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Biomechanical insights 
into the dentition of megatooth 
sharks (Lamniformes: Otodontidae)
Antonio Ballell & Humberto G. Ferrón*

The evolution of gigantism in extinct otodontid sharks was paralleled by a series of drastic 
modifications in their dentition including widening of the crowns, loss of lateral cusplets, and 
acquisition of serrated cutting edges. These traits have generally been interpreted as key functional 
features that enabled the transition from piscivory to more energetic diets based on marine mammals, 
ultimately leading to the evolution of titanic body sizes in the most recent forms (including the 
emblematic Otodus megalodon). To investigate this hypothesis, we evaluate the biomechanics of 
the anterior, lateral, and posterior teeth of five otodontid species under different loading conditions 
by using two-dimensional finite element analysis. Stress distribution patterns are remarkably 
similar among all models under puncture and draw (i.e., when subjected to vertical and lateral 
forces, respectively). Contrary to expectation, higher average stress values are detected under both 
loading scenarios in more recent species. Altogether, this suggests little correlation between tooth 
morphology and key aspects of biomechanical behaviour in otodontids, making it difficult to frame 
the morphological trend of their dentitions within an adaptive scenario. We propose that this pattern 
most likely emerged as a non-functional by-product of heterochronic processes driven by selection 
towards larger body sizes.

Otodontids, colloquially referred to as megatooth sharks, constitute a family of apex predatory selachians that 
ranged from the Early Paleocene to the Pliocene1–3. This group experienced a trend towards gigantism throughout 
the Cenozoic that culminated with Otodus megalodon, the largest macropredatory shark ever to exist4. This spe-
cies overpassed 15 m in total length and likely weighed more than 50 tons4–7. Historically, the evolution of such 
titanic body sizes in otodontids has been related to the emergence of various marine mammal lineages during the 
Paleogene (i.e., pinnipeds, sirenians, and cetaceans)5,8,9. Possessing thick layers of blubber, these taxa would have 
represented ideal prey for large-sized mesotherms to meet the metabolic demands of their active lifestyles10–12. 
Within this scenario, the earliest otodontids subsisted on comparatively small prey items, presumably fishes, 
whereas the largest and more recent species, including O. megalodon, consumed larger marine mammals8,9,13,14. 
This dietary shift most likely required the acquisition of a series of anatomical innovations that enabled such 
trophic specialisation.

The trend towards gigantism in otodontid sharks was paralleled by remarkable modifications in tooth mor-
phology, including an increase in crown width, the loss of lateral tooth cusplets, and the acquisition of ser-
rated cutting edges9,14,15. Collectively, these changes represent a shift from typical puncturing-tearing to cutting 
dentitions16. These two dental types are usually associated with different ways of capturing and processing the 
prey; accordingly, early otodontids were presumably adapted to prey upon small elusive animals, whereas the 
most recent members of this family were likely adapted to tearing flesh from large prey or carcasses17–20. However, 
only few works have assessed morphofunctional questions about shark teeth from quantitative biomechanical 
points of view21–26 and the most comprehensive studies in this regard did not find clear patterns between tooth 
morphology and structural resistance (i.e., the ability to withstand the effect of forces and the deformation derived 
from it) or puncture performance (i.e., efficiency to penetrate foodstuff). These findings called into question 
the classical categorization of shark dentitions into functional types27–29. As such, biomechanical testing of oto-
dontid teeth is crucial for clarifying the underlying mechanisms that promoted their presumed shift in dietary 
preferences and better understanding the evolutionary factors that allowed them to reach the most gigantic sizes 
among macropredatory selachians1,16,30.

Here we evaluate the biomechanical behaviour of otodontid shark teeth by means of Finite Element Analysis 
(FEA). Borrowed from engineering, FEA is one of the most commonly used computational methods in bio-
mechanics and functional palaeobiology31. This technique reconstructs the mechanical behaviour of biological 

OPEN

Shool of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK. *email: humberto.ferron@bristol.ac.uk

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-020-80323-z&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2021) 11:1232  | https://doi.org/10.1038/s41598-020-80323-z

www.nature.com/scientificreports/

structures, in terms of stress and strain, under simulated loads. To assess the functional significance of morpho-
logical trends in otodontid dentitions and test previous adaptive explanations, we analysed anterior, lateral and 
posterior teeth of five otodontid chronospecies (Otodus obliquus, O. auriculatus, O. angustidens, O. chubutensis 
and O. megalodon), thus capturing the diversity of dentitions exhibited by this lineage from the Palaeocene to the 
Pliocene1. We tested loading scenarios of puncture, a vertical force acting on the tip of the crown; and unidirec-
tional draw, a lateral force acting along the distal cutting edge. Puncture was simulated under life-size absolute 
force estimates (i.e., bite forces that each species would have exerted in life considering their estimated body 
size) and scaled forces (i.e., force magnitudes scaled to maintain a constant force to surface area ratio across all 
models to account for morphology only32); and draw was simulated under scaled forces only.

Results
Finite element models under puncture scenario with scaled forces show some similarities in von Mises stress dis-
tribution patterns (Fig. 1a). The region with the highest stress is located around the tip of the main tooth crown, 
where the puncture force is acting, while the lowest stress is located in the root, where models are constrained. 
The pattern of how stress dissipates from the loading point varies among models. Stress is distributed along the 
center of the crown in teeth with crowns approximating an equilateral or isosceles triangular morphology, such 
as the anterior teeth of O. chubutensis and O. megalodon. In crowns approaching a right triangular morphology, 
as in the anterior teeth of O. obliquus, O. auriculatus, and O. angustidens, stress is mostly distributed along the 
distal cutting edge. Teeth with recurved crowns, as in the lateral and posterior teeth of O. obliquus and the lateral 
teeth of O. auriculatus and O. angustidens, show high stresses along the distal and (to a lesser extent) mesial 
cutting edges while the center of the crown exhibits low stress, a pattern resembling the bending of a typical can-
tilever beam (i.e., a rigid structural element supported at one end and free at the other end33). When puncture is 
simulated under estimated life-size bite force conditions for each species, same patterns of stress distribution are 
obtained but stress values are higher due to the higher force magnitudes that are applied (Supplementary Fig. S1). 
Comparing different tooth positions for the same taxa in this simulation, lateral and especially posterior teeth 

Figure 1.   Von Mises stress distribution plots in the anterior (Ant.), lateral (Lat.), and posterior (Post.) teeth of 
the five analysed otodontid species, simulating (a) puncture and (b) draw scenarios with scaled force magnitude. 
Mesial is left, distal is right. Arrows indicate loading points. Grey areas represent von Mises stress values higher 
than 5 GPa and 10 MPa in each of the scenarios, respectively.
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experience higher stresses than anterior teeth as a result of (1) experiencing higher forces because jaws behave 
as third-class levers, in which output (bite) forces increase towards the jaw joint; and (2) having less surface area 
due to their smaller size (see “Methods” section).

In the draw scenario with scaled force loadings, all models exhibit similar general distributions of stress 
(Fig. 1b). The portions of the teeth exhibiting the lowest stresses are the root and the very apex of the crown. The 
highest stress values are located along the distal cutting edge of the main crown, where the draw load is acting, 
as well as along the mesial cutting edge, in resemblance to a cantilever-bending scenario. The centre of the tooth 
crown between the cutting edges exhibits relatively lower stress, akin to the neutral axis of the beam. In taxa with 
lateral cusplets, namely the four oldest species, these structures show moderate to low stresses, generally higher 
in the distal cusplet than in the mesial, where the draw load is not acting directly.

Some general patterns can be extracted from comparing the von Mises stress mesh-weighted arithmetic means 
(MWAM) across finite element models (Fig. 2). Under both puncture and draw scaled force loadings, relative 
stresses decrease as tooth position becomes more distal, with the exception of the anterior and lateral teeth of O. 
obliquus during puncture (Fig. 2a). When comparing different species, the teeth of older species display lower 
stresses under both loading regimes than those of more recent taxa, although there are some exceptions (Fig. 2a). 
For example, O. obliquus shows higher stress than O. auriculatus when comparing lateral and posterior teeth 
during puncture, and anterior and lateral teeth during draw. Similarly, the anterior teeth of O. angustidens exhibit 
higher stress than those of the younger species O. chubutensis, during both puncture and draw. In general, the 
greatest differences in stress magnitude among taxa are seen in anterior and lateral teeth, while posterior teeth 
show more similar stress values under both loading conditions. Correlation analyses support a general trend 
towards increasing von Mises stress MWAM in time for all tooth positions and loading scenarios, apart from 
posterior teeth under puncture where no trend is detected (Fig. 2b). These patterns remain broadly consistent 
when von Mises stress MWAM is calculated considering only elements of the crown tooth, with the exception 
of the teeth of O. obliquus which show higher stress values during both puncture and, to a lesser extent, draw 
(Supplementary Fig. S2).

Discussion
Otodontid teeth show general patterns of stress distribution similar to those of extant elasmobranchs29, with 
high stresses concentrated around the crown apex and along the mesial and distal cutting edges during puncture 
and draw, respectively (Fig. 1). FE models do not reveal structural weaknesses that could potentially lead to 
failure under both loading scenarios in any of the considered teeth despite the high force magnitudes that were 
simulated (Fig. 1 and Supplementary Fig. S1). Stress patterns during draw are consistent with cantilever beam 
bending33, especially in anterior and lateral teeth that exhibit higher and straighter crowns (Fig. 1b), and similar 
to those of extant species with elongate tooth crowns29. As such, despite covering a relatively diverse range of 
shapes, with typical examples of distinct dental types1,9,15, the teeth of different otodontid species exhibit similar 
patterns of stress distribution in both puncture and draw. This suggests that dental morphology is not a reliable 
proxy for functional performance18,27–29, which undermines the traditional categorization of shark teeth into 
morphofunctional classes (i.e., specific dental morphotypes presumably adapted to clutching, tearing, cutting, 
crushing, or grinding) employed for decades to support dietary and ecological interpretations in both living 
and extinct groups1,16,30.

Von Mises stress mesh-weighted arithmetic mean (MWAM) decreases towards more distal tooth positions 
within otodontid species (Fig. 2a), indicating that the robust, shorter crowned posterior teeth are structurally 
more resistant than the gracile anterior and lateral teeth. This suggests that heterodonty in the dentition of oto-
dontids could be a response to mechanical constraints where the morphology of more distal teeth is determined, 
at least in part, by the need to resist higher bite forces. When comparing different taxa, the teeth of older species 
exhibit, with few exceptions, lower von Mises stress values than those of more recent ones during both puncture 
and draw (Fig. 2). However, this trend is not consistent with the mechanical properties presumed a priori for 
the dental types found in taxa possessing extreme dental morphologies. Extant sharks with puncturing-tearing 
dentitions, similar to that of O. obliquus, usually pierce and hold soft prey between their jaws before swallowing 
them with little manipulation34; in contrast, species with cutting dentitions, similar to that of O. megalodon, 
slice off large pieces of flesh through a combination of vertical bites and lateral head shaking35,36. Fossil evidence 
supports that the latest otodontids (i.e., O chubutensis and O. megalodon) also possessed the ability to bite and 
crush the bones of pinnipeds, sirenians, and cetaceans during hunting or scavenging8,13,37–40. This implies that 
the teeth of these species would impact hard mineralized endoskeletal tissues more often than those of their 
earlier relatives that are presumed to have fed mostly on fish9,41. From this perspective, an optimization in draw 
and, probably, puncture performances is expected through the evolution of otodontid dentitions in order to 
support higher loads; an expectation not substantiated by our results. In any case, the evaluation of these aspects 
should be conducted with caution given the complexity of feeding kinematics in sharks17–20 and the potential 
effects of interspecific variation in the labio-lingual thickness and histology of the teeth. Nonetheless, planar 
(two-dimensional) models have been established as a useful alternative to three-dimensional models for cap-
turing reaction forces and comparative patterns of stress and strain42. Our data support this approach given the 
remarkable similarities between the general patterns of stress distribution recovered here for otodontid teeth 
(Fig. 2), based on planar models with homogeneous material properties, and those previously reported for a 
number of living sharks, based on more complex three dimensional models accounting for both the distribution 
and properties of the different dental tissues29.

Our results reveal that the morphological trend recorded in otodontid dentitions is difficult to frame within 
a functional context9,14,15, thus calling into question its adaptive significance during the dietary transition of 
this group and, ultimately, its causal impact on the evolution of gigantic body sizes in the most derived species. 



4

Vol:.(1234567890)

Scientific Reports |         (2021) 11:1232  | https://doi.org/10.1038/s41598-020-80323-z

www.nature.com/scientificreports/

The presence of serrated edges (not captured in our FE models) is usually considered as a character related to 
increased cutting efficiency18,22,30. Accordingly, the evolution of serrations in the tooth cutting edges of both 
otodontids and the great white shark (i.e., Carcharodon carcharias)43–45 are interpreted as independent adapta-
tions to improve cutting performance triggered by the acquisition of comparable diets based mostly on marine 
mammals9,46. However, the functional role of this feature has been challenged by recent biomechanical studies 
on shark teeth28 and the question of whether the acquisition of edge serrations in otodontids had some impact 
on their ability to prey upon marine mammals9 will remain unanswered until dynamic testing is conducted 
specifically on these taxa26. Biomechanical testing of the cutting mechanics and efficiency of complete tooth 
rows could also provide relevant functional insights in this context by revealing emergent functional properties 
of the dentition as a whole. In analogy with the extant great white shark46, the dentitions of more recent species 

Figure 2.   (a) Von Mises stress mesh-weighted arithmetic means (MWAM) calculated for anterior (Ant.), 
lateral (Lat.), and posterior (Post.) teeth of the five analysed otodontid species, simulating puncture and draw 
scenarios with scaled force magnitude. Data are shown in a temporal context (in million years ago, Mya) 
where stratigraphic range of each taxa is represented by grey bars (stratigraphic ranges based on Cappetta1 and 
Diedrich9). (b) Density distributions of coefficients and p values derived from correlation analyses between von 
Mises stress MWAM and species age (randomly selected within their chronostratigraphic range, n = 10,000). 
Epoch: Pa, Paleocene; Eo, Eocene; Ol, Oligocene; Mi, Miocene; Pl, Pliocene; Age: Da, Danian; Se, Selandian; Th, 
Thanetian; Yp, Ypresian; Lu, Lutetian; Ba, Bartonian; Pr, Priabonian; Ru, Rupelian; Ch, Chattian; Aq, Aquitanian; 
Bu, Burdigalian; La, Langhian; Sv, Serravalian; To, Tortonian; Me, Messinian; Za, Zanclean; Pi, Piacenzian.
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of otodontids might have comprised a continuous cutting edge spanning from one commissure through the 
symphysis to the opposed commissure and provided with two orders of serrations (i.e., the teeth and the serrae 
sensu stricto). Besides potential anatomical specializations, the dietary shift that occurred within Otodontidae 
may have been an intrinsic consequence of body size increase4, allowing them to consume larger prey47,48, 
facilitated by the pre-existence of highly active metabolisms and mesothermy in smaller preceding forms10,11.

In the absence of convincing functional evidence, other non-adaptive processes should be considered when 
attempting to explain the morphological changes in the dentition of otodontids. Body size selection triggered by 
heterochrony (i.e., changes to the timing or rate of developmental events, relative to an ancestor49) can produce 
trends in traits that exhibit allometric variation (i.e., changes in morphology associated with size variation)50. 
Heterochrony had a relevant role in the evolution of gigantism in otodontids51, where a general trend towards 
the expansion of the somatic growth (i.e., peramorphosis) is recorded in the vertebral rings of successive taxa14. 
This phenomenon appears to be a product of an increased rate of growth (i.e., acceleration) and a delayed offset 
timing (i.e., hypermorphosis) in more recent species14. These heterochronic changes are mirrored in the denti-
tions of otodontids and are fundamental for understanding the ontogenetic and interspecific variation of tooth 
morphology within the group52–54. When considered in the context of heterochrony, the evolution of otodontid 
dentitions can be framed within a continuous morphological gradient where progressively larger and more 
peramorphic species pass through more developmental stages during ontogeny, a trend that can be expressed as 
a peramorphocline55,56 (Fig. 3). This may explain why the ontogenetic change in O. megalodon teeth mimics the 
modifications that took place during their evolution within Otodontidae53,54,57,58. We propose that the morpho-
logical differences among otodontid dentitions may not be the result of selection acting on those traits but are 
simple sequelae of size variation. Interestingly, a similar pattern is present within lamnid sharks (i.e., Carcharo-
don, Isurus and Lamna genera and extinct relatives), where size and similar aspects of tooth morphology (i.e., 
crown width and presence/absence of lateral cusplets) covary in comparable ways both along their ontogeny59–62 
and throughout phylogeny44,63. In fact, heterochronic processes may have also been fundamental in the shaping 
of dental morphological diversity of extinct and living lamnid species63. Disentangling the causes that underly 
these phenomena in different groups, and ascertaining whether they respond to common functional demands 
and/or developmental mechanisms, might inform about the homology of key characters in these groups (e.g., 
lateral cusplets)60 and ultimately could provide new insights into their debated affinities5,8,9,43–45,53 by guiding 
character selection in future phylogenetic analyses. From this perspective, and in agreement with the biome-
chanical evidence presented here, the long-term changes in the general morphology of otodontid teeth might be 
better considered as a non-functional by-product of heterochronic phenomena, most likely driven by selection 
on life history traits favouring the attainment of larger body sizes.

Methods
Model creation.  Images of teeth in labial view were obtained for the otodontid species Otodus obliquus, 
O. auriculatus, O. angustidens, O. chubutensis and O. megalodon from the literature and from specimens in 
museum collections (Supplementary Table S1). We follow the taxonomic nomenclature of Cappetta1 and refer to 
that study for a detailed discussion on alternative existing nomenclatures. For each species, we considered teeth 
from the upper jaw with anterior, lateral and posterior positions in order to span the morphological diversity of 
otodontid teeth related to heterodonty (i.e., anterior I–III, lateral III–IV, and posterior II–III, following the ter-
minology of Applegate & Espinosa-Arrubarrena53 and Diedrich9; see Supplementary Fig. S3). The images were 
imported into ImageJ v. 1.51r64 and the outline of each tooth was drawn using the multipoint tool. The XY coor-
dinates of the outline were obtained using Microsoft Excel and imported into the CAD software Inventor Profes-

Figure 3.   Schematic representation of the trends in tooth morphology, body size and presumed heterochronic 
phenomena through the evolution of otodontid sharks.
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sional 2016 (Autodesk). The outline was sketched from the XY coordinates and the planar models were exported 
as STP files (available at the Open Science platform Figshare, https​://figsh​are.com/s/e2455​48d6f​31b22​6a7b0​).

Bite force estimations.  Anterior and posterior vertical bite forces were estimated for each species under 
the assumption that bite force increases at 0.67 the power of body mass65. Estimations were made presuming 
isometry from values obtained in a jaw model of a 240 kg great white shark specimen (i.e., anterior and posterior 
bite forces of 1602 N and 3131 N, respectively)66. The arithmetic average of anterior and posterior force values 
was considered as the force exerted by the lateral region of the jaw. The body mass of each species was estimated 
from exponential models established in living great white sharks5 using body length estimates reported in the 
literature (Supplementary Table S1).

Finite element analysis.  Two-dimensional FEA was performed in Abaqus v. 6.14-1 (Simulia). Tooth pla-
nar models were meshed prior to the analyses, using three-node linear triangular elements of type CPE3. The 
optimal number of elements was determined in a convergence test, using the O. megalodon lateral tooth model 
as a reference (Supplementary Fig. S4). Different element sizes were chosen for meshing in order to maintain 
similar numbers of finite elements across models (from 29,323 to 42,922) (Supplementary Table S2).

Tooth models were assigned the elastic, isotropic, and homogeneous material properties of lamniform oste-
odentine, with Young’s modulus of 28.44 GPa67 and Poisson’s ratio of 0.368. Enameloid was not modelled as the 
distribution and thickness of this tissue is virtually unknown for most otodontids69 and osteodentine represents 
the vast majority of the tooth volume in lamniform sharks70. Boundary conditions were applied by constraining 
all nodes within the tooth root in all three degrees of freedom (U1, U2 and UR1). The loose attachment of teeth 
to the dental ligament of shark jaws allows some degree of movement, especially in the labiolingual direction. 
However, the mechanics of these movements are poorly understood and thus difficult to simulate23,24,29. Addi-
tionally, our planar models do not capture the labiolingual axis, which is the main direction of tooth oscillation. 
Thus, we assumed our models to be static in translation and rotation along the apicobasal and mesiodistal axes, 
following previous approaches29.

FEA was performed under two loading scenarios: (1) puncture, simulating a vertical bite force applied to 
the apex of the tooth crown; and (2) unidirectional draw, simulating a horizontal lateral force applied along the 
distal cutting edge of the tooth crown. In the puncture simulation, the force was applied to a single node and 
two sets of analyses were performed. The first one used bite forces taking into account size (see above), provid-
ing an estimate of the different absolute bite forces that each species would have experienced in different tooth 
positions (Supplementary Table S3). A second analysis with scaled force magnitudes was performed to remove 
the effect of size and compare shape differences only. The bite forces were scaled according to model surface 
area (Supplementary Table S3), using the O. megalodon anterior tooth model (49,051 N) as a reference, so as to 
keep the same F/SA ratio and allow shape comparisons32. The draw load was applied to a set of nodes defining 
the mesial edge of the tooth crowns. An arbitrary magnitude of 500 N, following previous works29, was used for 
the O. megalodon anterior tooth model, and this force was scaled in the rest of the models to keep the same F/SA 
ratio and account for shape only. The total draw force magnitude was divided by the number of nodes to which 
the force was applied (Supplementary Table S3).

FEA results were summarised in field outputs including von Mises stress, a commonly used parameter in 
palaeobiology71 which predicts failure under ductile fracture32,72. Areas of the models showing high stress values 
indicate points of structural weakness which are more susceptible to failure. The von Mises stress mesh-weighted 
arithmetic mean (MWAM) was calculated to account for element size differences within non-uniform meshes73 
considering finite elements from both the whole tooth and the tooth crown. Temporal trends in von Mises stress 
MWAM were assessed with Pearson correlation analyses. Correlation between MWAM and species age was 
evaluated accounting for the uncertainty associated to the duration of each taxon. For this purpose, repeated 
correlation analyses (n = 10,000) were performed, where species ages were randomly subsampled within their 
respective chronostratigraphic ranges. Derived correlation coefficients and p-values were displayed as violin 
density plots generated using the package ‘ggplot2’74. All the analyses were performed in in R75 and resulting 
scripts are available at the Open Science platform Figshare (https​://figsh​are.com/s/e2455​48d6f​31b22​6a7b0​).

Data availability
The data set as well as the R syntax used for the analyses presented here are available at the Open Science platform 
Figshare (https​://figsh​are.com/s/e2455​48d6f​31b22​6a7b0​).
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