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Electrical activity plays crucial roles in neural circuit formation and remodeling. During
neocortical development, neurons are generated in the ventricular zone, migrate to their
correct position, elongate dendrites and axons, and form synapses. In this review, we
summarize the functions of ion channels and transporters in neocortical development.
Next, we discuss links between neurological disorders caused by dysfunction of
ion channels (channelopathies) and neocortical development. Finally, we introduce
emerging optical techniques with potential applications in physiological studies of
neocortical development and the pathophysiology of channelopathies.
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INTRODUCTION

Precise formation of neocortical circuits is essential for brain function. The cerebral cortex consists
of six layers. Its laminar structure is formed in an “inside-out” manner; layer 6 is formed first,
followed by formation of upper layers above the lower layers. Neocortical excitatory neurons
are produced from neural progenitor cells in the ventricular zone (VZ). During neurogenesis,
intermediate progenitors are produced from radial glia. Intermediate progenitors then produce or
differentiate into excitatory neurons (Hevner, 2006). The newly born neurons migrate toward the
marginal zone (MZ).

During migration, neurons dynamically change their morphology. Neocortical excitatory
neurons slowly move in the subventricular zone (SVZ) and the intermediate zone (IZ) with
small processes in multiple directions (multipolar migration) (Tabata and Nakajima, 2003). Then,
migrating neurons change their shape at the border between the IZ and the cortical plate (CP) to a
bipolar shape with long leading processes and short trailing processes, and migrate along the radial
axis toward the cortical surface (Nadarajah et al., 2003). Finally, neurons stop migration below the
MZ, and elongate dendrites and axons (Tissir and Goffinet, 2003; Mizuno et al., 2007, 2014). The
molecular mechanisms of neocortical development have been intensely studied (Tessier-Lavigne
and Goodman, 1996; O’Leary and Nakagawa, 2002; Hevner, 2006; Molyneaux et al., 2007; Kawauchi
and Hoshino, 2008; Kawauchi, 2012; Marín, 2012). As well as genetic programs, electrical activity
and Ca2+ signaling are also crucial for these processes (Katz and Shatz, 1996; Spitzer, 2006). Recent
reports showed that dysfunction of ion channels or transporters disrupts neocortical development
by altering electrical properties and Ca2+ signaling and may be linked to neurological disorders

Frontiers in Neuroscience | www.frontiersin.org 1 February 2022 | Volume 16 | Article 827284

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2022.827284
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnins.2022.827284
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2022.827284&domain=pdf&date_stamp=2022-02-14
https://www.frontiersin.org/articles/10.3389/fnins.2022.827284/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-827284 February 8, 2022 Time: 15:52 # 2

Bando et al. Ion Channels in Development and Diseases

(Kullmann, 2010; Schmunk and Gargus, 2013; Guglielmi et al.,
2015; Heyes et al., 2015; Kahle et al., 2016). In this review, we
summarize how ion channels and transporters regulate electrical
properties and Ca2+ signaling during neocortical development,
focusing on excitatory neurons. Next, we discuss possible links
between abnormal electrical signaling caused by dysfunction
of ion channels or transporters and neurological disorders.
Finally, we discuss the potential application of emerging
optical techniques to address remaining issues related to the
physiological mechanisms of neocortical development and the
pathophysiology of channelopathies in vivo.

Electrical Signaling During Neocortical
Development
The roles of electrical signaling in axonal and dendritic growth
and remodeling during late developmental stages have been
intensely studied (Katz and Shatz, 1996; Price et al., 2006).
Further studies revealed that electrical signaling is also crucial
for early cortical development including neuronal proliferation,
differentiation, and migration (Spitzer, 2006). These studies
suggest that temporal regulation of electrical signals is critical for
neocortical development (Figure 1). We discuss the details below.

Neurogenesis, Differentiation, and Cell Fate
Specification
Radial glial cells express various ion channels such as α-amino-
3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and
kainate type glutamate receptor, γ-aminobutyric acid type A
receptor (GABAAR), voltage-gated Ca2+ channels (VGCCs),
P2X receptor, and connexin 26 and 43, but not N-methyl-
D-aspartate (NMDA) type glutamate receptor (LoTurco et al.,
1995; Bittman and LoTurco, 1999). The electrical properties of
neural progenitors are distinct from those of mature neurons
(Liu et al., 2010). Neural progenitors are non-spiking because of
a small voltage-dependent Na+ current. Their resting potential
is about –75 mV, and their input resistance is about 350 M�.
Activation of AMPA and kainate receptor and GABAAR inhibits
DNA synthesis by depolarizing membrane potentials (LoTurco
et al., 1995). Further studies revealed that Ca2+ transients are
required for the transition from G1 to S phase by releasing
adenosine triphosphate (ATP) from progenitor cells through gap
junction/hemichannels resulting in activation of P2X receptors.
This indicates that temporal patterns of Ca2+ signaling are
critical for cell cycle progression and neurogenesis (Weissman
et al., 2004; Liu et al., 2010). A recent study demonstrated
that activation of GABAAR promotes the transition from
apical to basal progenitor cells by elevating of the intracellular
Ca2+ concentration, suggesting that the excitatory action of
GABAergic signals regulates differentiation of neural progenitors
(Tochitani et al., 2021).

Interestingly, electrical activity also affects the cell fate of
cortical excitatory neurons. A gain-of-function mutation of an
L-type VGCC, CACNA1C (Cav1.2) reduces the fraction of Satb2-
positive callosal projection neurons and increases the fraction
of Ctip2-positive corticofugal projection neurons in layer 5
(Paşca et al., 2011). Recently, Vitali et al. (2018) showed that
regulation of the resting potential is important for specification of

upper layer neurons. Neural progenitors are more hyperpolarized
at embryonic day 15 (E15) than at E14, and premature
hyperpolarization of progenitors by expression of an inward
rectifier K+ channel, KCNJ2 (Kir2.1), decreases the fraction
of RORβ-positive layer 4 neurons and increases the fraction
of Brn2-positive layer 2/3 neurons. There remain interesting
questions about how electrical signals regulate transcription
networks and how plastic production of neuronal populations is
during cortical development.

Neuronal Migration
Newly born neurons have a more depolarized resting potential
than neural progenitors (∼ –60 mV), drastically increased input
resistance (∼ 3 G�), and less frequent spontaneous Ca2+

transients in the SVZ and IZ (Figure 1; Bando et al., 2014).
Immature neurons express GABAAR, NMDAR, CACNA1C,
and CACNA1D (Cav1.3). The expression levels of CACNA1C
and CACNA1D are higher in the IZ and CP than in the
VZ (Kamijo et al., 2018; Horigane et al., 2021). In the IZ,
glutamate promotes migration into the CP via NMDAR (Behar
et al., 1999). Around the border between the IZ and subplate
(SP), migrating excitatory neurons show more frequent and
larger Ca2+ transients than neurons in the lower IZ (Figure 1),
because of activation of NMDAR by SP neurons. The increase
of Ca2+ transients promotes the multipolar-to-bipolar transition
of migrating upper layer neurons at E17 and E18 (Ohtaka-
Maruyama et al., 2018; Horigane et al., 2021). During locomotion
in the CP, the frequency of spontaneous Ca2+ transients
decreases, and migrating neurons show more frequent Ca2+

transients after reaching the MZ (Figure 1; Bando et al., 2014,
2016). Suppression of spontaneous activity by blocking GABAAR
results in acceleration of radial migration and invasion of neurons
into the MZ (Behar et al., 2000; Heck et al., 2007; Furukawa
et al., 2014). A tandem pore domain K+ channel, KCNK9
(K2P9.1) promotes migration by suppressing spontaneous Ca2+

transients (Bando et al., 2014). Nakagawa-Tamagawa et al.
(2021) reported that a disease-associated mutation of CACNA1C
causes migration arrest. Furthermore, the strong elevation of
spontaneous activity during early developmental stages in the
neocortex stops neuronal migration, and induces dendritic
branch formation (Bando et al., 2016). These results show that
spontaneous Ca2+ transients should be kept low during radial
migration and that an increase of Ca2+ signaling acts as a stop
signal in cortical excitatory neurons. Electrical signals induce
elevation of intracellular Ca2+, which functions as a second
messenger; it activates multiple Ca2+-dependent enzymes,
followed by activation of downstream signaling cascades, and also
regulates cytoskeletal dynamics and exocytosis. Taken together,
these findings show that properly regulated Ca2+ signaling at
each developmental stage is critical for neocortical formation
(Manent and Represa, 2007; Zheng and Poo, 2007; Uhlén et al.,
2015; Horigane et al., 2019; Medvedeva and Pierani, 2020).

The correlation between the intracellular Ca2+ level and
migration speed differs among cell types. Komuro and Rakic
(1996) and Kumada and Komuro (2004) showed that loss of
spontaneous Ca2+ transients is a stop signal for cerebellar
granule cell migration. Similar to cerebellar granule cells,
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FIGURE 1 | Correlation between electrical activity and neocortical development. (i) Proliferation, (ii) neuronal differentiation, (iii) multipolar migration (iv)
multipolar-to-bipolar transition, (v) radial migration, (vi) termination of migration, (vii) dendrite and axonal elongation, (viii) synapse formation. VZ, ventricular zone, SVZ,
subventricular zone, IZ, intermediate zone, SP, subplate, CP, cortical plate, MZ, marginal zone. The bottom panel shows temporal changes of electrical activity.
Electrical activity is high during neurogenesis, low during migration except in the boundary between the IZ and SP, and is elevated again after neurons reach the MZ.

neocortical inhibitory interneurons stop migration in the
absence of spontaneous Ca2+ transients caused by excitatory-
to-inhibitory switching of GABAergic signaling (Bortone and
Polleux, 2009). Interestingly, migration of neocortical excitatory
neurons is also regulated in a Ca2+-dependent manner, but
with the opposite mechanism as described above. It remains
unclear what underlies the difference in Ca2+-dependency
between migration of cortical excitatory and cortical inhibitory
interneurons/cerebellar granule cells.

Dendrite Formation, Axonal Projection, and Synapse
Formation
Post-migratory neurons become electrically mature; expression
of voltage-gated Na+ channels increases (peak Na+ current: ∼ –
90 pA at P0, and ∼ –800 pA at P4), and neurons start firing
action potentials (Picken Bahrey and Moody, 2003). Their input
resistance is significantly reduced (0.6–1.6 G� at P4). Activity-
dependent formation and remodeling of dendrites, axons, and
synapses have been intensely studied in multiple systems such
as visual, somatosensory, olfactory, and motor systems (Hubel
et al., 1977; Iwasato et al., 1997; Wong and Ghosh, 2002; Hanson
and Landmesser, 2004; Serizawa et al., 2006). Electrical activity is
crucial for projection and arborization of thalamocortical axons
(Antonini and Stryker, 1993; Uesaka et al., 2007; Mire et al.,
2012; Antón-Bolaños et al., 2019). Mire et al. (2012) reported that
temporal patterns of thalamocortical neuron activity are crucial
for axon guidance through regulation of the axon guidance
molecule, Robo1. The activity of thalamocortical axons affects

spatial patterning of dendrites in layer 4 neurons through
activation of NMDAR (Mizuno et al., 2014). This demonstrates
that the cooperative activity of pre- and postsynaptic neurons
shapes the thalamocortical circuit (Yamada et al., 2010; Mizuno
et al., 2014). Excitatory GABA is essential for dendrite formation
in layer 2/3 pyramidal neurons. In layer 2/3 pyramidal neurons,
excitatory-to-inhibitory switching of GABA occurs between
postnatal day 6 (P6) and P14. Premature excitatory-to-inhibitory
switching of GABA by expressing K-Cl co-transporter 2 (KCC2)
suppresses dendritic growth in layer 2/3 pyramidal neurons
(Cancedda et al., 2007). Suppression of neural activity by
expressing KCNJ2 significantly reduces dendritic growth, and
layer-specific projection of callosal axons in cortical layer 2/3
neurons (Cancedda et al., 2007; Mizuno et al., 2007, 2010; Wang
et al., 2007). Expression of a gain-of-function CACNA1C mutant
also disrupts callosal axon projection (Nakagawa-Tamagawa
et al., 2021). These reports suggest that the optimal frequency of
electrical activity is critical for callosal axon projection. A further
study revealed that layer-specific projection of callosal axons
requires postsynaptic activity (Mizuno et al., 2010).

Potential Links Between Dysfunction of
Ion Channels/Transporters and
Neurological Disorders
Dysfunction of ion channels or transporters is associated
with neurological and psychiatric disorders such as epilepsy,
autism spectrum disorder, and schizophrenia (Kullmann, 2010;
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Schmunk and Gargus, 2013; Guglielmi et al., 2015; Heyes
et al., 2015). In some patients and mouse models of
channelopathies, malformations of cortical development
are observed. Ion channels and transporters play crucial roles
in neocortical development; therefore, developmental defects
might underlie the symptoms of channelopathies. We describe
some examples below.

NMDAR is a key ligand-gated ion channel for any
developmental events and plasticity in the nervous system.
Mutations of NMDAR are associated with a wide variety of
neurological and psychiatric disorders such as schizophrenia,
epilepsy, and depression (Kalia et al., 2008; Hardingham and Do,
2016; Adell, 2020).

Tandem pore domain K+ channels suppress neuronal
excitability by hyperpolarizing the resting membrane potential
and reducing membrane resistance. A dominant-negative
mutation of KCNK9 was found in patients with Birk-
Barel syndrome, a maternally transmitted genomic imprinting
disorder characterized by severe intellectual disability, hypotonia,
and dysmorphism in the form of an elongated face (Barel
et al., 2008). Knock-down or functional blockade of KCNK9
by expressing a disease-associated dominant-negative mutant
channel impairs neuronal migration in the developing neocortex
(Bando et al., 2014). Since migration defect is associated with
many neurological and psychiatric disorders (Ross and Walsh,
2001; LoTurco and Bai, 2006; Ben-Ari, 2008), migration defect
might be a candidate of its pathogenesis. Interestingly, another
tandem pore domain K+ channel, KCNK2 (K2P2.1) might be
linked to brain aging. Le Guen et al. (2019) investigated the
genetic influence on sulcal widening in elderly individuals. They
found that the regulatory region of KCNK2 influences sulcal
widening, suggesting a potential link between KCNK2 expression
and brain atrophy (Le Guen et al., 2019).

CACNA1C, a L-type VGCC, is associated with Timothy
syndrome, which is characterized by long QT syndrome in
the heart, autism spectrum disorder, and mild dysmorphism
of the face. Several gain-of-function mutations of CACNA1C
have been found in patients (Heyes et al., 2015). Disease-
associated mutant CACNA1C disrupts neocortical development,
including cell fate specification of cortical projection neurons,
radial migration, dendrite formation/remodeling, and callosal
axon projection (Paşca et al., 2011; Kamijo et al., 2018; Horigane
et al., 2021; Nakagawa-Tamagawa et al., 2021). Downregulation of
CACNA1C is also associated with psychiatric disorders. A loss-
of function mutation and lower expression level of CACNA1C
were found in patients with schizophrenia by genome-wide
screening of disease-associated mutations (Purcell et al., 2014;
Roussos et al., 2014; Heyes et al., 2015). Conditional knockout
of CACNA1C impairs neurite growth in cultured cortical
neurons (Kamijo et al., 2018); therefore, downregulation of
CACNA1C might cause psychotic symptoms by disrupting
neocortical development.

Excitatory-to-inhibitory switching of GABA is mediated by
a change in expression of Cl− transporters. During the early
developmental stage, Na-K-Cl co-transporter 1 (NKCC1), which
transports Cl− into the cell, is highly expressed. In the later
stage, expression of NKCC1 decreases and expression of KCC2,

which transports Cl− out of the cell, is elevated. Excitatory-
to-inhibitory switching of GABA plays important roles in
neocortical development. Excitatory GABA regulates neuronal
production, migration, and dendrite formation (Cancedda et al.,
2007; Heck et al., 2007; Tochitani et al., 2021). Dysfunction of
KCC2 or GABAAR is associated with epilepsy (Kaila et al., 2014;
Kahle et al., 2016; Maljevic et al., 2019; Watanabe et al., 2019).

Similar to Timothy syndrome, mutations of ion channels
associated with cardiac disorders can affect neocortical neural
circuit formation. For example, expression of a gain-of-function
KCNJ2 mutant that causes atrial fibrillation significantly reduces
branching of callosal axons in the upper layers in the contralateral
hemisphere (Mizuno et al., 2007).

In patients with other neurological channelopathies,
malformation of cortical development was observed.
Periventricular nodular heterotopia was observed in some
patients with sleep-related hypermotor epilepsy and point
mutations in the sodium-activated K+ channel KCNT1 (Slack or
KN a1.1) (Rubboli et al., 2018). Polymicrogyria was observed in
patients with drug-resistant epilepsy and mutations in the Ca2+-
activated K+ channel KCNMA1 (BK channel) (Graber et al.,
2021). Periventricular nodular heterotopia and focal cortical
dysplasia were observed in patients with Dravet syndrome and
mutations in the voltage-gated Na+ channel SCN1A (Nav1.1)
(Barba et al., 2014). As discussed above, some neurological
disorders are accompanied by malformation of the cortical gyrus.
Genetically modified ferret and common marmoset are good
experimental models to study the physiological mechanisms
of gyrus formation (Sasaki et al., 2009; Kawasaki et al., 2012;
Shinmyo et al., 2017). Despite intensive efforts in developmental
and clinical studies, the links between developmental defects and
channelopathies remain elusive. Further studies could reveal the
developmental basis of neurological channelopathies.

DISCUSSION

Future Perspectives: Potential
Application of Advanced Optical
Techniques in Developmental
Neuroscience and Pathophysiological
Studies of Neurological Disorders in vivo
To better understand the pathogenetic mechanisms of
neurological channelopathies, it seems essential to investigate
the roles of ion channels in neocortical development in vivo.
Previously, developmental studies of the neocortex have been
performed with fixed tissue and acute or cultured brain slices.
Although these traditional methods are powerful tools to reveal
the mechanisms of electrical activity-dependent neocortical
development, there remain important problems. One of them
is that secreted extracellular signals, including maternal signals,
are washed out in the slice condition. For instance, taurine,
a weak agonist of GABAAR, plays important roles in the
development of the embryonic nervous system (Kilb and
Fukuda, 2017). Taurine is provided to the embryo from the
mother through the placenta because mouse embryos do not
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synthesize taurine (Sturman et al., 1977; Sturman, 1981). Thus,
monitoring neocortical development in the intact brain is the
next step. To achieve this, optical methods seem ideal. Recently,
in vivo two-photon imaging of the neonatal and embryonic
mouse neocortex has been achieved (Mizuno et al., 2014, 2018;
Yuryev et al., 2016; Kawasoe et al., 2020; Hattori et al., 2020).
Voltage imaging is promising to monitor electrical signals in
the developing neocortex in vivo or in utero. Recently, the
performance of genetically encoded voltage indicators (GEVIs)
has been improved (Gong et al., 2015; Kannan et al., 2018;
Adam et al., 2019; Bando et al., 2019a,b; Piatkevich et al., 2019;
Villette et al., 2019; Cornejo et al., 2022). In contrast with
chemical voltage-sensitive dyes (VSDs), GEVIs can be expressed
in a cell-type-specific manner, resulting in an improved signal-
to-noise ratio. Furthermore, long-term monitoring of electrical
signals is possible using GEVIs, but not with patch-clamp
recording and VSDs. Long-term monitoring of electrical activity
would help researchers determine the correlation between
electrical signals and developmental events such as neurogenesis,
migration, and neurite growth. The combination of Ca2+

or voltage imaging and holographic photostimulation is a
powerful tool to show causal links between electrical activity
and developmental events (Carrillo-Reid et al., 2016). Two-
photon multimodal imaging of voltage and Ca2+ in neuronal
populations in vivo was recently reported (Bando et al., 2021).
Application of these techniques could reveal how electrical
signals are transformed into intracellular signals that drive
neocortical circuit formation.

Developmental events occur in three-dimensional tissues.
Thus, volumetric imaging is also important. Recently, fast three-
dimensional imaging techniques were developed using a spatial
light modulator, an acousto-optic lens, and an electrical tunable
lens (Katona et al., 2012; Yang et al., 2016, 2018; Yang and
Yuste, 2017). To image deep in the brain during development,
three-photon imaging and an adaptive optics are also helpful (Ji
et al., 2010; Horton et al., 2013). The combination of advanced
microscopy and emerging optical probes could strongly drive
developmental neuroscience.

Another important issue is how developmental defects cause
neurological disorders. Recent studies showed that the properties
of local neocortical circuits, such as neuronal ensembles (groups
of co-active neurons), are altered in mouse models of psychiatric
and neurological disorders, such as schizophrenia and autism

(Fang and Yuste, 2017; Hamm et al., 2017). Simultaneous
manipulation, and readout of cortical activity during behavior
is promising to further elucidate the causal links between
aberrant cortical activity and symptoms (Carrillo-Reid et al.,
2016, 2019). Application of the recently developed two-photon
mesoscope will help to clarify the alteration of cortex-wide
computation at cellular resolution in animal models of disorders
(Ota et al., 2021).

In summary, developmental studies revealed that dysfunction
of ion channels and transporters disrupts neocortical circuit
formation. Clinical studies reported potential links between
neurological disorders and mutations of ion channels and
transporters. However, the causal links between dysfunction of
the ion channels and transporters, neocortical circuit formation,
and neurological disorders are not understood. Emerging optical
technologies could bridge these biophysical, developmental, and
clinical studies.
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