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Abstract
COVID-19 was caused by a novel coronavirus known as SARS-CoV-2. The COVID-19 disease outbreak has been avowed 
as a global pandemic by the World Health Organization at the end of March 2020. It leads to the global economic crash, 
resulting in the starvation of a large population belonging to economically backward countries. Hence, the development of 
an alternative medicine along with the vaccine is of the utmost importance for the management of COVID-19. Therefore, 
screening of several herbal leads was performed to explore their potential against SARS-CoV-2. Furthermore, viral main 
protease was selected as a key enzyme for performing the study. Various computational approaches, including molecular 
docking simulation, were used in the current study to find potential inhibitors of viral main protease from a library of 150 
herbal leads. Toxicity and ADME prediction of selected molecules were also analysed by Osiris molecular property explorer 
software. Molecular dynamic simulation of the top 10 docked herbal leads was analysed for stability using 100 ns. Taraxerol 
(−10.17 kcal/mol), diosgenin (10.12 kcal/mol), amyrin (−9.56 kcal/mol), and asiaticoside (−9.54 kcal/mol) were among 
the top four herbal leads with the highest binding affinity with the main protease enzyme. Thus, taraxerol was found to be 
an effective drug candidate against the main protease enzyme for the management of COVID-19. Furthermore, its clinical 
effect and safety profile need to be established through an in vivo model.
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Introduction

The coronavirus disease (COVID-19) outbreak was caused 
by SARS-CoV-2 and spread from Wuhan, China, at the end 
of December 2019 [1, 2]. COVID-19 was thought to have 
emerged from a seafood market from an unknown species, 
causing the virus’s emergence and symptoms to be compa-
rable with pneumonia [1]. The confirmation of human-to-
human transmission of this contagious virus was made by 
the National Health Commission of China in late January 
2020. As SARS-CoV-2 began to spread across international 

borders, affecting the populations of multiple countries, the 
WHO designated it as an internationally concerning pub-
lic health emergency and declared it a global pandemic in 
March 2020 [3].

Based on the sequence resemblance of the SARS-CoV-2 
nucleotide, it is considered a betacoronavirus, having a high 
similarity to well-known and aggressive strains of human 
coronaviruses (HCOVs). The nuclear material of SARS-
CoV-2 was found to be a long positive-sense single-stranded 
RNA encoding two discrete types of structural as well as 
non-structural viral proteins [1, 2]. The 5′-untranslated 
region (5′UTR) and a replicase complex encode for viral 
structural proteins like spike, nucleocapsid, matrix, and 
envelope, while the 3′UTR and several unidentified open 
reading frames encode for viral non-structural proteins like 
protease, phosphatase, and polymerases [1, 2].

COVID-19 has initial symptoms of cough, malaise, 
fatigue, fever, body ache, loss of smell or taste sensation, 
inadequacy, and shortness of breath followed by respira-
tory distress [4]. Persistent viral infection affects not only 
the lungs but also other key organs of the body, eventually 
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leading to organ failure [5–7]. Coronavirus transmits from 
person to person through coughing and sneezing, which 
spreads through the nasal mucosa via airborne droplets, 
where it replicates narrowly in ciliated epithelial cells, caus-
ing cell damage and inflammation. The transmission of this 
virus was also observed from infected surfaces to an indi-
vidual’s hands and then to their bodies [8].

Globally, more than 216 countries have been affected by 
the pandemic outbreak of COVID-19 until December 31, 
2021. More than 287,022,026 confirmed cases of corona-
virus-affected people have been reported, with more than 
5,447,886 deaths. According to the WHO, China is the first 
country to report 102,083 confirmed cases of COVID-19 
with 4636 mortalities. In addition, new cases of COVID-19 
are being reported day by day, in the USA, with more than 
55 million confirmed cases and 845,745 deaths, followed by 
India with more than 34 million confirmed cases and Brazil 
with more than 22 million confirmed cases [9]. Even after 
18 months of the outbreak of the novel SARS-CoV-2, there 
is still no approved therapy or vaccine available for the cure 
of this lethal infectious disease. In light of the foregoing, it 
is critical to design a novel remedy to combat this worldwide 
epidemic crisis.

The role of viral main protease enzyme has been iden-
tified in causing infection. It plays an important role in 
pathogenic entry into the host via ACE2 and could be used 
as a therapeutic antiviral drug target. Inhibiting the viral 
main protease restricts the pathogen’s entry into the host 
cell and terminates the viral infection [4, 10]. As a result, 
an inhibitor of the main protease is considered to be a 
successful treatment approach for COVID-19 pandemics 
all over the world. The proven methodology for in silico 

screening of herbal leads to identify modest inhibitors of 
the viral main protease enzyme is depicted graphically in 
Fig. 1.

Herbal medicine is a holistic medicine, having being used 
for the management of several health problems for thousands 
of years. Herbal medicine inspired several drugs, such as 
artemisinin, paclitaxel, reserpine, morphine, quinine, eme-
tine, aspirin, and many more, which have been discovered 
for the treatment of numerous diseases [11]. Most of the 
world’s population relies on herbal medicine as an alter-
native and complementary medicine for the management 
of diseases like COVID-19. In this context, several herbal 
medicines and their bioactive leads including Camellia sin-
ensis (epigallocatechin gallate), Andrographis paniculata 
(andrographolide), Artemisia annua (artemisinin), Betula 
sp. (betulinic acid), Citrus sp. (hesperidin), Curcuma longa 
(curcumin), Ficus benjamina (biorobin), Glycyrrhiza glabra 
(glycyrrhizin), Mollugo cerviana (vitexin), Myristica fra-
grans (myricitrin), Piper nigrum (piperine), Radix sopho-
rae (matrine), Stephania tetrandra (tetrandrine), Tinospora 
cordifolia (berberine), Torreya nucifera (luteolin), etc. have 
been explored through computational approaches for the 
treatment of COVID-19 [12–32]. Hence, it inspires us to 
find such herbal leads through an in silico computational 
approach for the management of the current pandemic situ-
ation. Thus, in the current investigation, putative antago-
nists of the main protease enzyme of the SARS-CoV-2 were 
acknowledged using docking-based computational screen-
ing of herbal ligands. Moreover, in order to develop novel 
therapy to combat COVID-19, validation of herbal leads 
with respect to time by using molecular dynamics (MD) 
simulation was done.

Fig. 1   An in silico approach 
for screening herbal leads for 
potential inhibitors of the viral 
main protease enzyme in order 
to discover new antiviral thera-
pies against SARS-CoV-2
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Material and methods

Preparation of compound library

A molecular ligand library was prepared by considering 
the diverse compounds already reported for their antiviral 
properties [33–38]. The already reported antiviral com-
pounds were used to prepare a ligand library in the cur-
rent study with the intention of validating their effectivity 
against the SARS-CoV-2 as well as establishing the prob-
able mechanism of action of those compounds which are 
supposed to be interacting with the main protease enzyme 
for their antiviral effect against SARS-CoV-2.

Molecular docking simulation‑based virtual screening

The main protease enzyme of the SARS-CoV-2 complex 
with an antagonist N3 was procured from the protein 
databank (PDBID: 6lu7) [10, 39, 40]. The parted mac-
romolecular model was set for docking by amputation 
of superfluous water molecules and the addition of polar 
hydrogens, while the reference ligand N3 was prepared by 
assigning rotatable, non-rotatable, and un-rotatable bonds 
[41, 42]. The interacting residues of the viral enzyme with 
the complex inhibitor were evaluated by using PyMol soft-
ware to confirm the macromolecular active site and pre-
pare a grid box [42, 43]. The prepared grid box was further 
utilised by the Autogrid module to evaluate the chemical 
configuration of the macromolecule as well as the ligand 
to create maps for various atoms, necessary to accomplish 
docking simulation [41, 42].

The confirmational search by Autodock for the exe-
cution of the docking process was performed by the 
Lamarckian Genetic Algorithm (LGA). The force-field 
calculates the ligand’s binding energy by integrating intra-
molecular energies and assessing energetics for bound and 
unbound states using a comprehensive thermodynamic 
model. Each ligand molecule’s docking parameters is 
stored in the docking parameter file (DPF) [44, 45].

For validation purposes, the reference ligand N3 was 
docked against the macromolecular target. Validation of 
the grid parameters as well as protocols used in the cur-
rent docking procedure was performed by considering the 
chemical interactions as well as the conformation of the 
docked ligand N3 with respect to its crystallised bioactive 
conformation.

Validated docking protocols were further utilised for 
computational screening of a ligand library consisting of 
150 diverse herbal ligands against the viral main protease. 
Virtual screening of herbal ligands was performed with the 
intent of identifying prospective lead compounds targeting 
the viral main protease enzyme [42].

The interactions of the ligands against the macromolecu-
lar residues were taken into account while evaluating the 
docking outcomes for all ligands screened against the viral 
main protease enzyme. The compounds with the minimum 
binding energy were selected as the lead molecules based 
upon the predefined empirical range for the obtained binding 
energy of −5 to −15 kcal/mol [46–50].

Prediction of pharmacokinetics and toxicological 
properties

Evaluation of physicochemical, pharmacokinetics, and toxi-
cological parameters of the lead molecules obtained after the 
docking-based screening were predicted by using the pkCSM-
pharmacokinetics server. The online server screens the ligand 
molecule for smooth kinetics within the body required for its 
physiological expression without toxicity [51].

Lead molecules had their molecular weight (MW), par-
tition coefficient (LogP), hydrogen bond acceptor/donor 
(HBA/HBD), rotatable bonds count, topological polar sur-
face area (TPSA), and solubility (LogS) calculated. These 
parameters regulate the ADMET of the lead candidates. 
The permeability across the blood–brain barrier (BBB), 
gastrointestinal absorption, and the inhibitory potential of 
the cytochrome P450 isoenzymes were also considered for 
the leads to determine their druggability. These parameters 
were standardised with the Veber’s rule, the Lipinski’s rules 
of 5, and druggability [52, 53].

Molecular dynamic simulation

Amyrin, diosgenin, and taraxerol were further selected as 
potential leads of the viral main protease for further simula-
tion to study the stability of their macromolecular complex 
with respect to time based on their docking score, observed 
chemical interactions against the target receptor, pharma-
cokinetic evaluation, as well as toxicity profiling. MD sim-
ulation for a shorter duration of timeframe, lasting 10 ns, 
was performed initially for all the three shortlisted lead 
molecules. Based on the results obtained for the 10-ns MD 
simulation, taraxerol was selected to further magnify the 
MD simulation for a longer time period of 100 ns.

The protein–ligand macromolecular complex was simu-
lated for 100 ns by using Schrodinger’s Desmond module at a 
constant temperature of 300 K [54, 55]. MD simulations were 
performed by solvating the macromolecular complex in an 
explicit water box of size 10 and modelling the protein–ligand 
macromolecular complex using the OPLS3e force field 
[56–58]. Previously, promising and repeatable results were 
reported using the OPLS3e force field and the SPC water 
model for the protein targets complexed with the organic 
ligands [59]. By introducing the ions and subsequently 
minimising their energy, the macromolecular complex 
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was neutralised. The Nose–Hoover thermostatic algorithm 
[60] was used to keep the energy-minimised macromo-
lecular complex at 300 K, while the Martina–Tobias–Klein 
approach was used to keep the pressure constant throughout 
the simulations [61]. The long-range electrostatic interactions 
between the ligand and the macromolecule were calculated 
using the particle mesh Ewald (PME) [62] technique with 0.8 
grid spacing and a cutoff radius of 9.0 for Coulomb interac-
tions after the NPT-ensemble MD simulation was performed 
for 100 ns. The simulation interaction diagram tool in the 
Desmond was used to examine the ligand’s precise binding 
interactions with the macromolecular main protease [54, 55].

The root mean square deviation (RMSD) of the atoms of 
both receptors and the complexed ligand were calculated 
by comparing their reference frame to determine atomic 
displacement for a certain timeframe during the compl-
exation process. During the simulation phase, the macro-
molecular residues’ root mean square fluctuation (RMSF) 
was calculated in reference to their initial condition in the 
crystalline structure. Throughout the simulation technique, 
the residue index was used to plot the distribution of mac-
romolecular secondary structural elements (SSE) such as 
α-helices and β-strands. The binding interactions of the 
ligand within the macromolecular site were separated into 
four groups throughout the simulation procedure: hydrogen 
bonds, hydrophobic interactions, ionic interactions, and 
water interaction bridges. The radius of gyration (rGyR), 
molecular surface area (MolSA), solvent accessible surface 
area (SASA), and polar surface area of the ligands were all 
measured (PSA) [63–65]. In comparison to its initial frame, 
the RMSD value of the ligand molecule was determined 
throughout the whole simulation duration. The PSA was 
determined by taking into consideration the total contribu-
tion of oxygen and nitrogen atoms, whereas the ligand’s 
extended length, which correlates to its main moment of 
inertia, was computed using a 1.4 probe radius.

Results

Molecular docking simulation‑based virtual 
screening

A three-dimensional structural model of the viral macro-
molecule with a resolution of 2.16 was obtained using the 
X-ray diffraction technique. Viral protein is made up of a 
single chain of 306 amino acid residues. Complex ligand 
N3 comprises 26 rotatable bonds and 9 aromatic carbons, 
making it a complex inhibitor. In the current computational 
investigation, all bonds of the inhibitor molecule were kept 
flexible, and it was also stored in the AutoDock software’s 
pdbqt format.

The ligand N3 and active binding residues of the viral main 
protease were wrapped together to prepare a three-dimensional 
grid box. The exact grid coordinates were obtained from our 
previously published study on the same protein [46–50, 63, 
66]. The docking results for the complex inhibitor N3 against 
viral macromolecular targets are tabulated in Table 1.

The lead molecules were chosen based on their affinity for 
the viral main protease enzyme. The lowest binding energy 
obtained for preeminent pose for each ligand and their bind-
ing interactions with the macromolecule were used to deter-
mine the binding affinity of the leads. Table 2 shows the 
binding energy acquired from docking-based virtual screen-
ing of the top 10 shortlisted herbal leads. The interacting 
residues were explored by analysing the binding site of the 
target macromolecule with the help of Discovery Studio 
visualizer software with the intent of identifying the impor-
tant amino acid residues of the viral main protease enzyme.

Prediction of pharmacokinetics and toxicological 
properties

The movement of drugs within the human body is regulated 
by physicochemical and pharmacokinetic parameters. These 
regulatory parameters are crucial for the pharmacological 
expression via pharmacodynamics as well as toxicological 
properties of a drug molecule. The pkCSM webserver was 
used for prediction of physicochemical, pharmacokinetic, 
as well as toxicological parameters of the lead molecules 
[51]. The physicochemical, pharmacokinetics, and pharma-
codynamics properties of the selected lead molecules are 
tabulated in Table 3.

Taraxerol has all the parameters well within the pre-
defined range according to Lipinski’s rule of five, i.e., 
MW < 500, < 10 HBA, < 5 HBD, TPSA 20–130 Å2, except 
LogP value, which exceeds the limit of 5.0. The demon-
strated physicochemical properties suggest that taraxerol has 
optimised pharmacokinetics for drug-like candidature [51]. 
Taraxerol has not displayed a substrate-like expression for 
P-glycoprotein, which acts as a biological barrier for xeno-
biotics and exogenous toxins.

Taraxerol has not shown substrate-like expression for 
most of the cytochrome P450 isoenzymes, except for the 
metabolic CYP3A4. The ligand consistently exhibits a high 
proclivity for excretion from biological systems and low 
expression across a variety of toxicity pathways such as 

Table 1   Docking results of ligand N3 against the viral main protease 
enzyme

Macromolecule RMSD (Å) Binding energy (kcal/
mol)

Ki (nM)

6lu7 0.88 −8.22 935.62

1520 Structural Chemistry (2022) 33:1517–1528
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Table 2   Binding energy of short-listed herbal leads for the viral main protease enzyme

S. 
No.

Name Structure Binding 
Energy

Interacting Residues

1 Taraxerol

H

H

O
H

H

-10.17 Cys145, Pro168, Arg188, 

Leu167, Met165, His163

2 Diosgenin O

OHO

-10.12 Asp187, Met165, His41, 

Met49, Cys145, His163, 

His172, Leu141

3 Amyrin

HO

-9.56 Asp187, Tyr54, Met49 

His41, Cys145, Met165

4 Asiaticoside

OH
OH

OH
O

OO
O

O

HO

O

O
HO

HO
OH

HO
OH

HO
OH

OH

-9.54 Glu166, Gly143, Thr26, 

His41, Met49

5 Momordicin

HO

OH

OH

O

-9.51 Met49, Met165His41, 

Cys145, Thr26

6 Hecogenin

O

O

OH

O

-9.42 Thr24, Thr25, Leu27, 

His41, Glu166, Cys145

7 Guggulsterone

O

O

H

H

H

-9.23 His163, Ser144, Cys145, 

Thr26, Met49, His41

8 Andrographolide

OO

OH
HO

HO

-8.61 Tyr54, His41, Met49, 

Phe140, Glu166, His163, 

Cys145, Met165

9 Pelargonidin

O+

OH

OH
OH

HO

-8.49 His164, Glu166, Thr190, 

Pro168, Met165, His41, 

Asp187

10 Lupeol

OH

-8.48 Cys145, His163, His172, 

Pro168
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AMES, hERG I inhibition, hepatotoxicity, skin sensitiza-
tion, Tetrahymena pyriformis toxicity, and minnow toxicity. 
Cumulatively, the predicted physicochemical, pharmacoki-
netics, pharmacodynamics, and toxicological parameters 
for taraxerol fall well within the predefined range, clearly 
indicating its promising potential as a druggable candidate 
[51–53].

Molecular dynamic simulation

The MD simulation of the viral main protease enzyme for 
a shorter timeframe of 10 ns found taraxerol to be the most 
stabilised inhibitor molecule complex in the active cavity of 
the viral main protease enzyme. The putative herbal inhibi-
tor compound taraxerol was further validated by using the 
Schrodinger’s Desmond module to run a 100-ns MD simula-
tion. There are 306 residues in the macromolecular receptor, 
but the ligand atom contains only one rotatable bond and 30 
heavy atoms out of a total of 78. Based on structural valida-
tion throughout the operation, the RMSD analysis supports 
the smooth execution of the equilibrated simulation process. 
The ligand RMSD demonstrates the ligand’s stability in 
relation to the macromolecular binding residues during the 
simulation procedure by aligning their heavy metals.

The RMSD value for the macromolecular residues 
was found to be well within the 2.8 Å range, indicating 
that the majority of the residues do not shift from their 
starting position during ligand molecule complexation. 
The ligand molecule’s RMSD value has been maintained 
well between 6 and 7.5 Å throughout the simulation run, 
despite some early swings of up to 9.0 Å during ligand 
adjustment within the macromolecular binding cavity, 
indicating the ligand’s adjustment within the macro-
molecular cavity during the initial 20 ns of the simula-
tion, followed by achieving its stable conformation for 
the remaining 80-ns duration of the simulation process. 
The ligand taraxerol undergoes a sequence of vibrations 
after reaching the active binding site of the viral main 
protease to achieve the most stable confirmation inside 
the active binding site. As a result, the early oscillations 
in the ligand’s RMSD value during 3–10 ns are caused 
by these continuing vibrations while performing certain 
manoeuvres to achieve the most stable confirmation inside 
the active binding site of the viral main protease enzyme. 
Figure 2 shows the RMSD of the protein and ligand over 
the 100-ns period of the MD simulation. The RMSF value 
of macromolecular residues was determined to be well 
within the allowed range of 3 Å. A few residues changed 
slightly, with an RMSF value of 2–3 Å. However, the bulk 
of residues exhibited smaller variations, with an average 
value of less than 1 Å. Figure 3a, b show the RMSF of the 
viral main protease and the complex ligand taraxerol dur-
ing the 100-ns period of the MD simulation. The RMSF 

observed for the ligand taraxerol complex within the active 
binding site of the viral main protease enzyme was found 
to be within the range of 2–3 Å throughout the 100-ns 
timeframe. This clearly suggests that the ligand was sta-
bilised within the active site of the target macromolecule 
with slight fluctuations of some functionals required for 
interacting with the target macromolecule.

During the simulation process, the SSE analysis revealed 
that it has 14.94% alpha helices and 24.21% beta-sheets, 
resulting in a total contribution of 39.14% SSE, which may 
be conserved for the majority of the simulation. The mac-
romolecular ligand interaction study revealed that Pro168, 
Leu167, Met165, Cys145, Met49, Gln192, Thr190, and 
Arg188 interact with the ligand over the course of the 100-
ns simulation procedure. More than eight macromolecular 
residues were discovered to be consistently interacting with 
the complex ligand throughout the simulation run. Figure 4 
depicts the detailed protein–ligand connections observed 
during the whole timeframe of the 100-ns MD simulation. 
The ligand’s RMSD value was substantially within the range 
of 1.5 Å, indicating that the ligand fluctuated as little as 
possible during the simulation process. The ligand’s rGyr 
value was discovered to be in the range of 4.1–4.3 Å. Dur-
ing the modelling phase, no intramolecular hydrogen bond-
ing in the ligand was observed. Throughout the modelling 
phase, the ligand’s MolSA was discovered to be in the range 
of 372–384Å2. After some initial variations, the ligand’s 
SASA was found to be in the range of 150–300Å2 during 
the simulation process. The PSA for the complex ligand was 
discovered to be between 35 and 40 Å2 during the simula-
tion process.

Discussion

The in silico computational approach is pioneering for drug 
discovery and development. Several drugs have been iden-
tified for the treatment of many diseases, including viral 
infections. There are several examples of in silico inspired 
medicines such as chloroquine, hydroxychloroquine, remde-
sivir, ritonavir, lopinavir, darunavir, arbidol, peptide EK1, 
cobicistat, amodiaquine, niclosamide, telbivudine, nicotina-
mide, ribavirin, sofosbuvir, galidesivir, tenofovir, setrobuvir, 
artemisinin, mefloquine, halofantrine, lumefantrine, amodi-
aquine, primaquine, doxycycline, atovaquone, sulfonamides 
didanosine, camptothecin, teicoplanin, velpatasvir, ledipas-
vir, and favipiravir that have been explored against COVID-
19. But their clinical uses are limited due to quality-related 
safety issues. Most of the drugs are under clinical trials [33].

As we know, the world is facing health and economic 
problems due to COVID-19. Still, there are no such thera-
pies as some vaccines have been approved for the treatment 
of COVID-19. There is a continuous quest to find drugs for 

1523Structural Chemistry (2022) 33:1517–1528



1 3

treating COVID-19. In this context, herbal medicine is very 
popular throughout the globe for its miraculous effect on 
health problems. It has been used as an alternative medicine 
for treating various diseases. As per the WHO, 80 percent of 
the world’s population depends upon herbal medicine for the 
cure and treatment of several diseases. Several drugs have 
been discovered through natural resources, including plants 

[67]. Therefore, it occupies our mind to identify such poten-
tial herbal leads for the management of COVID-19. In the 
recent past, numerous herbal leads like luteolin, psoralidin, 
caffeic acid, myricetin, quercetin, vitexin, tryptanthrin, shi-
konin, silvestrol, scutellarein, biorobin, hesperidin, andro-
grapholide, catechins, reserpine, emetine, artemisinin, qui-
nine, paclitaxel, and morphine have been recognised through 

Fig. 2   Root mean square deviation (RMSD) of the viral main protease enzyme and ligand taraxerol observed during the 100-ns MD simulation

Fig. 3   Root mean square fluctuation: During the 100-ns timeframe of the MD simulation, the RMSF of the viral main protease enzyme and the 
complexed ligand taraxerol were measured
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computational approaches. They have exhibited remarkable 
inhibitory activity against SARS-CoV-2. Various research 
studies at preclinical level (in vitro and in vivo) and clinical 
trials are going on to ensure their therapeutic efficacy and 
safety [33].

In the present study, lead molecules with binding energy 
such as taraxerol (−10.17 kcal/mol), diosgenin (−10.12 kcal/
mol), amyrin (−9.56 kcal/mol), asiaticoside (−9.54 kcal/
mol), momordicin (−9.51 kcal/mol), hecogenin (−9.42 kcal/
mol), guggulsterone (−9.23  kcal/mol), andrographolide 
(−8.61 kcal/mol), pelargonidin (−8.49 kcal/mol), and lupeol 
(−8.48 kcal/mol) were identified for inhibiting the viral main 
protease enzyme. Based on the observed chemical interac-
tions, which are tabulated in Table 2, among the shortlisted 
leads against the viral macromolecular targets, a SAR was 
developed that confirms the involvement of macromolecular 
residues such as Cys145, Pro168, Met165, Leu167, Gln192, 
Thr190, and Met49 in the active ligand binding. These leads 
have been reported in medicinal plants, including Clitoria 
ternatea (taraxerol), Dioscorea sp. (diosgenin), Eclipta alba 
(amyrin), Centella asiatica (asiaticoside), Momordica char-
antia (momordicin), Chlorophytum borivilianum (hecogenin), 
Commiphora sp. (guggulsterone), Andrographis paniculata 
(andrographolide), Anagallis monelli (pelargonidin), and 
Carissa spinarum (lupeol) [11]. As a result, these bioactive-
containing medicinal plants would be effective in managing 
the SARS-CoV-2 health issue. In another study, Kar et al. 
reported the inhibitory potential of Clerodendrum trichoto-
mum containing lead taraxerol, friedelin, and stigmasterol 
against SARS-CoV-2 through an in silico approach [68].

Taraxerol, among other things, inhibited SARS-CoV-2 
enzymes (spike protein (6lzg) [−7.5 0.01 kcal/mol]), main 
protease (8.4 0.01 kcal/mol), and RNA-dependent RNA 

polymerase (RdRp) [−7.4 0.02 kcal/mol] [69]. Taraxerol 
has been reported for several biological activities, includ-
ing antiplasmodial (Plasmodium falciparum, IC50, 8.5 µM), 
antiparasitic (Trypanosoma brucei, IC50, 10.5 µM), antioxi-
dant (IC50, 500 µM), etc. [70].

Similarly, Enmozhi et  al. have reported the antiviral 
activity of andrographolide on SARS-CoV-2 main pro-
tease enzyme through in silico investigation. This investi-
gation includes molecular docking, target analysis, toxic-
ity prediction, and ADME prediction for andrographolide. 
Andrographolide, a bioactive component of A. panicu-
lata, showed an inhibitory effect with binding efficiency 
(−3.094357 kcal/mol) against the main protease enzyme 
[13, 71]. Moreover, other lead compounds from plants 
(epicatechin gallate −7.24 kcal/mol, catechin −7.05 kcal/
mol, kaempferol −9.41 kcal/mol, gingerol −6.67 kcal/mol, 
quercetin −8.58 kcal/mol, curcumin −7.31 kcal/mol, and 
demethoxycurcumin −8.17 kcal/mol) have shown inhibi-
tory effects against the main protease enzyme [72]. In addi-
tion, phytoconstituents like boldine, ginkgetin, isoboldine, 
laurolitsine, lauroscholtzine, laurotetanine, norisoboldine, 
pseudolycorine, secoboldine, and syringic acid have shown 
good inhibitory potential against the main protease enzyme 
through in silico studies. The best binding affinity has been 
produced by laurolitsine as compared to other molecules 
[73]. Further, efficacy, drug/herb-drug interaction, safety, 
and toxicity profile of taraxerol need to be validated against 
SARS-CoV-2 through preclinical and clinical investigation. 
Hence, an in silico computational approach could be prom-
ising for getting new herbal leads for the management of 
COVID-19. Other alternate treatment options such as stem 
cells, monoclonal antibodies, plasma, and polypeptides are 
also under investigation for COVID-19.

Fig. 4   Protein–ligand contacts: Detailed protein–ligand interactions were found during the 100-ns MD simulation timescale
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Conclusion

The in silico virtual screening technique is a highly ade-
quate, prudent, and quick approach for identifying a potent 
herbal lead having therapeutic activity against the main 
protease enzyme of COVID-19. Taraxerol was found to 
be a potential lead against the main protease enzyme of 
SARS-CoV-2. The binding site analysis has revealed that 
the residues Cys145, Pro168, Met165, Leu167, Gln192, 
Thr190, and Met49 play an important interacting role in the 
ligand binding. The results obtained by molecular docking 
simulation were further validated by performing 100-ns 
molecular dynamics simulation, and the pharmacokinetic 
profiling based on their physicochemical parameters was 
also performed to strengthen the candidature of taraxerol 
as a safe and optimised inhibitor of the viral main protease 
enzyme. Further, this herbal molecule needs to be validated 
through preclinical and clinical investigation for its thera-
peutic applicability.
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