 
tumor and the involvement of affecting factors in the process of 
NSCLC tumor development are far from completely resolved. 
Therefore, it is highly important to shed light on the molecular 
mechanisms governing the pathogenesis of NSCLC and to 
identify effective diagnostic and/or prognostic biomarkers for 
novel treatment options. High-throughput technologies such 
as microarrays and integrated bioinformatics methods are used 
to obtain gene alterations during tumorigenesis and to identify 
novel prognostic markers in patients with cancer.9,10 For 
instance, in a recent study, Huang and Gao11 have demon-
strated that CDC20, CENPF, KIP2C, and ZWINT genes were 
differentially expressed in NSCLC tissues. Similarly, Xiao 
et  al12 have identified CCNB1, CCNA2, CEP55, PBK, and 
HMMR as hub genes and key differentially expressed genes 
(DEGs) associated with NSCLC by bioinformatics analyses. 
Interestingly, Wang et  al13 have shown CCND1 as the most 
enriched gene and a potential prognostic biomarker in NSCLC 
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through a gene set enrichment analysis. More recently, Zhang 
et al14 have identified TOP2A, CCNB1, BIRC5, and TTK as 
well as miR-21-5p and miR-31-5p to be significantly associ-
ated with NSCLC prognosis through an integrative analysis of 
mRNA and miRNA expression profiles. Nevertheless, the 
genes that are discovered by 1 cohort might be difficult to be 
identified in other cohorts.15 For this reason, it is essential to 
validate genes in several independent studies.

In this study, we sought to identify potential therapeutic tar-
gets or prognostic biomarkers among the DEGs associated 
with NSCLC through an integrated bioinformatics approach. 
For this purpose, we retrieved 4 different microarray datasets 
from Gene Expression Omnibus (GEO) database and screened 
for DEGs between NSCLC tumor and neighboring normal 
tissues. After gene set enrichment analysis to identify associ-
ated biological processes, a protein–protein interaction (PPI) 
network analysis was performed to elucidate potential key 
DEGs. We also explored the significance of candidate key 
DEGs and their correlation to patient prognosis through sur-
vival analysis. Finally, potential therapeutic drugs that may tar-
get and reverse the expression of these key DEGs were 
predicted by using the L1000CDS2 signature search engine.

Materials and Methods
Microarray datasets

A comprehensive database search was conducted for identify-
ing appropriate datasets including NSCLC tumor tissue and 
matched adjacent normal samples from the public GEO  
database.16 To avoid microarray platform differences, the data-
sets originating from Affymetrix microarrays utilizing Human 
Genome U133 Plus 2.0 chips (Thermo Fisher Scientific, Inc., 
Waltham, MA, USA) were selected. Four datasets with acces-
sion numbers GSE18842, GSE19804, GSE27262, and 
GSE102287 were identified and downloaded for further anal-
ysis (Table 1). GSE1980418 included 60 pairs of NSCLC 
tumor and matched adjacent normal lung tissue, while 
GSE1884217 comprised 46 NSCLC tumors and 45 paired 

controls, GSE2726219 contained 25 tumors and normal tissue 
pairs from stage I lung adenocarcinoma, and GSE10228720 
contained 66 matched NSCLC tumor and normal tissues. A 
total of 506 gene expression samples including 252 healthy and 
254 NSCLC tissues were evaluated in this study.

Data preprocessing and identif ication of DEGs

To identify DEGs, raw data in the form of CEL files were 
downloaded from the GEO database. Affy package of R/
Bioconductor platform (version 3.6) was utilized, and the gene 
expression datasets were normalized by using the Robust 
Multi-Array (RMA) techniques.21 Linear models for micro-
array data (LIMMA) method22 was used in statistical analysis 
of each dataset by comparing gene expressions in NSCLC tis-
sues with neighboring healthy tissues to identify DEGs. 
Differentially expressed genes in each dataset were selected 
according to computed P values <.05. The regulatory pattern 
of each DEG was determined by fold changes (FCs) of up- 
and downregulation (FC >2.0 and <0.5, respectively), and at 
least 50% change was considered significant.

Functional and pathway enrichment analysis

To identify functional annotations significantly associated 
with the gene products, pathway enrichment analyses were 
performed using ConsensusPathDB.23 Genomic, chemical, 
and systematic functional information of DEG pathways were 
provided by Kyoto Encyclopedia of Genes and Genomes 
(KEGG).24 For each of the predefined sets, a P value is calcu-
lated according to the hypergeometric test, and enrichment 
results with P < .01 were considered statistically significant.

PPI analysis

Human protein interactome containing 43 219 physical inter-
actions between 2294 human proteins was collected from the 
BioGRID database.25 The physical interactions of the proteins 

Table 1.  Transcriptome datasets employed in the present study.

Source—ID Purpose No. of tumor 
samples

No. of control 
samples

References

GEO-GSE18842 Gene expression analysis of human lung cancer 
and control samples

46 45 Sanchez-Palencia et al17

GEO-GSE19804 Genome-wide screening of transcriptional 
modulation in non-smoking female lung cancer in 
Taiwan

60 60 Lu et al18

GEO-GSE27262 Gene expression profiling of non-small cell lung 
cancer in Taiwan

25 25 Wei et al19

GEO-GSE102287 Gene and microRNA expression data from African 
Americans and European Americans with 
non-small cell lung cancer

123 122 Mitchell et al20

Abbreviation: GEO, Gene Expression Omnibus.
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encoded by the common genes of all datasets were analyzed in 
Cytoscape26 by the reconstruction of PPI networks. Hub genes 
were identified according to degree and betweenness scores.

Prognostic performance analysis

Survival analyses were performed by Kaplan-Meier Plotter 
web tool27 using mRNA data to identify the prognostic perfor-
mances of each PPI hub gene. The subjects were partitioned 
into low- and high-risk groups according to their hazard ratio 
index. The prognostic capabilities of the genes were character-
ized through Kaplan-Meier plots, and the log-rank P value 
<.05 was considered the cutoff value to describe statistical sig-
nificance. In addition, prognostic performances of the genes 
were validated using datasets with available clinical informa-
tion obtained from CAARRAY, GSE14814, GSE19188, 
GSE29013, GSE30219, GSE31210, GSE3141, GSE31908, 
GSE37745, GSE43580, GSE4573, GSE50081, GSE8894, 
and TCGA in total of 1926 samples.

Drug target potential analysis

L1000CDS228 is a signature search engine which lists small 
molecules that are predicted to mimic or reverse the input gene 
expression profiles utilizing LINCS L1000 data.29 We per-
formed L1000CDS2 analysis using the hub gene list as an 
input, to assess the potential of agents that may reverse the 
expression of up- or downregulated hub genes in NSCLC. 
Resultant small molecules were selected according to 2 main 
criteria: (1) perturbed human cells as lung cancer cell lines and 
(2) top 2 overlap scores.

Results
Transcriptomic signatures of NSCLC

We comparatively analyzed 4 distinct transcriptome data-
sets composed of NSCLC and healthy tissue samples. After 
preprocessing of all 4 datasets, DEGs were identified 
between tumor samples and matched normal tissues accord-
ing to our threshold criteria (FC > 2.0 and FC < 0.5 with 
computed P < .05). We obtained 3381, 1581, 2488, and 
1934 respective DEGs in GSE18842, GSE19804, 
GSE27262, and GSE102287 datasets. Among these, 1451, 
455, 966, and 621 genes were upregulated, while 1951, 
1075, 1537, and 1322 genes were downregulated in 
GSE18842, GSE19804, GSE27262, and GSE102287 data-
sets, respectively (Figure 1A and Supplementary Table 1). 
Combination and comparison of all 4 total DEG groups 
resulted in the identification of 984 common DEGs (Figure 
1B), with 246 upregulated (Figure 1C) and 734 downregu-
lated (Figure 1D) genes. It was determined that the number 
of downregulated genes was higher than the number of 
upregulated genes in all datasets.

Biological insights of common transcriptomic 
signatures

The pathway enrichment analysis based on situated common 
up- and downregulated DEGs indicated significant results for 
general cancer signaling, and metabolic and immune systems–
related pathways. Our results showed that commonly upregu-
lated genes were significantly enriched in 10 KEGG pathways, 
which included cell cycle, p53 signaling pathway, and extracel-
lular matrix (ECM)–receptor interaction (Figure 2A). On the 
contrary, the downregulated common DEGs were enriched in 
32 terms, including malaria, cell adhesion molecule, and cAMP 
signaling pathway (Figure 2B).  The top 15 downregulated 
pathways were used in Figure 2B. The rest of the enriched 
terms can be provided upon request.

NSCLC-specif ic PPI network

To identify hub genes and to reconstruct a PPI network, we 
utilized the BioGRID database and analyzed proteins from 
984 identified DEGs with Cytoscape. In topological analyses 
of the NSCLC-specific PPI network, degree (local-based) and 
betweenness centrality (global-based) metrics30 were used to 
identify the highly connected proteins, that is, hub proteins 
(Figure 3A), which might play an important role in cancer 
pathogenesis. According to their degree and betweenness 
scores, the top 10 hub genes with strong interactions with oth-
ers were determined (Figure 3B). We selected Cbl Proto-
oncogene (CBL), Enhancer of Zeste 2 Polycomb Repressive 
Complex 2 Subunit (EZH2), Cyclin Dependent Kinase 1 
(CDK1), Cell Division Cycle 20 (CDC20), Cyclin Dependent 
Kinase Inhibitor 2A (CDKN2A), Aurora Kinase A (AURKA), 
FYN Proto-oncogene (FYN), ETS Transcription Factor ERG 
(ERG), Suppressor of Cytokine Signaling 2 (SOCS2), and 
Leucine Rich Repeat Kinase 2 (LRKK2) as the most signifi-
cant nodes for further evaluation.

Prognostic hub genes in NSCLC

To evaluate the prognostic performances of the top 10 hub 
genes, we performed a survival analysis by Kaplan-Meier 
Plotter. The overall survival times for patients with NSCLC 
were obtained according to the low and high expressions of 
each hub gene (Figure 4). Our results showed that high 
mRNA expression of CDC20 (Hazard ratio [HR], 1.82; con-
fidence interval [CI], 1.6-2.07) as well as AURKA (HR, 1.52; 
CI, 1.33-1.72), CDK1 (HR, 1.4; CI, 1.23-1.59), EZH2 (HR, 
1.31; CI, 1.15-1.48), and CDKN2A (HR, 1.29; CI, 1.13-
1.46) were associated with significantly poorer overall survival 
(P < .05) for NSCLC patients. According to our statistical 
analysis, these genes were among the commonly upregulated 
genes with significantly higher expression FC levels in 
NSCLC samples in all datasets (Figure 5). On the contrary, 
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Figure 1.  DEGs in non-small cell lung cancer. (A) The distribution of DEGs in non-small cell lung cancer–associated transcriptome datasets. 

Downregulation and upregulation of DEGs were represented by blue and orange colors, respectively. (B) The Venn diagram represents the comparison of 

DEGs among all datasets. (C) The Venn diagram represents the comparison of upregulated DEGs among all datasets. (D) The Venn diagram represents 

the comparison of downregulated DEGs among all datasets. DEGs indicate differentially expressed genes.

Figure 2.  Statistically significant biological pathways of common DEGs: (A) upregulated pathways and (B) downregulated pathways. Up- and 

downregulated common DEGs list was used to obtain up- and downregulated pathways. In both cases, top 15 enriched pathways were represented. 

DEGs indicate differentially expressed genes.
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high mRNA expression of CBL (HR, 0.73; CI, 0.62-0.86) as 
well as FYN (HR, 0.71; CI, 0.62-0.80), LRKK2 (HR, 0.62; 
CI, 0.52-0.73), and SOCS2 (HR, 0.62; CI, 0.53-0.74) were 
associated with significantly better prognosis (P < .05). 
Accordingly, expression levels of these genes were found to 
have significantly lower FC values in NSCLC tumor samples 
in all datasets (Figure 5). Therefore, it is logical to predict a 
poor prognosis associated with these 4 downregulated hub 
genes. Unfortunately, ERG gene was found to have no statisti-
cally significant prognostic potential in a total of 1926 NSCLC 
samples.

Drug target potential of the hub genes

To assess the potential drugs to therapeutically target identified 
hub proteins, we have utilized the LINCS L1000 connectivity 
map data and characteristic direction signature search engine 
L1000CDS2. The list of hub genes was entered into a web tool 
to search for substances that can reverse the expression changes 
in identified DEGs. Thirteen drugs or small molecules were 
identified, showing potential with an overlap score of >0.4 to 
reverse expression profiles on upregulated and/or downregu-
lated gene expressions in lung cancer cell lines (Table 2). A con-
siderable portion (6 out of 13) of the drugs was antineoplastic 
agents, which were suggested for the treatment and manage-
ment of the cancers. The remaining drug candidates were origi-
nally used for purposes other than cancer treatments; however, 
they possess the potential to reverse the expression of the top 10 
DEGs as shown in our analysis.

Discussion
Lung cancer tumorigenesis, progression, and metastasis are 
very complicated processes involving defects in multiple genes 

and cellular pathways.31 Multiple interacting DEGs affecting 
other genes may constitute the core functional network of 
genes in promoting carcinogenesis.32 For an improved diagno-
sis and treatment, it is crucial to discover these abnormal genes 
and understand their roles in the molecular mechanisms of 
NSCLC. Developments in microarray and high throughput 
technologies allow us to detect cancer etiology by examining 
abnormalities at the whole-genome level. These technologies 
have been widely used to predict the potential therapeutic tar-
gets for cancers. On the contrary, a combination of large data 
on chemical perturbational profiles of human cell lines with 
differential gene expression analysis may provide not only 
information on abnormal gene activities but also some impor-
tant clues on therapeutic options to overcome these defects in 
NSCLC.

In this study, we identified 246 upregulated, 734 downregu-
lated, and a total of 984 common DEGs between NSCLC and 
normal tissue samples by using public gene expression profiles 
of GSE18842, GSE19804, GSE27262, and GSE102287 
datasets.

The original data on these datasets were generated to iden-
tify SEMA5A,18 protein arginine methyltransferase 5,33 and 
methylosome protein 5019 as potential biomarkers in NSCLC. 
On the contrary, GSE18842 was generated to analyze DEGs 
as a function of tumor type, stage, and differentiation grade in 
NSLC. Keratin 15 and plakophilin 1 were identified as poten-
tially good markers to distinguish squamous cell carcinoma, 
whereas a significant downregulation of desmoglein 3 was 
observed in early-stage tumor samples.17 A comparative tran-
scriptome profiling was utilized to show coding and noncod-
ing RNA differences between NSCLC from different human 
races. In this study, the dataset GSE102287 was generated to 
show 40 different novel population-specific gene expressions 

Figure 3.  Non-small cell lung cancer-specific protein–protein interaction network and hub proteins. AURKA indicates Aurora Kinase A; CBL, Cbl 

Proto-oncogene; CDC20, Cell Division Cycle 20; CDK1, Cyclin Dependent Kinase 1; CDKN2A, Cyclin Dependent Kinase Inhibitor 2A; ERG, ETS 

Transcription Factor ERG; EZH2, Enhancer of Zeste 2 Polycomb Repressive Complex 2 Subunit; FYN, FYN Proto-oncogene; LRKK2, Leucine Rich 

Repeat Kinase 2; SOCS2, Suppressor of Cytokine Signaling 2.
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such as ARL17A, LRCC37A3, and KANSL1.20 Although 
the data were supported and validated by several wet-lab 
experimentations, none of these original works utilized a simi-
lar integrated bioinformatics approach. All 4 datasets re-ana-
lyzed in a single set for the first time in our study.

In our PPI network analysis, we identified a series of hub 
genes, including CDC20, AURKA, CDK1, EZH2, CDKN2A, 
CBL, FYN, LRKK2, SOCS2, and ERG as the top 10 signifi-
cant nodes. Among them, CDC20 appears to act as a regula-
tory protein interacting with several other proteins such as 
mitotic spindle checkpoint protein MAD2L1 and anaphase-
promoting complex/cyclosome (APC/C) at multiple points 
in the cell cycle. It is required for 2 microtubule-dependent 

processes, nuclear movement before anaphase and chromo-
some separation.34 Disorders involving the CDC20 gene are 
mosaic variegated aneuploidy syndrome 1, neuronal ceroid 
lipofuscinosis, and prostate cancer.35 CDC20 was identified 
as frequently upregulated in many types of malignancies 
including NSCLC and suppressed by p53 expression.36 
Importantly, CDC20 was identified among the key genes 
with prognostic value in NSCLC in several other studies 
using bioinformatics methods and similar datasets.37,38 
Therefore, it may represent a potential molecular target and a 
critical molecular marker for NSCLC progression. All drugs 
on our candidate list were found to potentially interfere with 
CDC20 expression.

Figure 5.  Fold changes of hub genes in each dataset. Red and blue grades represent upregulated and downregulated genes, respectively. AURKA 

indicates Aurora Kinase A; CBL, Cbl Proto-oncogene; CDC20, Cell Division Cycle 20; CDK1, Cyclin Dependent Kinase 1; ERG, ETS Transcription Factor 

ERG; EZH2, Enhancer of Zeste 2 Polycomb Repressive Complex 2 Subunit; FYN, FYN Proto-oncogene; SOCS2, Suppressor of Cytokine Signaling 2.

Table 2.  Potential drugs or small molecules that can reverse the expression change in identified hub proteins through LINCS L1000 connectivity 
map data.

Rank Candidate drugs Cell line Dose Time Overlap score Reversible gene expressions

1 Z-Leu3-VS HCC515 10.0 µm 24.0 h 0.5556 AURKA, CDC20, CDK1, CDKN2A, EZH2

2 TGX-115 A549 160.0 µm 24.0 h 0.5556 CDC20, CDK1, CDKN2A, EZH2, SOCS2

3 Ingenol 3,20-dibenzoate HCC515 10.0 µm 24.0 h 0.5556 AURKA, CDC20, CDK1, EZH2, SOCS2

4 Maprotiline hydrochloride A549 10.0 µm 24.0 h 0.5556 AURKA, CDC20, CDK1, CDKN2A, EZH2

5 S1169 A549 10.0 µm 24.0 h 0.5556 AURKA, CDC20, CDK1, EZH2, SOCS2

6 RF 01079 A549 10.0 µm 24.0 h 0.5556 AURKA, CDC20, CDK1, EZH2, SOCS2

7 HY-11001 A549 10.0 µm 24.0 h 0.5556 AURKA, CDC20, CDK1, EZH2, SOCS2

8 Pracinostat HCC515 3.33 µm 24.0 h 0.5556 CDC20, CDK1, CDKN2A, EZH2, SOCS2

9 Trichostatin A HCC515 10.0 µm 24.0 h 0.4444 AURKA, CDC20, CDK1, CDKN2A

10 NTNCB hydrochloride HCC515 10.0 µm 24.0 h 0.4444 AURKA, CDC20, CDK1, EZH2

11 Rottlerin HCC515 10.0 µm 24.0 h 0.4444 AURKA, CDC20, CDK1, EZH2

12 AG-879 HCC515 10.0 µm 24.0 h 0.4444 AURKA, CDC20, CDK1, EZH2

13 IMD 0354 HCC515 10.0 µm 24.0 h 0.4444 AURKA, CDC20, CDK1, FYN

Abbreviations: AURKA, Aurora Kinase A; CDC20, Cell Division Cycle 20; CDK1, Cyclin Dependent Kinase 1; CDKN2A, Cyclin Dependent Kinase Inhibitor 2A; DEGs, 
differentially expressed genes; EZH2, Enhancer of Zeste 2 Polycomb Repressive Complex 2 Subunit; FYN, FYN Proto-oncogene; SOCS2, Suppressor of Cytokine 
Signaling 2.



8	 Bioinformatics and Biology Insights ﻿

The second hub gene AURKA is another cell cycle–related 
protein which is a serine/threonine kinase that takes part in the 
regulation of cell cycle progression. During mitosis, it associ-
ates with centrosomes and spindle microtubules, and plays an 
essential role in various mitotic events such as the establish-
ment of mitotic spindle, centrosome duplication and separa-
tion in addition to chromosomal alignment, spindle assembly 
checkpoint, and cytokinesis. In the checkpoint response path-
ways that are critical for oncogenic transformation of cells, it 
acts as a key regulatory component of p53/TP53 pathway by 
phosphorylating and stabilizing p53 itself. Interestingly, 
AURKA is required for the initial activation of CDK1 at cen-
trosomes.39 Aberrant expression of AURKA is associated with 
several cancer types, including colorectal cancer, laryngeal 
squamous cell carcinoma, atypical teratoid rhabdoid tumors, as 
well as tetraploidy syndrome.40 In a recent study using gene 
expression meta-analysis integrated with neural network algo-
rithms, AURKA was identified as the most obvious class of 
hub genes associated with NSCLC.41 Furthermore, the ampli-
fication or activation of AURKA-induced impairment of the 
LKB1/AMPK axis was found to contribute to NSCLC initia-
tion and progression, and suggests AURKA as a potential ther-
apeutic target.42 In a few bioinformatics studies using very 
similar integrative approach and some of the datasets used in 
this study, AURKA was suggested as one of the hub genes in 
NSCLC.43,44 CDK1 plays a key role in the control of the 
eukaryotic cell cycle by modulating the centrosome cycle as 
well as the mitotic onset. Besides the promotion of G2-M and 
G1S transitions, CDK1 regulates G1 progress via association 
with multiple interphase cyclins and it is required for entry into 
both S phase and mitosis in higher cells. In addition, as a mas-
ter modulator in cell cycle onset and progression, it phospho-
rylates and activates numerous proteins, including CDC20 and 
EZH2. Loss of CDK1 activity or the aberrant expression of 
CDK1 is involved in G2 phase arrest in many tumor types. 
Therefore, an interest has been developed to search for potent 
CDK1 inhibitors and it comprises an attractive target in oncol-
ogy.45 Our results together with some recent other bioinfor-
matics studies utilizing GSE18842 dataset46 support the 
critical role of CDK1 as an important oncological target in 
NSCLC as well. Among the other identified hub genes, EZH2 
is a polycomb group protein and the core catalytic subunit of a 
protein complex that participates in transcriptional repression 
of the affected target genes by methylated lysines on histone 
H3 through multiple modes of action.47 In tumor progression, 
epigenetic malfunctions display important roles in addition to 
genetic factors. An abnormal expression of EZH2 induces per-
manent silencing on some critical tumor suppressor genes, 
represses their transcription, and therefore contributes indi-
rectly to tumor proliferation, invasion, and metastasis. 
Accordingly, it is highly expressed in several types of tumors 
such as breast cancer, prostate cancer, ovarian cancer, lym-
phoma, as well as lung cancer.48 In NSCLC, overexpression of 

EZH2 mRNA was found to be a negative prognostic indicator 
and it was suggested as a biomarker to predict the response to 
histone deacetylase (HDAC)  inhibitors.49 On the contrary, 
EZH2 itself is an actionable molecular target and there are sev-
eral ongoing clinical trials of EZH2 in hematological malig-
nancies.50 In a recent study, benzomorpholine derivatives were 
reported as novel EZH2 inhibitors for anti-NSCLC activity.51 
Perhaps EZH2 can be targeted molecularly with potent inhibi-
tors in appropriate NSCLC patients for therapeutic purposes 
in the future. The next top hub gene found in our study, 
CDKN2A or p16INK4a, is a powerful inhibitor of CDK4/6 
and capable of inducing cell cycle arrest in G1 and G2 phases. 
It acts as a tumor suppressor and its loss is a significant event in 
several cancer types. In the majority of the cases, CDKN2A is 
inactivated by homozygous deletions or through hypermeth-
ylation of the promoter region of the gene. However, in accord-
ance with our data, a retained overexpression of CDKN2A may 
result in metastatic and invasive tumor phenotypes and is asso-
ciated with poor prognosis.52

CBL is a proto-oncogene associated with diseases such as 
juvenile myelomonocytic leukemia and other hematological 
cancers.53 It acts as an E3 ubiquitin-protein ligase that can 
function as a negative regulator of many signaling pathways 
triggered by cell surface receptors such as FGFR1, FGFR2, 
PDGFRA, PDGFRB, and EGFR.54 Although the role of 
CBL family proteins in NSCLC is largely unknown, in a few 
recent studies their upregulation were shown to inhibit espe-
cially mutated EGFR expression by mediating proteasome 
degradation of the protein.55 Therefore, it may be speculated 
that the positive prognostic value of CBL in our study can be 
attributed to its overexpression and anticancer effects in 
patients with mutant EGFR expression.

Non-receptor tyrosine-protein kinase FYN is an oncogene 
that plays a role in several biological processes such as cell motil-
ity, cytoskeletal remodeling, cell adhesion, integrin-mediated 
signaling, and cell growth and survival. FYN is overexpressed in 
various cancers, including head and neck cancer, melanoma, 
squamous cell carcinoma, and prostate cancer.56 High FYN 
expression was associated with epithelial-mesenchymal transi-
tion and has various roles in cancer-metastasis-related  
pathways.57 On the contrary, the prognostic value of FYN was 
shown in a recent work aiming to predict metastasis in NSCLC.58 
Consistent with our results, they have shown a high FYN expres-
sion associated with an improved survival time. Although the 
reason is unknown, this contradiction with previous findings 
needs to be clarified by further studies in the future. One of the 
hub genes with a positive prognostic value in our PPI network 
analysis was LRKK2, which is a member of the leucine-rich 
repeat kinase family. LRKK2 is a serine/threonine kinase that 
modulates a large number of proteins involved in multiple pro-
cesses like vesicle trafficking, autophagy, and neuronal plastic-
ity.59 Abnormalities in this gene are largely associated with 
neurodegenerative disorders such as Parkinson’s disease.60 In a 
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recent study, LRKK2 was shown to serve as a scaffold during 
activation of the WNT/β-catenin pathway, which is activated in 
different types of human cancers.61 LRRK2 overexpression was 
shown to have important antitumor activities like suppression of 
proliferative, migrative, and invasive properties of tumor cells, 
and induction of apoptosis together with the arrest of the cell 
cycle.62 LRRK2 was shown as a hub gene in colon cancer by a 
bioinformatics approach63 and was found among frequently 
mutated genes in lung squamous carcinoma.64 SOCS2 gene is a 
member of the suppressor of cytokine signaling family proteins 
and it takes part in the negative control of transduction in this 
signaling cascade through the Janus kinase ( JAK)- signal trans-
ducer and activator of transcription (STAT) pathway and in part 
by ubiquitination.65 In general, SOCS2 seems to act largely as a 
positive prognostic factor in different human cancers including 
hepatocellular carcinoma, breast cancer, and colorectal cancer, 
with an exception in acute myeloid leukemia (AML) in a large 
cohort.66 Inhibition of SOCS2 with different miRNAs in lung 
cancer results in cell proliferation and metastasis.67 In addition, 
SOCS2 was identified as one of the downregulated genes in 
lung tumor tissue in a cDNA array-based study.68 Our survival 
analysis results have shown a longer patient survival time with 
high mRNA expression of SOCS2; therefore, it may be consid-
ered as a positive prognostic marker of NSCLC.

Overall, CDC20, AURKA, CDK1, EZH2, and LRKK2 were 
identified as important hub genes in other bioinformatics stud-
ies using various integrated analysis methods by utilizing some 
of the NSCLC datasets in our study. However, in the present 
study, we suggest CDKN2A, CBL, FYN, and SOCS2 as novel 
important biomarker candidates in NSCLC.

Our drug target analysis considering the identified top 10 
DEGs has revealed 13 drugs or small molecules demonstrating 

a potential to reverse their aberrant expressions. Among these 
drugs, we identified Pracinostat, Trichostatin A (a histone dea-
cetylase-HDAC inhibitor), S1169 (TGX-221-a PI3K inhibi-
tor), HY-11001 (PHA-793887-a potent CDK inhibitor), 
AG-879, and IMD 0354 with antineoplastic effects. On the 
contrary, Z-Leu3-VS (a proteasome inhibitor), TGX-115 (an 
antimalarial agent), Ingenol 3,20-dibenzoate (an antiviral 
agent), Maprotiline hydrochloride (a selective noradrenaline 
reuptake inhibitor), NTNCB hydrochloride (a neuropeptide Y 
receptor Y5 antagonist), Rottlerin (antiplasmodial activity), 
and RF01079 with no functional information were also identi-
fied as potential drug candidates to reverse the expression of 
top 10 DEGs in our analysis. Pracinostat is a small-molecule 
HDAC inhibitor that may take part in chromatin remodeling 
through an accumulation of histone hyperacetylation. 
Combination therapy with pracinostat was suggested for 
elderly patients of AML in a phase II clinical trial.69 However, 
we could not find any literature regarding the effects of praci-
nostat in NSCLC. Trichostatin A is another HDAC inhibitor 
that is identified in our study and is long known as an antineo-
plastic agent against NSCLC.70 Although there are many 
reported studies on the antitumoral effects of Trichostatin A in 
NSCLC, perhaps the most critical impact was about the  
reversal of chemoresistance resulting from high IGFBP2 
expression.71 Trichostatin A was found to inhibit both EZH272 
and AURKA activator FOXM173 which had an FC value 
above 2 and thus upregulated in all datasets we analyzed 
(Supplementary Table 1). As AURKA-induced CDK1 expres-
sion may trigger both CDC20 and EZH2 gene expressions, we 
propose an action mechanism in which Trichostatin A could 
inhibit all these hub genes through its negative actions on 
FOXM1 gene expression (Figure 6).

Figure 6.  Proposed mechanism of action for reversing effects of Trichostatin A on hub gene expressions. Trichostatin A can interfere with AURKA 

expression through inhibiting FOXM1 activator. Reduced AURKA expression may interfere with CDK1 activation and thus expression of its downstream 

targets. Blocking EZH2 expression as well may help to decrease tumorigenic properties of NSCLC cells. Black arrow: downregulation. AURKA indicates 

Aurora Kinase A; CDK1, Cyclin Dependent Kinase 1; EZH2, Enhancer of Zeste 2 Polycomb Repressive Complex 2 Subunit; NSCLC, non-small cell lung 

cancer.
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AG-879 or Tyrphostin AG-879 is a specific TKI for ErbB2 
(HER2). Although its antineoplastic effects are long known,74 
the utility of AG-879 is very limited in recent cancer studies. 
IMD0354 is an IKK-2 inhibitor V with therapeutic effects on 
inflammation and insulin resistance. The antineoplastic effect 
of IMD 0354 was reported on breast cancer stem cells to pre-
vent chemoresistance in a murine model.75 As of now, its anti-
tumoral effects and their molecular mechanisms in NSCLC 
largely remain to be elucidated. In a recent study, it was shown 
that IMD0354 could effectively suppress cancer cell prolifera-
tion, invasion, and migration through inhibition of elevated 
expressions of transmembrane serine protease 4 (TMPRSS4) 
in NSCLC cells.76 Therefore, IMD0345 has considerable 
potential for further development as a novel anticancer agent 
for NSCLC treatment. S1169 or TGX-221 is a potent PI3K 
isoform-specific inhibitor that was derived from a natural com-
pound Quercetin.77 The derivatives of TGX-221 have been 
utilized especially against prostate cancer cells as well as in 
xenograft models.78 Antitumoral effects of TGX-221 in 
NSCLC are somewhat contradictory and the number of stud-
ies is limited. It was suggested that PI3K isoforms may func-
tionally compensate for one another thus limiting the efficacy 
of single-agent treatment.79 HY-11001 or PHA-793887 is a 
potent, ATP-competitive CDK inhibitor acting on CDK1, 
CDK2, CDK4, and CDK9, which has been used in a phase I 
clinical trial studying the treatment of advanced or metastatic 
solid tumors.80 However, this study was not continued due to 
severe hepatic toxicity. There was no evidence for in vitro or in 
vivo antitumoral effects of PHA-793887 in NSCLC. Although 
there is a line of evidence for drug repurposing for other anti-
malarial drugs such as hyroxychloroquine and artemisinin,81 
there was no indication of TGX-115 usage in NSCLC treat-
ment. We could not find any cancer-associated literature for 
remaining small molecules Z-Leu3-VS, TGX-115, Ingenol 
3,20-dibenzoate, Maprotiline hydrochloride, NTNCB hydro-
chloride, or Rottlerin. On the contrary, RF01079 was found to 
be inactive in most of the tested bioassays according to 
PubChem. Overall, we identified Trichostatin A, IMD0354, 
and TGX-221 as potent drug repurposing candidates for 
NSCLC treatment in our study.

This study integrates gene expression profiles and PPI net-
works to identify prognostic genes and candidate drug mole-
cules. This analysis, however, is limited in that it does not 
include the expression of these genes in the different NSCLC 
subtypes. Here, we showed that high expressions of CDC20, 
AURKA, CDK1, EZH2, and CDKN2A genes were associated 
with significantly poorer overall survival, whereas upregula-
tions of CBL, FYN, LRKK2, and SOCS2 were associated with 
a significantly better prognosis. Our drug target analysis of hub 
genes suggests a potential use of Trichostatin A, Pracinostat, 
TGX-221, PHA-793887, AG-879, and IMD0354 antineo-
plastic agents to reverse the expression of hub genes in NSCLC 
patients. While our work showed the benefit and usefulness of 
gene expression data analysis in bringing out the DEGs and 

hub genes that can be potential prognostic and treatment tar-
gets of NSCLC, the need for improved analysis and prospec-
tive clinical studies is still imperative. Finally, this study can 
contribute to the overall understanding of the underlying 
molecular mechanisms of NSCLC and serve as a guide to sub-
sequent experimental studies.
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