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In brief

We present COVID-CDR, a web-based

computational platform for in silico

repositioning of drug combinations

against SARS-CoV-2 infection. COVID-

CDR constructs a multi-level interactome

encompassing drug-target, target-

human, and viral-human interactions

overlaid on a human PPI network. By

leveraging this interactome, COVID-CDR

prioritizes potentially synergistic drug

combinations as those whose primary

targets are in close vicinity to SARS-CoV-

2 proteins but holds distinct PPI

footprints. The platform also provides

diverse information on drugs/drug pairs,

offering a multi-evidence solution for

investigating drug combination strategies

against COVID-19.
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THE BIGGER PICTURE Repurposing of existing medications has been the mainstream focus of anti-
COVID-19 drug discovery as it offers rapid and cost-effective solutions for therapeutic development. Repur-
posing a combination of therapeutic options with complementary but varying mechanisms of action re-
mains a challenge. Our ability to identify effective combinations is limited due to the vast number of possible
drug pairs and a lack of convenient tools that can systematically guide the prioritization of a large range of
individual drugs or drug combinations with potential value for the treatment of COVID-19. To address this
resource gap, we developed COVID-CDR, an integrative network pharmacology-based platform for in silico

repositioning of drug combinations. COVID-CDR provides a visual representation of the cellular interac-
tome involved inmodes of action of the chosen drugs and can be used to quantitatively prioritize drug com-
binations with the potential to act synergistically against COVID-19.

Development/Pre-production: Data science output has been
rolled out/validated across multiple domains/problems
SUMMARY
An effective monotherapy to target the complex and multifactorial pathology of SARS-CoV-2 infection poses
a challenge to drug repositioning, which can be improved by combination therapy. We developed an
online network pharmacology-based drug repositioning platform, COVID-CDR (http://vafaeelab.com/
COVID19repositioning.html), that enables a visual and quantitative investigation of the interplay between
the primary drug targets and the SARS-CoV-2-host interactome in the human protein-protein interaction
network. COVID-CDR prioritizes drug combinations with potential to act synergistically through different,
yet potentially complementary, pathways. It provides the options for understanding multi-evidence drug-
pair similarity scores along with several other relevant information on individual drugs or drug pairs. Overall,
COVID-CDR is a first-of-its-kind online platform that provides a systematic approach for pre-clinical in silico
investigation of combination therapies for treating COVID-19 at the fingertips of the clinicians and researchers.
INTRODUCTION

The COVID-19 pandemic caused by the novel coronavirus

SARS-CoV-2 has caused a grave threat to public health and

an unprecedented loss to the global economy. Worldwide scien-
This is an open access article under the CC BY-N
tific attention has been focused on drug repositioning to rapidly

identify interventions for COVID-19 prevention and cure.1 In

addition to time-effective solutions for disease treatment, drug

repositioning provides better value health care by reducing

cost and avoiding risk, as multiple phases of de novo drug
Patterns 2, 100325, September 10, 2021 ª 2021 The Authors. 1
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discovery can be bypassed.2 An effective monotherapy to target

the complex and multi-factorial pathology of SARS-CoV-2 infec-

tion poses a challenge to drug development, which can be

improved by combination therapy.3,4 The increased therapeutic

efficacy due to combination therapy could result in lower-dose

prescribing, reducing the risk of side effects and toxicity haz-

ards. However, due to the large number of possible drug pairs,

our ability to find and verify effective combinations is limited by

this combinatorial explosion.5

Over the last decade, a variety of computational drug-repur-

posing methods have been developed. Some of these have

been applied to search for new therapeutics against COVID-19

(as recently reviewed6), most of which focused on developing

monotherapy strategies. Among these methods, network phar-

macology approaches that quantify the interplay between the

SARS-CoV-2-host interactome and the drug targets in the hu-

man protein-protein interaction (PPI) network have offered

grounds for prioritizing effective repositioning candidates as

both mono- and combination therapies.7–9 However, most of

the former network pharmacology studies focused on prioritizing

and reporting a few individual drugs or drug pairs (Table S8).

There has been a lack of an integrative and accessible platform

enabling the investigation of a large set of repositioning drug

candidates for their putative efficacy and mechanism of action.

To address this resource gap, we developed COVID-CDR

(COVID-19 Combinatorial Drug Repositioning), an integrative

web-based computational platform that prioritizes complemen-

tary and additive drug combinations for SARS-CoV-2 treatment.

COVID-CDR compiles a large set of FDA-approved drugs, inves-

tigational compounds previously used to treat COVID-19 symp-

toms, and drugs in clinical trials for COVID-19 treatment. For a

given drug combination, COVID-CDR constructs a multi-level in-

teractome encompassing drug-target, target-human, and viral-

human interactions overlaid on a comprehensive human PPI

network. By leveraging this network, COVID-CDR prioritizes

drugs with primary host protein targets in close vicinity to

SARS-CoV-2 proteins, highlighting those thatmay have potential

to interfere with viral or host-virus functions. Moreover,

COVID-CDR prioritizes drug combinations with potential to act

synergistically through different, yet potentially complementary,

pathways. This network-based information is complemented by

a diverse drug-drug similarity measurement as well as drug pair

synergy in cell lines to offer a rational multi-level, multi-evidence

solution for investigating drug combination strategies against

COVID-19.

COVID-CDR also includes amultitude of useful drug data, all in

one intuitive platform, including drug structure, drug physico-

chemical properties, therapeutic class, indications, side effects,

induced pathways, and drug-drug interactions, which together

form a unique starting point for in silico COVID-19 combinatorial

drug repositioning. We demonstrate the utility of COVID-CDR for

the combination of LY2275796 and cyclosporine and explain the

mechanism of action of such combination. To the best of our

knowledge, COVID-CDR is the first computational online tool

to integrate COVID-19 drug information in the context of virus

and human interaction networks, which may facilitate a better

understanding of the molecular mechanisms of drug actions

for the identification of potentially effective drug combinations

and can help in prioritizing therapies for COVID-19 worldwide.
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RESULTS

COVID-CDR overview and statistics
Figure 1 shows the COVID-CDR platform content and construc-

tion. Eight hundred sixty-seven drugs with reported evidence in

treating COVID-19 symptoms or under investigation in trials

were pre-compiled (Table S1). Of these drugs, 57% were

approved for an indication, 41% are investigational, and >2%

were veterinary approved, nutraceutical, or withdrawn. These

drugs cover a wide range of therapeutic classes (>200

categories), including antivirals, antibiotics, anticancer, antiin-

flammatory, immunomodulatory, immunosuppressive, and anti-

coagulant agents. Multiple drug-related information sources,

including chemical structure, physiochemical and pharmacolog-

ical properties, side effects, protein targets, associated path-

ways, and drug-drug interactions, were compiled from diverse

resources for each drug (Table 1) and are accessible to explore

from the web interface.

COVID-CDR constructs a multi-dimensional network (Fig-

ure 1A) comprising drug-target interactions (867 drugs, 2,228

protein targets, and 4,866 interactions) and high-confidence

binding associations between SARS-CoV-2 and human proteins

(28 viral proteins, 340 human proteins, and 414 interactions)

overlaid on a comprehensive experimentally validated human

protein-protein interactome (469,515 PPIs). The SARS-CoV-2-

host PPI network was curated from literature19,20 and relevant

interaction databases.21 In addition, we incorporated the

SARS-CoV-1 virus-host PPI network, which can serve as a valu-

able reference due to the close similarity between SARS-CoV-1

and SARS-CoV-2 proteins.22–24 This multi-dimensional interac-

tome (Table S2) has been used to estimate the topological prox-

imity of drug targets to COVID-19-related proteins and quantify

the separation of drug targets on the human protein-protein in-

teractome for network-based exploration of efficacious drug

combinations (Figure 1C, cf. experimental procedures). In

addition to network-based topological metrics, the functional

relevance of drug targets to COVID-related cellular biological

processes was estimated (Figure 1D).

Furthermore, for each drug pair, structural and functional sim-

ilarity measures were estimated (Figure 1B, Table S3). Multiple

studies suggest that synergy is associated with the functional

similarity or dissimilarity of drug pairs.25,26 Distinct drug-drug

similarity matrices were generated based on chemical struc-

tures, target protein sequences, induced pathways, and target

protein functions, i.e., cellular components, biological pro-

cesses, and molecular functions (see experimental procedures).

The size of each matrix is 867 by 867, i.e., 751,689, and values

range from 0 to 1. The individual similarity matrices were then

mean-aggregated to form a combined-score similarity matrix

and Z transformed for significance assessment (Table S3). Over-

all, the network proximity of drug-drug pairs holds negative but

insignificant correlation with structural and functional similarities

(Figure S2).

To provide in-action examples of studies likely to influence

clinical practice, 36 different drug combinations were incorpo-

rated into the platform, involving more than 20 different drugs

in various clinical trials designed for treating COVID-19 from

the ClinicalTrials.gov database (Figure 1E, Table S5). In addition,

150 pairs of COVID-19-related drugs approved by the FDA for
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B Figure 1. Schematic workflow for the con-

tent and construction of COVID-CDR

(A)Multi-dimensional network construction. COVID-

CDR encompasses a comprehensive multi-layer

interactome that is curated based on the known

SARS-CoV-2 protein-human host interactions and

interactions of all drugs and their direct targets,

along with all experimentally validated human pro-

tein-protein interactions.

(B) Drug-drug similarity estimation. A number of

drug-drug similarity measures were calculated to

determine the similarity index of each possible drug

combination (drug chemical structures to estimate

drug pairwise chemical similarity, drug-protein tar-

gets and protein sequences to estimate sequence-

based target similarity, drug-induced pathways and

their constituent genes to estimate pathway-based

similarities, and GO annotations of protein targets

and protein-protein interactions to identify func-

tional similarities).

(C) Network-based complementary exposure

pattern, where the targets of the drugs hit the virus

subnetwork but target separate neighborhoods in

the human interactome.

(D) COVID-19 functional proximity estimation.

Functional proximity is an added measure that cal-

culates the functional similarity of the COVID-19-

related proteins and drug targets.

(E) Curated drug combinations. Users can explore

curated drug combinations, i.e., drug combinations

under investigation in COVID-19 clinical trials or

FDA-approved potential COVID-19 drug combina-

tions. Synergistic scores of specific combinations

can be assessed on various cell lines derived from

high-throughput screening assays.

(F) Comprehensive information on drugs. Multiple

drug-related information sources were compiled

and are accessible to explore from the web inter-

face. Abbreviation: GO, gene ontology.
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other indications were compiled (Table S6). Table 2 provides sta-

tistics and details of external drug combinations included in this

platform.

COVID-CDR also incorporates the high-throughput viability

screening results related to drug combinations assessed on

more than 124 immortalized human cancer cell lines (Figure 1E,

Table S7) assembled by Liu and colleagues.27 While a reduction

in cancer cell proliferation and/or viability may not be associated

with antiviral effects, it indicates that, at least in a different

context/endpoint, the evaluated drugs have shown synergistic

interaction.

Prioritization of individual drugs based on the
topological and functional proximity between known
primary targets and SARS-CoV-2 proteins in the PPI
network
The network-based drug-repositioning prioritization is based on

the notion that for a drug to be efficacious, its target proteins

should be within or in the immediate neighborhood of the corre-

sponding subnetwork of the disease-related proteins in the hu-

man interactome.5,7,28–31 Accordingly, the topological distance

from a drug to SARS-CoV-2 proteins was measured as the

network-based shortest distance from the drug’s primary targets

to SARS-CoV-2-related proteins (i.e., disease module) on a hu-
man PPI network (see experimental procedures). SARS-CoV-

2-related proteins considered in this study include viral proteins,

human proteins interacting with SARS-CoV-2, and virus entry

factors (Table S2). To quantify the significance of the shortest

distance between drug and disease module, drug-disease prox-

imity measures were then converted to Z scores (Z) based on

permutation tests as previously explained,5,7 and the corre-

sponding p values were estimated. For Z < 0 (and the corre-

sponding p < 0.05), the drug-target subnetwork (i.e., drug

module) and the disease module are significantly proximal and

often overlap; while for Z R 0, the drug module and the disease

module are distal and thus separated.5,32 Overall, 543 drugs

topologically overlap with the SARS-CoV-2 module (Z < 0), and

118 of them show significant exposure with the disease module

(Z < 0 and p < 0.05, permutation test, Table S1).

The network-based topological proximity of the drug module

to the disease module measures the immediate vicinity of drug

targets to SARS-CoV-2 proteins on cellular interactome. Howev-

er, it falls short in capturing the effect of the drug’s downstream

changes in biological processes perturbed under the impact of

the SARS-CoV-2 infection. Hence, the topological proximity

was complemented with a measure of drug-disease functional

proximity that quantifies the similarity between biological pro-

cesses significantly enriched (false discovery rate [FDR] < 0.05)
Patterns 2, 100325, September 10, 2021 3



Table 1. Data types, statistics, and details of data sources used to generate COVID-CDR

Data type Statistics Details Data source

Drug identifiers, drug names, and

clinical status

867 drugs, including 487

approved drugs

– DrugBank10,

ClinicalTrials.gov11,

literature

Drug physicochemical properties 16 distinct properties per drug molecular weight, hydrogen bond

acceptors/donors, ring count,

molecular refractivity and polarizability,

CAS number, SMILES, InChI, IUPAC

name, etc.

DrugBank10

Drug pharmacological properties 16 distinct properties per drug description, indication, mechanism

of action, target names, toxicity,

pharmacodynamics, metabolism,

half-life, route of elimination, etc.

DrugBank10

Drug chemical structures 726 structures structure-data file (SDF) format DrugBank10

Drug target-protein sequences 2,393 unique protein sequences FASTA format DrugBank10

Drug-target network 2,228 and 4,866 drug-target pairs composed of drugs and their targets

from human and other organisms

(e.g., SARS-CoV-2, SARS-CoV, etc.)

DrugBank10

Drug-induced pathways 298, 459, 226, 1,530, and 112,

pathways from KEGG,

WikiPathways, BioCarta,

Reactome, and Panther

databases, respectively

based on the overrepresentation

analyses of drug targets with pathway

constituents (hypergeometric test,

p % 0.05)

KEGG12,

WikiPathway13,

BioCarta14,

Reactome15,

and Panther14

Gene ontology terms and

annotations

446 CC, 1,151 MF, and 5,103

BP terms, and a total of 250,734

protein-GO term associations

gene ontology terms across categories

of cellular components (CC), molecular

functions (MF), and biological processes (BP)

EnrichR14

Protein-protein interactions (PPIs) 469,515 PPIs validated and computationally predicted

human PPIs

I2D16

Drug indications and therapeutic

classes

TTD17, DrugBank10

Drug side effects 139,756 drug-side effect

associations

information on marketed medicines and

their recorded adverse drug reactions

SIDER18

Drug-drug interactions 413,898 drug-drug interactions information on potential changes in

the action or side effects of a drug

caused by administration with another drug

DrugBank10
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by a drug module (drug primary targets and their direct interac-

tors in PPI) and the disease module (SARS-CoV-2-related

proteins). The similarity between drug- and disease-associated

biological processes was estimated using a gene ontology-

based semantic similarity measure, which leverages on the

ontology graph structure and information content to estimate

similarities among gene ontology terms.33 Table S4 shows bio-

logical processes enriched by SARS-CoV-2-related proteins

(FDR < 0.05). Drug-disease functional proximities range between

0 and 1 with a mean value of m = 0.29 (Figure S1A). Overall, the

higher the similarity is, the greater the effect of the drug would

be in perturbing disease-related mechanisms. Similarity mea-

sures were standardized to Z scores, and the corresponding

one-tailed p values (i.e., P½X >x�) were estimated; 306 drugs

hold a Z score >m, and among them 82 have p < 0.05 (Table

S3). SARS-CoV-2 functional proximities of drugs are inversely

corelated to the corresponding topological proximities (Pear-

son’s correlation coefficient �0.413) and hold relatively weak

linear relationship (R2 = 0.17), indicating that these twomeasure-

ments are complementary rather than being redundant, justi-

fying the integration (Figure S1B).
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Prioritization of drug combinations based on the
difference in PPI footprint of drugs
For drugs whose known primary targets are topologically and

functionally proximal to SARS-CoV-2-related proteins, combina-

tions can be prioritized based on the separation of drug-target

modules in PPI. It has been previously hypothesized that

different drug-target modules have different network-based

footprints; two drugs are pharmacologically distinct if the foot-

prints of the drug-target modules are topologically separated.5

A drug combination is therefore putatively effective if it follows

a complementary exposure pattern (Figure 1C), indicating that

targets of individual drugs (in a combination) overlap with the

disease module but target separate neighborhoods on the inter-

actome. Accordingly, for each drug pair A and B, a network

separation measure, sAB, was estimated as the mean shortest

distancewithin the interactome between the targets of two drugs

(Equation 3, experimental procedures). For sAB < 0, drug target

subnetworks overlap, while for sAB R 0, they are separated on

the interactome. Hence, complementary exposure implies that

sAB R 0, zA < 0, and zB < 0.

http://ClinicalTrials.gov


Table 2. Details about external drug combinations that are used in the COVID-CDR interface

Data type Statistics Combination type Details Data source

Experimental drug

combinations

6,181 drug-combinations dual combinations only combinations experimented with in

various cell lines in different settings

drugCombDB27

Combinations in

clinical trials

36 drug-combinations dual, triple, and quadruple

combinations

combinations that are related to 867

COVID-19 drugs found in clinical trials

in various phases

ClinicalTrials.gov11

FDA-approved

combinations

150 drug combinations dual, triple, and quadruple

combinations

FDA-approved combinations that are

related to 867 COVID-19 drugs

drugCombDB27
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For FDA-approved drug pairs, median(sAB) = 1.0 and median

(Z scores) = �0.75, and 31% of drug pairs follow the comple-

mentary exposure criteria. Note that these drugs are not meant

to overlap with the SARS-CoV-2 module, as they are approved

for other indications. However, 84% of FDA-approved drug pairs

show distinct PPI footprints, i.e., sAB R 0 (p = 0.0016, Fisher’s

exact test with hypergeometric null distribution). For drug pairs

in COVID-19 clinical trials, median(sAB) = 0.833 and median

(Z scores) = �0.47. Of drug pairs with human and/or SARS-

CoV-2/SARS-CoV-2 primary targets, 25% follow the comple-

mentary exposure criteria and 75% have distinct PPI footprints

(sAB R0) with at least one drug in close proximity to the disease

module (zB < 0 or sAB < 0); p = 0.138 using Fisher’s exact test

with hypergeometric null distribution.

Database access and usage notes
Figure 2 shows the COVID-CDR web interface. The user can

query drug combinations simply by using the search option

and can start with two drugs of choice (Figure 2A). If required,

additional drugs can be added on top of the built network to

explore a combination of three or more drugs. When the drug-

targets network is displayed, each node type is highlighted

with a specific color: pink nodes indicate drugs, blue nodes

are human proteins directly targeted by the drug, while green no-

des are other human host proteins, red nodes indicate SARS-

CoV-2 proteins, and purple nodes indicate other viral proteins.

Users can simply hover on the individual drug to check the infor-

mation related to the drug, such as its therapeutic class, primary

indication, and disease topological and functional proximities.

While being selected, details of a drug and its target information

can be observed by clicking a small brain tab in the top right (Fig-

ure 2B), which displays physiochemical properties of the queried

drug, its chemical structure in an interactive 3D view, and its

pharmacological properties, providing an all-in-one view for

further investigation of the drug of interest. The platform also

provides the flexibility of querying any drug beyond the 867

pre-compiled drugs, by using the customize tab in the top right

(Figure 2B) to upload drug-target interactions into the platform.

The drug will be integrated into the in-screen network and

drug-disease functional and topological proximity measures as

well as drug-pair separation measures will be estimated in

real time.

Upon completion of network rendering, the user can observe

pairwise multi-modal drug similarity information and their

network separation score by interacting with the tab at the bot-

tom of the interface (Figure 2B). The induced subnetwork of

the queried drug(s) in the network view is also interactive and
query-able, and upon selection of an edge, a PubMed query is

made with its incident nodes (e.g., protein-pair or drug-protein),

and the search results of the literature list are displayed as a table

in a modal window. Under the curated combinations tab the user

can also check the network for clinical drug combinations by

clicking the clinical trial tab at top left; these 40 selected bi- or

tri-drug combinations are currently in ongoing clinical trials for

COVID-19 treatment (Figure 2C). In addition, the network-based

action mechanisms of FDA-approved drug combinations can be

explored. The synergism or antagonism of drug combinations

across various cancer cell lines can be viewed as well under

the curated combinations tab (Figure 2C). All these files can be

downloaded from the download tabs at the top front page of

COVID-CDR interface.

Case study: LY2275796 and cyclosporine combination
therapy
We sought to use our platform to identify drug combinations that

may provide effective synergistic therapy in potentially treating

SARS-CoV-2 infection along with displaying well-defined mech-

anism-of-action by the implemented functional and network-

based analyses. The utility of COVID-CDR and its integrated

network-based system medicine approaches is showcased by

the combination of LY2275796 and cyclosporine. Our network

analysis indicates that LY2275796 and cyclosporine synergisti-

cally target a SARS-CoV-2-associated host protein subnetwork

by a ‘‘complementary exposure’’ pattern, offering potential com-

bination regimens for the treatment of SARS-CoV-2 (Figure 3).

The targets of both drugs hit the SARS-CoV-2 host subnetwork

(overlap with the disease module), but the targets separate

neighborhoods in the human interactome network. Briefly, the

negative value of the topological network proximity for both

drugs suggested proximity to the disease module (LY2275796,

Z score = �1.68, p = 0.01; cyclosporine, Z score = �2.24, p =

0.01). Simultaneously, the higher positive value for functional

proximity for both drugs (LY2275796, Z score = 4.42, p =

4.86 3 10�6; cyclosporine, Z score = 2.40, p = 0.008) indicated

significant similarity between the biological processes targeted

by these drugs and the perturbed cellular processes in SARS-

CoV-2 infection, implying potentially high effectiveness of

each drug. Moreover, the two drugs denote a positive separation

score (sAB = 0.46) between the submodules, suggesting no over-

lap between the targets of LY2275796 and cyclosporine and

thus the efficacy of the combination therapy.

All viruses require host protein synthesis machinery for

replication before release and infection of neighboring cells.

Numerous promising antiviral therapies against SARS-CoV-2
Patterns 2, 100325, September 10, 2021 5
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Figure 2. An overview of the COVID-CDR

web interface

(A) The user can query drug combinations simply by

using the search option and can start with two drugs

of choice.

(B) The specific queried drug combination and

drug-targets network gets displayed. Users can

add another drug to the same combination or query

a different drug combination (top left tab). Any drug

beyond those pre-compiled can also be added into

the network by specifying drug-target interactions

via a file upload (customize tab, top right). The solid

lines indicate known/confirmed interactions be-

tween drug and target proteins, whereas dashed

lines indicate predicted interactions based on the

similarity of SARS-CoV-2 to other H-CoVs. A color

code for the nodes is available via the legend icon

on top (pink, drugs; blue, human proteins directly

targeted by the drug; green, other human host

proteins; red, SARS-CoV-2 proteins; and purple,

other viral proteins). Details of drug-target infor-

mation can be assessed by clicking a small brain

tab (top right), which displays detailed information

of the queried drug. The user can observe pairwise

multi-modal drug similarity information and their

network separation score using the tab at the bot-

tom of the graphical user interface.

(C) Under the Curated Combinations tab, the user

can also check the network for COVID-19 clinical

drug combinations by clicking the clinical trial tab at

the top. In addition, the network-based mechanism

of action (PPI footprint) of FDA-approved combi-

nations related to COVID-19 drugs can be explored

(middle). The sensitivities of various cancer cell lines

to the chosen drug combinations can be viewed as

well (bottom).
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are being investigated with the hope to stop the virus from utiliz-

ing the host machinery and thus prevent its replication and

spread. The translation of most of the viral (subgenomic) mRNAs

is believed to be cap dependent, which displays a requirement

for eukaryotic initiation factor 4F (eIF4F), a heterotrimeric com-

plex consisting of eIF4E, the cap-binding protein; eIF4A, an

RNA helicase; and eIF4G, a large scaffolding protein needed

for the recruitment of 40S ribosomes.34 LY2275796 inhibits the

eIF4E complex and its activating kinases, MNK1/2, and is

currently in phase 1 development as the second antisense anti-

cancer drug.35 Inhibition of eIF4A36 or eIF4F,37 the catalytic sub-

units of eIF4F, is shown to lead to apoptosis in selected cancer

models. EIF4E, F, and G proteins are involved in tumor progres-

sion, angiogenesis, andmetastases.38,39 Inhibiting eIF4E inhibits

the Ras-Mnk and PI3-AKT-mTOR pathways, which are key no-

des where the RAS and PI3K pathways come together and con-
6 Patterns 2, 100325, September 10, 2021
trol the production of multiple oncopro-

teins,40,41 which are also important in

SARS-CoV-2 infection.42–44 Targeting this

translational pathway could lead to the

development of new, more effective anti-

viral therapies to fight COVID-19.

In combination with LY2275796, we

added cyclosporine, an effective immuno-
suppressive agent that is often used for prophylaxis of organ

rejection. Cyclosporine is a calcineurin inhibitor that is shown to

inhibit the replication of SARS-CoV, MERS-CoV, and human im-

munodeficiency virus at very low doses.45 From the perspective

of our analyzed network, cyclosporine would inhibit the cyclophi-

lin functions of SARS-CoV-2 by hampering the peptidyl-prolyl

isomerase activity (PPIA) (Figure 3). PPIA is a proinflammatory

protein that stimulates activation of NF-kB and ERK, JNK, and

p38 MAP kinases.46,47 Cyclosporine may also act by indirectly in-

hibiting multiple SARS-CoV-2 proteins (Figure 1).48

Importantly, cyclosporine has demonstrated improved clinical

outcomes of patients with severe H1N1 pneumonia and acute

respiratory failure in SARS-CoV-2 infection by preventing the

production of interleukin-2, an essential cytokine in the cytokine

release storm experienced during coronavirus infection.45,48,49

Cyclosporine may also significantly limit the severity of sepsis



Figure 3. Integrated network visualization generated for a pairwise combination of LY2275796 (cap independent translation inhibitor-glyco-

sides) and cyclosporine (calcineurin inhibitor-immunosuppressant)

The top indicates possible exposure mode of the SARS-CoV-2-associated protein module to the drug cyclosporine. The top left plot shows pathways signifi-

cantly enriched by direct and indirect targets of cyclosporine (i.e., proteins directly interacting with targets on human PPI). The bottom shows the drug-disease

module for LY2275796 and pathways significantly enriched by direct and indirect targets of LY2275796.

ll
OPEN ACCESSDescriptor
and/or inflammation-induced acute lung injury and post-cardiac

arrest in SARS-CoV-2 patients.50 It has been consistently re-

ported to improve lung function via mitochondrial processes,

including PTP inhibition.51 Altogether, our network analyses

and literature evidence suggested that combining LY2275796

and cyclosporine can offer a potential combined therapeutic

approach for SARS-CoV-2.

DISCUSSION

COVID-CDR contribution compared with related studies
While a number of clinical trials are proposed to test the efficacy

of repurposed drugs against COVID-19, prioritization of many

drug candidates has been mostly unstructured.52 Following a

network pharmacology approach that quantitatively analyzes

the vicinity of drug targets to H-CoV proteins on a human PPI

network, Zhou et al.7 predicted specific mono- and combination

therapies as potential treatments for COVID-19. The major limi-

tation of this study is the lack of availability of the SARS-CoV-

2-human interactome at the time, so the predictions were

made based on host proteins associated with other H-CoV spe-

cies. Moreover, the study does not offer an accessible and

generalizable platform to explore other combinations beyond

those few drugs predicted by the study. Gordon et al.19 con-

structed the first human-SARS-CoV-2 protein interaction map

based on affinity purification-mass spectrometry and identified
potential repurposing candidates whose primary targets directly

interact with SARS-CoV-2 proteins. This molecular landscape of

the human-SARS-CoV-2 protein interaction has offered grounds

for various drug-repurposing strategies3,53–55 and a way toward

elucidating the mechanisms of viral infection.56,57 While multiple

in silico studies have now proposed analysis of the virus-host-

drug network to prioritize ‘‘individual’’ drug candidates as poten-

tial COVID-19 monotherapies, only a few studies identified com-

bination therapies with the potential to act synergistically against

SARS-CoV-2 infection (Table S8). In addition, while a GitHub

code is available in some cases, these studies often overlooked

providing an accessible implementation to conduct the network-

based proximity analyses of individual or drug pairs as potential

COVID-19 mono- or combination therapies. Among these,

CoVex57 is the only online platform that enables a visual explora-

tion of the SARS-CoV-2 virus-host-drug interactome for

drug-repositioning prediction. CoVex implements several

network-based algorithms to prioritize repositionable drugs for

COVID-19. The platform, however, is not intuitively applicable

to drug combination prioritization. It lacks in providing an option

for users to start with their own choice of drugs and does not pro-

vide comprehensive drug or drug-pair information.

Overall, to the best of our knowledge, COVID-CDR is the first

computational online platform for in silico combinatorial drug re-

positioning that allows visual and quantitative investigation of

any individual drug for its potential to interfere with viral
Patterns 2, 100325, September 10, 2021 7
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functions, as well as any drug pairs for their potency to act

synergistically against SARS-CoV-2 infection. In addition,

COVID-CDR compiles a wealth of other very useful information

on individual drugs (i.e., drug structure and physicochemical

and pharmacological properties, drug-drug interactions, side

effects, induced pathways) and drug pairs (drug-drug similarity

measures, drug-drug interactions, and cell line viability synergy

scores), all in one place, in a very intuitive way. Together,

COVID-CDR provides an easy and holistic approach to explore

the crucial SARS-CoV-2-human interactome and may provide

added promising targets for therapeutic intervention that can

be tested in pre-clinical studies.

Limitation and future directions
The potentially best-performing drug combinations for treatment

of SARS-CoV-2 are ranked in the COVID-CDRplatform based on

their in silico scores assessed using network computation

methods. The current version of COVID-CDR does not support

context specificity and relies on a general PPI network. This

does not guarantee that the same interaction occurs in vivo in

every cell type, as the proteomes of each cell type differ.

COVID-CDR will be enhanced by incorporating gene expression

profiles of SARS-CoV-2 infection acrossmultiple cell models, or-

ganoids, and human samples into the protein interactome.

Accordingly, the network proximity measures are estimated

based on a subnetwork of the protein interactome that is active

in the context of the interest (as per user’s choice). Furthermore,

the current disease module mainly includes the human proteins

directly interacting with SARS-CoV-2. The COVID-CDR disease

module, however, will be expanded by incorporating cell-line-

specific genome-wide CRISPR screens to include host factors

critical for SARS-CoV-2 infection beyond those directly interact-

ing with the virus. Moreover, the current version of COVID-CDR

does not predict drug combinations and can be mainly used for

querying drug pairs of interest or ranking drug pairs based on the

measure of interest (i.e., network separation, topological or func-

tional proximity). The platform can be enhanced by incorporating

an automated drug pair screening by developing a multi-objec-

tive optimizer to identify a Pareto set of drug pairs whose PPI

fingerprint is separated in PPI, yet both drugs are functionally

and topologically proximal to the SARS-CoV-2 module in any

specific context (cell lines, organoidmodels, or human samples).

COVID-CDR is also not exempt from some common drawbacks

in integrative data analysis tools regarding data availability and

comprehensiveness. For instance, COVID-CDR is limited to spe-

cific organisms (i.e., human, SARS-CoV-2, and partially to

SARS-CoV/SARS-CoV-1), and antivirals with targets in other or-

ganisms (i.e., favipiravir, an antiviral used to manage influenza)

are not integrable into the network. In addition, an important

step in drug discovery is the assessment of the ADME (absorp-

tion, distribution, metabolism, excretion) properties of com-

pounds that can be partially evaluated in silico58 and in vitro.59

Information on possible ADME drug-drug interactions is missing

in the current version of the COVID-CDR. Furthermore, the drug-

target network was built considering only protein targets; hence,

nucleic acid targets were not included. These issues could be

partially mitigated by a more extensive integration of data from

a wider variety of databases. In addition, despite some similar-

ities in epithelial-mesenchymal transitions between cancer cell
8 Patterns 2, 100325, September 10, 2021
lines and the SARS-CoV-2-induced epithelial-mesenchymal

transitions in lung cell lines,60 cancer cell lines may not be the

most appropriate representative for identifying the synergy/

antagonism of drug combinations. More physiologic models,

like primary cell cultures and organoid models, are required to

better understand this process in a way that is decoupled from

the transformed nature of the cancer cell lines.

EXPERIMENTAL PROCEDURES

Full experimental procedures are provided in the supplemental information.

Resource availability

Lead contact

Further information and requests for resources should be directed to the lead

contact, Fatemeh Vafaee (f.vafaee@unsw.edu.au).

Materials availability

No materials were used in this study.

Data and code availability

To ensure the reproducibility of COVID-CDR, we have made the whole code-

base (including any intermediate curation, processing, and the web applica-

tion) freely available for non-commercial uses in GitHub (first release DOI:

https://doi.org/10.5281/zenodo.5089231). The code and interface are well

documented, and the database update is implemented as an HPC-powered

and parallel processing-enabled, semiautomated pipeline to accommodate

anytime system upgradation. The platform is accessible via http://vafaeelab.

com/COVID19_repositioning.html.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

patter.2021.100325.
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