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Abstract: A macroscopic continuum model intended to provide predictions for the remodeling
process occurring in bone tissue is proposed. Specifically, we consider a formulation in which two
characteristic stiffnesses, namely the bulk and shear moduli, evolve independently to adapt the
hydrostatic and deviatoric response of the bone tissue to environmental changes. The formulation
is deliberately simplified, aiming at constituting a preliminary step toward a more comprehensive
modeling approach. The evolutive process for describing the functional adaptation of the two
stiffnesses is proposed based on an energetic argument. Numerical experiments reveal that it is
possible to model the bone remodeling process with a different evolution for more than one material
parameter, as usually done. Moreover, the results motivate further investigations into the subject.

Keywords: bone remodeling; mechanical stimuli; mechano-sensing; strain energy density; hydrostatic
strain; deviatoric strain

1. Introduction

The most important tasks of the skeleton include the protection of internal organs,
supporting the entire body, and acting as the leveraging organ that enables mobility. Its
main component is bone tissue, a type of hard connective tissue. The shaft of the long
bones and the exterior layers of the flat bones constitute the cortical bone that carries the
mechanical loads for the most part. The internal tissue of skeletal bone is called trabecular
bone, and it is much more porous and flexible. Bone adapts to environmental conditions
responding to changes in mechanical and biochemical stimuli. In this paper, we present a
mathematical model whose task is to describe the influence of mechanical loads on bone
remodeling, taking into account the interplay of the biological and mechanical reactions of
tissue at a macroscopic level of description.

Bone continuously adjusts to external mechanical loads, changing its properties
through to the remodeling process. Bone adaptation is based on the sensing of mechanical
loads and the continuous reconstruction of the bone architecture through the formation and
resorption of bone tissue in a process that is influenced by external loads [1]. Mechanotrans-
duction is the action of converting mechanical responses provided by external interactions
into biochemical signals, which may induce the response of bone cells responsible for the
synthesis or resorption of bone tissue. The cells in charge of this process of transducing,
called osteocytes, are identified to be mechano-sensors, which detect mechanical signals
and initiate and control the process of remodeling [2–4]. Osteocytes are regularly embedded
in cavities of the bone matrix in hollow lacunae linked by narrow canals (see Figure 1). They
form a network called the lacuno-canalicular network (OLCN) of processes that allows
them to communicate with each other [5–9].

Biomimetics 2022, 7, 59. https://doi.org/10.3390/biomimetics7020059 https://www.mdpi.com/journal/biomimetics

https://doi.org/10.3390/biomimetics7020059
https://doi.org/10.3390/biomimetics7020059
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomimetics
https://www.mdpi.com
https://orcid.org/0000-0001-8138-199X
https://orcid.org/0000-0003-3041-133X
https://orcid.org/0000-0001-8188-5290
https://orcid.org/0000-0002-0044-9188
https://doi.org/10.3390/biomimetics7020059
https://www.mdpi.com/journal/biomimetics
https://www.mdpi.com/article/10.3390/biomimetics7020059?type=check_update&version=2


Biomimetics 2022, 7, 59 2 of 13

Figure 1. Osteocytes in bone matrix (star-shaped) with the formed OLCN connected to osteoblasts
on the boundary.

Interconnected cells can communicate via gap junctions, which permit the diffusion of
ions, metabolites, and small signaling molecules from cell to cell. Gap junctions are located
in the cell membranes of all bone cells, especially in actor cells, osteocytes, and osteoblasts
and at the tip of osteocyte dendritic processes [2,10].

Mechanosensation of osteocytes includes a few types of loading, above all whole tissue
strain, hydrostatic pressure, and streaming potentials generated by bone fluid flow through
a charged bone matrix [4]. Owing to in vitro experiments, it is known that osteocytes
are much more sensitive to fluid shear stresses than substantial fluid pressure [7]. The
osteocyte is derived from the osteoblast, but osteocytes are much more responsive and more
sensitive to shear stress [11–13]. When bone is under mechanical loading, the deformation
of the bone matrix generates fluid flow in the OLCN, which induces shear stress along
osteocyte membranes [14–16]. Due to the different sensitivity of sensor cells to pressure
and shear stress, it seems more realistic to distinguish these processes in mathematical
modeling. As a matter of fact, the mechanisms involved in the sensing function of the bone
tissue mechanical state are distinct and located in different sites of the osteocytes; therefore,
considering them in the same way is excessively simplistic.

The role of osteocytes is to send a proper signal to activate precursor cells [5], which
will trigger the generation, as required, of actor cells, that is osteoblasts or osteoclasts.
Osteoblasts and osteoclasts are bone cells directly responsible for bone remodeling in the
case of microdamage, replacement of old bone with new bone, and bone adaptation [17–20].
Osteoblasts are adapted to cause bone formation and osteoclasts for bone resorption; it
is hypothesized that they collect different types of biochemical signals, and their activity
depends on the intensity. The entire process related to intercellular communication is not
fully explained and needs ulterior investigations.

There are many theoretical models based on simplified assumptions. The problem of
bone adaptation and remodeling has been considered since Wolff’s observations in 1892
that mathematical laws can describe changes in the architecture of bones [21,22]. Many
mathematical models have been developed [23–29] dependent on various mechanical
stimuli inducing bone adaptation. Among them can be mentioned diverse instances based
on strain energy density [30,31], tissue damage [32–34], daily stress stimulus [35], effective
stress [36], and strain [37]. In this paper, we follow the path of numerical models, where
the assumption is made that bone mass adjusts in response to energy considerations,
in which the loading history and energy transfers can be included [38,39]. The strain
energy density (SED) is used as a control variable enabling defining the shape or bone
density adaptations due to functional requirements [39,40]. A slightly different approach
can be found in papers [40–46], where the classical proportional integral derivative (PID)
control was employed to describe the mass density optimization macroscopically due to
the remodeling process based on the feedback variable SED. Herein, we generalize the
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description of the bone evolution, by including two evolutive laws on the bulk and shear
moduli, in order to focus on the bone remodeling responses arising from hydrostatic and
deviatoric loadings. The main idea behind the paper is to explore the simplified case of
isotropic bone tissue as a preliminary step to move forward with the more realistic case of
anisotropic or orthotropic tissue. In these last cases, we have to deal with many material
parameters; therefore, understanding what occurs in the case of two evolving material
parameters appears crucial in developing a helpful model for accurately describing the
remodeling process.

2. Materials and Methods

In this study, for the sake of simplicity, bone is assumed to be an isotropic elastic mate-
rial. We can formulate Hooke’s law to define the stress tensor σij as a linear combination of
the volumetric and deviatoric strain tensors:

σij = 3K
(

1
3

εkkδij

)
+ 2G

(
εij −

1
3

εkkδij

)
(1)

where K is the bulk modulus and G is the shear modulus. From Equation (1), it is possible
then to recognize the two contributions to the stress, namely the hydrostatic:

σh
ij = 3K

(
1
3

εkkδij

)
(2)

and shear or deviatoric part:

σs
ij = 2G

(
εij −

1
3

εkkδij

)
(3)

This formulation can be generalized by using mechanical micromorphic [47–56],
micropolar [57–60], higher-order [61–70], or peridynamic [71–74] models. As an open-
ing move, the stiffnesses can be evaluated starting with the knowledge of the engineering
parameters, Young’s modulus Y, and Poisson’s ratio ν as follows:

K =
Y

3(1− 2ν)
(4)

G =
Y

2(1 + ν)
(5)

since they are more straightforward to retrieve in the literature. The components of the
strain tensor, in the linear approximation, can be written as:

εij =
1
2
(
ui,j + uj,i

)
(6)

The index after the comma stands for the differentiation with respect to the corresponding
space variable. Based on that, we can find the equations describing the strain energy
density decomposed into a component associated with the hydrostatic part of the load and
deviatoric one:

W = Wh + Wd (7)

We remark that the decomposition of the energy in these two portions is quite convenient
to use in the evolution of the stiffnesses since they are energetically orthogonal. As a matter
of fact, they are devoid of any mutual coupling. For our investigation, we consider a 2D
case, and specifically, the hydrostatic contribution is

Wh =
1
2

K(ε11 + ε22)
2 (8)
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while the deviatoric part is

Wd = G
[

ε2
11 + ε2

22 + 2ε2
12 −

1
2
(ε11 + ε22)

2
]

(9)

We implement this way of representing the strain energy density for the problem of
mechanically loaded bone. The bodies in charge of sensing mechanical loads, i.e., osteocytes,
are assumed to be regularly distributed in the tissue volume. This simplifying hypothesis
can be easily generalized by introducing an inhomogeneous density of osteocytes (see,
e.g., [31]). However, in this work, we refrain from introducing this feature since, locally, we
can safely assume that the change in the number of osteocytes is not quickly variable in the
space. Osteocytes transform a mechanical signal into a biochemical one, which is, in our
simplified model, instantaneously transmitted, and its intensity decays exponentially as
the distance from the osteocytes (the source of the signal) increases [31,75,76]. Therefore,
we consider an influence radius surrounding the osteocytes, i.e., D, and in our example, we
set for it the value 0.1 mm. In the 2D example, we can write the normalized distance from a
sensor cell, thought to be located in X0, to a given material particle in which the actor cells,
namely osteoclasts and osteoblasts, act as:

Es =
‖X− X0‖

D
(10)

The biochemical signal transmitted by osteocytes triggers the activities of the actor cells,
i.e., osteoblasts and osteoclasts, in the process of bone adaptation to mechanical stimulation.
According to the previous partition into hydrostatic and deviatoric parts, we can postulate
the biochemical stimuli to be:

SK(X, t) =
∫

Ω
Wh(X0, t)e−Es(X,X0)dX0 − SK0(X, t) (11)

SG(X, t) =
∫

Ω
Wd(X0, t)e−Es(X,X0)dX0 − SG0(X, t) (12)

The osteocytes are mechanoreceptor, i.e., sensing components that monitor and respond
to mechanical changes in the environment. In particular, we assume that osteocytes
transmit a biochemical signal that is proportional to the elemental strain energy of the
volume particle in which they are located. When formulating the evolutionary equations,
we link the change in material parameters K and G occurring in time with the signal
transmitted to a given elementary volume of the material. The two quantities SK0 and SG0
represent the optimal functioning conditions from a mechanical viewpoint of the bone
tissue. They define homeostasis, which is the state of steady internal, mechanical conditions
that should be maintained by the living system, i.e., bone tissue, to guarantee its correct
functionality. In other words, homeostasis is determined by a natural resistance to change
when the biological system is already in the optimal condition. The primary purpose of the
bone tissue is of a mechanical nature, and it is well known that the strength of materials
is differently affected by hydrostatic and deviatoric deformations or stress. One could
specifically think of the von Mises yield criterion based on maximum distortion energy
attainable in the material, namely the maximal deviatoric part of the deformation/stress.
This simple observation leads us to think that, in principle, these two quantities SK0 and SG0
are, in fact, different. Moreover, thinking about this functional aspect, it is no coincidence
that the deviatoric part, related to SG0, has a predominant role.

In this formulation, since the density of osteocytes is assumed to be uniformly dis-
tributed over the considered domain, we do not introduce a function representing the
number of sensor cells per unit volume as a multiplicative factor to the energy density



Biomimetics 2022, 7, 59 5 of 13

for the sake of simplicity, as done in [31] instead. In detail, the evolution laws for the two
stiffnesses are assumed to be:

∂K(SK, t)
∂t

= AK(SK)H
(

K
KMax

)
(13)

∂G(SG, t)
∂t

= AG(SG)H
(

G
GMax

)
(14)

where the functions AK and AG are piecewise linear functions of the stimuli (11) and (12)
as specified below:

AK(SK) =

{
rsK SK for SK > 0
rrK SK for SK < 0

(15)

and

AG(SG) =

{
rsG SG for SG > 0
rrG SG for SG < 0

(16)

The function H(x) is a weight for numerical calculation that prevents the complete vanish-
ing, as well as unlimited growth of parameters K and G and is considered to be:

H(x) = 4x(1− x) (17)

in the interval [0, 1], while it is set to zero outside. The limit coefficients KMax and GMax
represent the maximum values attainable for K and G, respectively.

When the signal is within a certain range, even in the presence of a stimulus beyond
the threshold, there is no actor cell activity [31] (see Figure 2). Ratios rsK, rrK, rsG, and rrG
are determined experimentally and are regulating factors. Ratio rsK scales the function SK
when it is greater than or equal to 0; ratio rrK scales the function SK when it is smaller than
0, similar in the case of rsG, which scales the function SG when it is greater than or equal to
0; ratio rrK scales the function SK when it is smaller than 0. The bone remodeling process
depends on mechanical stimulus intensity: when it is too low, bone is reabsorbed; when it
is too high, it causes damage, but there are also optimal zones where the bone is adapting
its properties to external mechanical conditions [30,40].

Figure 2. Effect of the load on stimulus. Low mechanical loading results in bone resorption: it is
the resorption stimulus zone; subsequently, in the lazy zone (black dotted line), there is no change
in bone; with a sufficiently high load, the formation of the stimulus zone occurs in a certain range
highlighted with red dotted lines.

In line with the assumption that strain energy is divided into the hydrostatic and devi-
atoric parts, in what follows, we can observe the impact that different kinds of mechanical
loading have on bone remodeling through several numerical simulations.
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3. Results

The numerical computations were performed on a 2D isotropic material with the initial
values presented in Table 1. By following the schema of the process shown in Figure 3,
an FE algorithm was written in Comsol Multiphysics in order to test and support the
hypotheses behind our model, showcasing some plausible responses that can be compared
at least preliminarily and qualitatively with real-life evolutions.

Table 1. Parameters used in the numerical simulations.

Parameter Value

Y0 18 GPa
ν0 0.3
D 0.1 mm

KMax 30 GPa
GMax 13.84 GPa
SK0 0.001 N
SG0 0.001 N
rsK 1× 107 m−3s−1

rrK 1× 109 m−3s−1

rsG 1× 103 m−3s−1

rrG 1× 109 m−3s−1

Figure 3. Flow chart of processes.

To illustrate the main feature of the proposed model, we simulated the evolution of
several representative cases: two examples in which the external loads activate a pure hy-
drostatic and pure shear deformation, then a third case, where the two kinds of deformation
are simultaneously present.

At first, we implemented the pure hydrostatic case, where a semicircular piece of bone,
attached to the ground to avoid any rigid motion, but free to deform, was subjected to a
distributed force perpendicular to its circular boundary (see Figure 4a).

Figure 4. Schematics for the considered pure hydrostatic and pure deviatoric cases.

In particular, the maximum diameter is linked to the ground with a perfect constraint
in the vertical direction and with a weak elastic potential in the other direction to prevent
rigid motion horizontally and allow deformation in that direction. Figure 5 clearly exhibits
the orthogonal feature of the two energy contributions. As a matter of fact, due to the
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circular symmetry of the external load, also the deformation keeps this symmetry. As a
consequence, no deformation involving a change of shape is activated.

Figure 5. Deformed shape for the pure hydrostatic case (plots were obtained with a scale factor of 20).

As we expected, the parameter K, during the evolution subject to such a mechanical
load, denoted by q0, increased due to a sufficiently high level of external action, which, in
turn, produced a positive stimulus for this parameter. On the contrary, since the energy
contribution of the deviatoric part is null, the related stimulus was negative, and therefore,
the shear modulus started to fade (see Figure 6).

(a) Evolution of the bulk and shear moduli, expressed in Pa.

(b) Evolution of the bulk and shear stimulus, expressed in N.

Figure 6. Evolution of moduli and stimuli in time for the purely hydrostatic case.
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Subsequently, we simulated the pure shear strain example (see Figure 4b). In this case,
the external actions were conceived of to impose a deformation with a change of shape, but
not of the area (see Figure 7). In contrast with the previous case, now, the two parameters G
and K exchanged their role (see Figure 8). Indeed, K decreased because the related stimulus
became negative (no hydrostatic energy was activated), while G increased for the external
action, denoted by q0, producing a positive stimulus.

Naturally, the evolution of K and G depends on the ratios rsK, rrK, rsG, and rrG, which
are to be determined by comparison with experimental tests on living bone tissues.

Figure 7. Deformed shape for the pure deviatoric case (plots were obtained with a scale factor of 20).

(a) Evolution of the bulk and shear moduli, expressed in Pa.

(b) Evolution of the bulk and shear stimulus, expressed in N.

Figure 8. Evolution of moduli and stimuli in time for the purely deviatoric case.

Finally, we performed one simulation with a tensile test (see Figure 9). In this last
example, both contributions of the energy were activated (see Figure 10). Here, both stimuli
turned out to be positive, and hence, both stiffness parameters increased (see Figure 11).
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Figure 9. Schematic for the tensile test under a uniform load q0.

Figure 10. Deformed shape for the tensile test (plots were obtained with a scale factor of 5).

(a) Evolution of the bulk and shear moduli, expressed in Pa.

(b) Evolution of the bulk and shear stimulus, expressed in N.

Figure 11. Evolution of moduli and stimuli in time for the tensile test.
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The two kinds of deformations are almost always present in real applications, but
their effects are expected to produce different outcomes. Indeed, due to the diverse nature
of the material parameters involved in the evolution, one could associate their changes
with various aspects. For instance, the modification in the apparent mass density is directly
linked with the bulk stiffness K since a change in the porosity has a relevant effect on the
hydrostatic response of the bone tissue (see, for a similar line of reasoning, the Appendix
of [77]). On the other hand, the shear stiffness G is more responsible for the mechanical
capability of the bone tissue to resist distortion deformations; therefore, a change in it will
result in a different strength of the tissue associated with this type of deformation.

4. Conclusions

The main goal of this article was to develop a mathematical model that adequately
describes the influence of hydrostatic and deviatoric loads on bone adaptation. The pre-
sented numerical simulations confirmed that the formulated mathematical description
makes it possible to determine changes in bone stiffnesses, taking into account the nature
of the different mechanical stimuli. It is well known that the influence of the deviatoric
part is much more significant than the influence of the hydrostatic part on the magnitude
of the transmitted signal and its impact on the actual bone transformation. The proposed
model is able to capture this feature quite easily by changing independently a few material
parameters that are responsible for the evolution of the mechanical stiffnesses, namely the
ratios of the changing of the two parameters considered. This is in line with the knowledge
to date regarding the function of osteocytes, which are most sensitive to flow shear loads
and less to pure compression.

In future works, we plan to generalize the proposed approach to the case of orthotropic
materials by introducing suitable stimuli for the evolution of each stiffnesses of the ma-
terial. Indeed, the orthotropic hypothesis is more accurate in describing the mechanical
behavior of a larger class of bone tissues [78,79]. However, in this work, we simplified the
formulation because we believe that, especially when complex systems are to be studied, a
practical approach is to explore different aspects involved in the phenomenon separately to
understand their nature and develop an accurate model putting together all the insights
obtained in the intermediate steps.
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