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Abstract

A challenge in studying diverse multi-copy gene families is deciphering distinct functional

types within immense sequence variation. Functional changes can in some cases be

tracked through the evolutionary history of a gene family; however phylogenetic approaches

are not possible in cases where gene families diversify primarily by recombination. We take

a network theoretical approach to functionally classify the highly recombining var antigenic

gene family of the malaria parasite Plasmodium falciparum. We sample var DBLα sequence

types from a local population in Ghana, and classify 9,276 of these variants into just 48 func-

tional types. Our approach is to first decompose each sequence type into its constituent,

recombining parts; we then use a stochastic block model to identify functional groups

among the parts; finally, we classify the sequence types based on which functional groups

they contain. This method for functional classification does not rely on an inferred phyloge-

netic history, nor does it rely on inferring function based on conserved sequence features.

Instead, it infers functional similarity among recombining parts based on the sharing of simi-

lar co-occurrence interactions with other parts. This method can therefore group sequences

that have undetectable sequence homology or even distinct origination. Describing these 48

var functional types allows us to simplify the antigenic diversity within our dataset by over

two orders of magnitude. We consider how the var functional types are distributed in iso-

lates, and find a nonrandom pattern reflecting that common var functional types are non-ran-

domly distinct from one another in terms of their functional composition. The coarse-

graining of var gene diversity into biologically meaningful functional groups has important

implications for understanding the disease ecology and evolution of this system, as well as

for designing effective epidemiological monitoring and intervention.
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Author summary

Many disease-causing microbes vary their surface proteins to escape their host’s adaptive

immune response—a phenomenon called antigenic variation. Some such systems rely on

large, hyper-variable multi-copy gene families that encode functionally diverse protein

variants. Because these gene families typically diversify by recombination, standard meth-

ods for protein functional classification—which are based on the assumption of a simple,

tree-like evolutionary history—are not possible. We take a network-based approach to the

functional classification of the var multi-copy gene family, which encodes the dominant

natural antigen of the malaria parasite Plasmodium falciparum. We do not assume a par-

ticular diversification process, or even that functional similarity correlates with sequence

similarity. Our dataset comprises thousands of unique var types that we sampled from a

population in Ghana, and we map this diversity to just 48 functional types. We find that

coarse-graining var diversity into functional types reveals new patterns in the structure of

the diversity, and these insights could help us better understand the mechanisms shaping

the diversity of these genes. Furthermore, functional insight into var diversity can inform

monitoring and intervention, including the possibility of a var-based malaria vaccine

effective at preventing disease.

Introduction

To address the functional variation present within variable gene families, phylogenetic analyses

can typically identify structural and/or functional divergence occurring on a simple, tree-like

evolutionary history (e.g., [1, 2]). However, this approach is not possible for protein families

that have diversified primarily by reticulate evolution (i.e., recombination). Inferring reticulate

phylogenies (a.k.a. phylogenetic networks) is notoriously difficult, involving NP-hard prob-

lems [3–5]. In this paper we present a method for describing the functional diversity of an

ultra-diverse recombining gene family. The method does not require an inferred phylogenetic

history or even an alignment of the full length sequences—key advantages when these are not

available. We use this method to identify distinct functional types within the multi-copy anti-

genic var genes of the malaria parasite Plasmodium falciparum (P. falciparum). There are

approximately 60 var copies per parasite genome, located in multiple subtelomeric and centro-

meric locations within the genome [6]. They encode the parasite’s primary natural antigen,

Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1). This large, multi-domain

protein is expressed at the surface of infected erythrocytes (IEs), where it binds host endothe-

lial receptors within the microvasculature to prevent IE circulation to the spleen, where

infected cells are mechanically cleared [7]. Sequestration of IEs within host tissues is essential

to parasite survival and underlies the unique virulence of P. falciparum relative to other malaria

parasites of humans. PfEMP1 is highly visible to the immune system and an important anti-

body target [8]. As a consequence, the parasite has evolved a system of antigenic variation to

shift expression among the var copies such that only one is active at a time [9–11]. Certain var
types are associated with particular receptor binding preferences, sequestration patterns within

host tissues, and/or disease symptoms (reviewed in [12]).

Var diversity is extensive both within individual genomes as well as between parasite

genomes. Thousands of distinct var genes can typically be sampled from areas of high endem-

nicity, with the majority of var sequences being unique between parasite genomes [13, 14]. Var
genetic sequences have exceptionally low sequence identity due to ancient sequence diver-

gence and strong antigenic selection. Not only is there a great deal of diversity in domain
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composition among distinct var sequences, but even within a single domain type, amino acid

sequence identity is low (< 75% even for the most conserved domain, DBLα). Therefore, var
domains are for the most part unalignable at the sequence level.

Despite this vast sequence diversity, it nevertheless seems unlikely that each var sequence

variant is functionally unique. Functional classification of var diversity is of clinical interest for

the purpose of designing effective monitoring and intervention (e.g., for studying the strain

structure of the parasite [15], or for the possibility of developing a var-based vaccine [16]).

However, mapping the vast number of var sequence types to a smaller number of meaningful

functional types has remained a major challenge in the field.

Previous methods have succeeded in dividing up var type diversity into three groups based

on upstream promoter sequence (ups) and chromosomal location: groups A, B and C [12].

Other network-based classification systems directly draw on the mosaic structure of this gene

family and group var types based on the sharing of short sequence motifs, meaning that func-

tional groups are defined as clusters in a recombination network [17–19]. The var recombina-

tion network appears to tightly correlate with ups classification. The earliest methods based on

recombination networks used conserved sequence features within a single 100–150 amino

acid tag within the only consistent extracellular domain, DBLα [20]. Most var classification

methods are still based on this tag region. When full-length var sequence is available, the pres-

ence of entire conserved domain cassettes within the larger architecture of the protein can be

used for functional classification [19]. Var functional groups based on sequence features of the

DBLα tag appear to be largely congruent with groups that are based on larger portions of the

protein sequence and/or the ups region [21]. Some var groups are associated with cytoadhe-

sion traits implicated in severe disease symptoms, and/or they exhibit preferential expression

in patients with these symptoms [12, 22–27]. A consistent finding has been that group A var
genes tend to be expressed in patients with severe malaria (e.g., [23]).

A major motivation within the field currently is to pursue links between var geneotype and

disease phenotype, in the hope that interventions—in particular vaccination—may be able to

specifically target severe-disease associated PfEMP1 functions [16]. In light of this goal, one

limitation that all current var classification schemes share is that they assume similar sequences

should have similar adhesive properties. However, this may not always be the case—especially

for highly diverse protein families with reticulate histories. Being “one of most diverse adhe-

sion modules in nature” [12], and undergoing constant recombination among these diverse

lineages [6, 28, 29], the var gene family likely benefits from exceptionally efficient exploration

of sequence space. It also experiences strong selection to simultaneously bind host endothelial

receptors and evade specific immunity [30]. In this context, similar adhesive properties may

evolve through convergence, and therefore have distinct ancestry. Due to the many-to-one

nature of the genotype to phenotype map, non-homologous and dissimilar sequences may fre-

quently share the same molecular function, and as a result, cause the same disease symptoms.

There is consensus that PfEMP1 is characterized by a micro-modular structure and func-

tion. While the above classification schemes seek to uncover this structure by considering

sequence similarity, we seek to uncover this structure by considering function specifically. We

accomplish this by first breaking down the sequence diversity into its constituent recombining

parts, or homology blocks (HBs), as described previously by Rask et al. [19]. We then function-

ally annotate these parts—not based on sequence similarity, but rather, based on a network

approach that groups sequence parts sharing similar co-occurrence interactions.

More specifically, to functionally annotate the recombining sequence parts we use a flexible

community detection approach to search for the optimal arrangement into groups. Groups are

defined as elements that share similar interactions with other elements. Sharing similar inter-

actions implies similar function within the larger network. We take a Bayesian approach and
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create a continuous analogue of a stochastic block model that we previously applied to identify

trophic levels within food-web networks [31]. Here, we apply this method to the co-occurrence

network of homology blocks sampled from approximately 10,000 unique var types within a

highly endemic population in Ghana. We reason that homology blocks that have similar co-

occurrence patterns with other groups of homology blocks can replace each other through

recombination, and based on this we conclude that they likely share similar molecular func-

tion, and thus we define these groups as homology block functional groups—completely irre-

spective of whether there is shared ancestry or sequence similarity within groups. We use the

functional annotation of homology blocks to redefine our ~10,000 var sequence types based

on the homology block functional groups they contain. This allows us to substantially reduce

the antigenic complexity of our dataset and gain new insights into the structure of var diversity

in a highly endemic population.

Whether the immense sequence variation of the var genes map to a smaller amount of func-

tional variation remains an open question with significant epidemiological implications [6]. In

particular, var functional variation appears to play a role in determining disease severity (e.g.,

[23]), so even a coarse genotype-phenotype map of var gene diversity could greatly enhance

our ability to combat P. falciparum through strain-specific vaccination or other targeted inter-

ventions [32, 33]. A simplified and functional understanding of var antigenic diversity could

also allow for new, meaningful connections between var empirical data and several bodies of

theoretical literature (e.g., [15]), which could in turn elucidate the dynamics shaping this lethal

parasite’s epidemiology and evolution.

Results

Sampling var DBLα sequence tag diversity and identifying homology

blocks

We collected a mean of 89.4 var DBLα sequence tags from each of the 209 isolates (standard

deviation of 63.3, range from 5 to 375). As far as we know this represents the deepest var sam-

pling to date. Among all 209 isolates we collected a total of 18,694 var sequence tags, which

correspond to 11,385 distinct var sequence types after clustering into distinct var sequence

types. The clustering is carried out to remove PCR-generated variation, but inevitably clusters

some natural variation as well. For the majority of the isolates we also sampled the microsatel-

lite allelic diversity at twelve loci. While these methods and results are primarily described in

[34], here we used the microsatellite data to define single infection isolates as those with at

most a single microsatellite allele at each of the twelve loci. There were 29 single infections by

this criterion.

We translated all the sequences corresponding to a given var type, and performed a search

for the homology blocks within each of the sequences [19]. We found 0–10 homology blocks

per sequence (mean 4.9) (Fig 1). Taking a single sequence in the database as a representative

for each var type, and excluding sites before the first homology block or after the last homology

block, we found that an average of 89.3% of the sequence tag is covered by homology blocks.

For each var type, we then took the mean presence/absence state for all homology blocks and

for all sequences that map to that type. We then reduced the dataset to 9,588 sequence types

through additional cleaning procedures based on the amino acid sequence and homology

block match, to remove low quality sequences reflecting pseudogenes or regions outside of

DBLα. Within this dataset there were 28 distinct homology blocks with a sufficient number of

matches to be considered high quality (several additional homology blocks occurred only a

few times, and we did not consider these further). HB 590, which occurred 51 times, was the

rarest homology block that we considered. There were still some sequences with zero
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homology block matches in our dataset, and removing these reduced the dataset to 9,276 var
types. Unless otherwise noted, this was the dataset we used for the following analyses.

Homology block co-occurrences as a network

The method we use is based on an interaction matrix, Z, where entries (or z-scores) are devia-

tions from a null model based simply on the frequency of the elements in the dataset. Fig 2

shows a simple example with three groups, each with three elements, arranged by group

Fig 1. Among the 11,385 DBLα sequence tags, which correspond to unique var types: (A) The distribution of total HB

counts per sequence tag. (B) The frequency of each HB in the entire dataset.

https://doi.org/10.1371/journal.pcbi.1006174.g001

Fig 2. An approach to identifying functional groups within the multi-copy var genes. (A) Graphical representation

of a stochastic block model for the normalized co-occurrence matrix Z, for nine homology blocks divided into three

functional groups (HB functional groups 1–3). The blocks within the matrix of a single color represent the z-scores

between pairs of HB functional groups, which are assumed to be drawn from the same normal distribution. (B)

Homology blocks recombine to form var gene sequences, so after homology blocks are classified into functional

groups (7 shown here, represented by distinct colors), var functional types can be defined as unique combinations of

homology block functional groups (HBFG types). Viewing var sequences as HBFG types reduces diversity by over two

orders of magnitude.

https://doi.org/10.1371/journal.pcbi.1006174.g002
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membership along the axes of the matrix. We assume z-scores between pairs of groups are

drawn from the same normal distribution (represented as blocks of the same color in Fig 2).

This means that we search for groups such that z-scores between pairs of groups (i.e., within

blocks) will be similar. A flexible community detection method defines groups not as modules

with strong within-group interaction, but rather as elements sharing similar interactions with
other groups of elements—meaning that blocks of interactions within Z, with high or low inter-

action values, can appear off the diagonal of the matrix as well as along the diagonal. Modules,

in contrast, would appear only as high interaction values within blocks along the diagonal of Z.

When considering our antigenic data as a network, the nodes are homology blocks and the

edges/interactions are homology block co-occurrences within the larger protein sequence.

When homology blocks have similar co-occurrences with other homology blocks, it means

they are interchangeable with one another through recombination, which in turn implies that

they have similar molecular function. We test for the existence of such functional groups of

homology blocks by inferring the optimal community structure within our homology block

co-occurrence network, and then testing whether the groups are functional-like as opposed to

module-like. By searching for the optimal group arrangement based on a goodness of fit crite-

rion we found that the 28 homology blocks are optimally arranged into 8 groups (Fig 3).

Flexible community detection finds functional-like groups

Within the optimal group arrangement, group members share similar co-occurrence patterns

with other groups, as evidenced by blocks of high (blue) and low (orange) interaction values in

Fig 3. The fact that this best-fit arrangement into groups is not characterized by only high

interaction values within blocks along the diagonal implies that the dominant community

structure of this dataset is characterized by functional-like groups as opposed to module-like

groups (Fig 3).

The functional-like nature of the optimal group arrangement is also apparent in the interac-

tion network of homology blocks, after correcting for node degree and coloring nodes by group

membership (Fig 4). We can see that the connectivity is generally stronger between homology

block groups rather than within groups. These results imply that our method has successfully

found functional-like groups of homology blocks, and so we will henceforth refer to these eight

groups as homology block functional groups, or equivalently, HB functional groups.

Homology block overlap

Identifying homology block functional groups is not a trivial outcome of there being overlap

among homology blocks within the var sequence tags (something that is allowed with our HB

matching rules, and observed to some extent in our results). For one thing, the community

detection method we use is not designed to group homology blocks based on high co-occur-

rence. Furthermore, as described above, we observe that homology blocks within groups have

low co-occurrence relative to homology blocks between different groups (Figs 3 and 4). In fact,

as discussed further below, we find that homology blocks within groups often have similar

sequences and/or locations within the sequence tag—but this occurs despite them having rela-

tively low co-occurrence within sequence tags. The pattern of low co-occurrence among

homology blocks within groups is consistent with the idea that these groups describe sets of

functionally redundant homology blocks.

Validating functional groups with evidence of shared ancestry

Functional similarity can be a consequence of shared ancestry and conserved function. There-

fore, even though we do not infer homology block functional groups based on sequence
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similarity or location similarity, we nevertheless expect it to be common for homology block

sequences with similar function to have common ancestry, and thus, detectable similarity in

sequence or location. We use this assumption to validate our functional groups—i.e., by look-

ing for conservation of sequence identity and/or location that statistically exceeds the random

expectation.

Fig 3. Best grouping of homology block linkage network according to Bayesian cross validation of the stochastic block model. Color represents the normalized

co-occurrence score for each pair of homology blocks: colors toward blue represent more frequent co-occurrence than random; colors toward orange represent less

frequent co-occurrence than random.

https://doi.org/10.1371/journal.pcbi.1006174.g003
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We examine the homology block sequences and their positions within the larger protein

sequence tag to determine whether homology block functional group members show evidence

of shared ancestry. We consider whether homology blocks within functional groups have simi-

lar sequences with respect to amino acid identity, and similar locations within the context of

the larger protein, relative to the expectation for random homology block pairings within our

sample.

For this analysis we only consider the six HB functional groups that are composed of more

than two homology blocks (i.e., we exclude from the analysis HB functional groups 1 and 8).

Fig 4. Network of the connectivity between the 28 HBs within the set of 9,588 var types, correcting for node degree. Colors of nodes show the

eight distinct HB groups. Connectivity is defined as the number of connections between two HBs (co-occurrences) divided by the mean number of

total connections for both HBs in the pair. Plotted with the Mathematica (v.10) “Graph” function using the circular embedding method.

https://doi.org/10.1371/journal.pcbi.1006174.g004
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Group 1 is composed of only HB 5 and HB 14. Because both of these homology blocks are

nearly always present in DBLα, they share the same pattern of co-occurrence with all other

homology blocks, and so this is likely why these two homology blocks are grouped together.

Group 8 only contains HB 556, so comparisons cannot be made between homology blocks

within this functional group.

We find more sequence similarity among homology blocks within functional groups as

compared to between functional groups (Fig 5). Statistically, homology block sequences within

HB functional groups are significantly more similar to one another than the random expecta-

tion (p = 0.0015–0.03, depending on the sequence similarity metric we use). We also analyzed

the location of the homology blocks within the sequence tag to look for signs of conserved

location within the functional groups. For all groups, members were primarily located in only

one or two regions of the tag (Fig 5), and we find that the homology block’s location within the

larger protein sequence tag is conserved within functional groups beyond the random expecta-

tion (p = 0.013).

Classification based on homology or recombination

The var functional groups we infer are not the same as var groups that would be inferred based

on sequence similarity (homology). Although we observe significant sequence and location

similarity within the homology block functional groups, there is not consistent conservation of

either homology block sequence or homology block location within HB functional groups.

Many homology block sequences within HB functional groups do not share any apparent

sequence or location similarity (Fig 5). The homology block functional groups described here

are very different from what would have been created had we merely aggregated homology

blocks based on the similarity of their underlying HMMs, or based on the similarity of the

sequences and/or sequence locations to which they map.

The var functional groups we infer are also not equivalent to var recombination groups.

The homology block functional groups do not appear to correspond strongly to the modular

structure of the var type recombination network. Homology block functional groups only clus-

ter within the var recombination network insofar as the homology blocks within a given func-

tional group are generally either associated with cys-2 var types or non-cys-2 var types (and

the distinction between these two var types is reflected strongly in the recombination network)

(Fig 6). Beyond this, however, there appears to be no clustering of homology block functional

groups within the recombination network of var types (Fig 6). This finding implies that these

groups cannot be alternatively inferred by simply considering the modularity of the var type

recombination network and the homology blocks within each var type. Rather, the inference

of these groups seems to require identifying groups of homology blocks that share similar co-

occurrence interactions with other homology blocks.

Coarse-graining antigenic diversity

We use the functional annotation of homology blocks to simplify our antigenic dataset into a

smaller number of biologically meaningful types. We find that there are only 882 unique com-

binations of the 28 homology blocks among the 9,276 var types within our dataset. Further-

more, when we map the 28 homology blocks to the eight homology block functional groups,

we can simplify the picture further. If any member of a given homology block functional

group is present in a sequence, then that group is considered present. Using these presence/

absence states we can then classify var sequences as unique combinations of HB functional

groups, which we call homology block functional group types (HBFG types). Within our entire

dataset of 9,276 var sequence types, we find that there are only 48 HBFG types, or in other

Identifying functional groups within a recombining gene family

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006174 June 13, 2018 9 / 22

https://doi.org/10.1371/journal.pcbi.1006174


Identifying functional groups within a recombining gene family

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006174 June 13, 2018 10 / 22

https://doi.org/10.1371/journal.pcbi.1006174


words, 48 var functional types. The coarse-graining of var diversity into only 48 functional

types allows for isolates and antigenic types to be more comparable in number. This simplifica-

tion can in turn be useful for analysis, visualization and comparisons between field-collected

data and theory.

Functional distribution of antigenic types in isolates

With this new view of var diversity, we look for insights into how var functional diversity is

distributed within parasite genomes and populations. At the resolution of HBFG types, var
diversity no longer appears as a chaotic cloud, with most variation being incomparable

between different isolates. Fig 7 shows how the 48 HBFG types occur in the 209 isolates and in

the 29 single infection isolates. One clear pattern that emerges is the presence of regularly

spaced stripes along the axis of HBFG type similarity. This pattern reflects that common

HBFG types are non-randomly distinct from one another.

A possible explanation for this is that PfEMP1 proteins with similar HB profiles may be

functionally redundant, and therefore may not be useful within the same parasite genome or

within-host environment. Furthermore, antigenic sequences comprising similar functional

parts may be antigenically similar as well. Thus, common HBFG types may select against inter-

mediates with redundant function because they compete antigenically via the host immune

response.

The pattern in Fig 7 is a form of nonrandom structure in the functional composition of

var types within this population. This form of nonrandom structure may be related to other

forms of nonrandom structure within the distribution of var types in this population, which

we have reported previously [35]. Larger field-sampled datasets of var diversity collected in

subsequent studies of this population may in the future be able to address the possible connec-

tion between these different forms of non-random structure within the var antigenic types of

this population.

Discussion

From a local population in Ghana we sampled the highly diverse antigenic var gene sequences

of the malaria parasite P. falciparum. We decomposed this diversity into its recombining parts,

and identified 28 homology blocks that recombined to form the observed sequence variants.

We then asked whether some of these homology blocks are functionally redundant. Functional

groups comprise elements that share similar interactions with other groups. Unlike modules,

functional groups have more interactions between them than within them. Members of a

given functional group can be considered functionally redundant. While modules of var
sequences may be the result of overlapping HBs, or physical linkage among some var types, or

other features of the var recombination hierarchy, functional groups of var sequences offer

insights into the functional differences among var types. We find that the 28 homology blocks

can be broken down into just eight functional groups.

We observed limited, yet statistically significant signals of shared ancestry within homology

block functional groups (i.e., conservation). This finding proves that the method we use—

which does not define functional groups based on homology—identifies biologically meaning-

ful functional groups. However, not all sequences within a functional group have clear

sequence similarity, or map to the same region of the tag. We would not have identified these

Fig 5. The sequences and locations of the HBs for each of the HB functional groups. The sequences are depicted with Logos in the top portion

of each panel. The location(s) of the HBs within each of the sequence tags are depicted in the lower portion of each panel, with first and last

positions in distinct colors.

https://doi.org/10.1371/journal.pcbi.1006174.g005
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functional groups using only signals of conservation. Our method can be used for the infer-

ence of common function even when sequence similarity does not exist, either due to diver-

gence or distinct origination (i.e., convergent evolution)—phenomena that are especially likely

in the var genes, as they are characterized by architectural flexibility and extreme recombina-

tion rates.

While homology blocks within functional groups exhibit a significant degree of conserva-

tion of location within the larger sequence tag, there is nevertheless considerable variation in

location within most HB functional groups. This variation suggests a high degree of functional

modularity since a homology block sequence from a given homology block functional group

can apparently perform its molecular function similarly in diverse protein structural contexts.

Functional modularity has been demonstrated for var proteins at larger structural scales, such

as protein domain function and organization, so it is interesting that we see evidence for this

also at the very fine spatial scale of the HB.

Our functional categorization of var sequence diversity allows us to describe a set of anti-

genic types that is more than two orders of magnitude less diverse than the original antigenic

Fig 6. The relationship between the var homology block recombination network, cys-2 var genes, and the var genes containing

each homology block functional group. All panels show the recombination network, as defined in Materials and methods. Panel titles

indicate which nodes are shown in blue. Remaining nodes are shown in red.

https://doi.org/10.1371/journal.pcbi.1006174.g006

Fig 7. (A) The 48 distinct HBFG types are ordered along the horizontal axis by similarity, based on their HB presence/absence profile. The

209 isolates are ordered along the vertical axis by similarity, based on their HBFG type presence/absence profile. The elements on both axes

are sorted by the Mathematica function “Sort”, which places elements in canonical order. (B) The same as above, but for the 29 single

infection isolates only.

https://doi.org/10.1371/journal.pcbi.1006174.g007
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dataset. In a dataset of 18,694 sequences and 9,276 distinct sequence types, there are only 882

distinct combinations of HBs and only 48 distinct combinations of HB functional groups. We

find that this simplification provides new insights into the functional diversity of P. falciparum
var genes. Specifically, we observe a pattern that indicates that the most common HBFG types

(var functional types) are non-randomly distinct from one another with respect to their HB

functional group composition.

Our functional description of var diversity also serves to increase levels of var repertoire

overlap from close to zero to more measurable levels. Distinct isolates become more compara-

ble when there is significant overlap among their antigenic repertoires, and the distribution of

overlap indices within the population as a whole becomes more interesting. The overlap that

exists among distinct antigenic types circulating in a local population is a critical feature for

studying certain epidemiological and ecological dynamics [35]. HBFG types may therefore be

useful for future studies of these dynamics.

Simplifying antigenic diversity into distinct functional groups provides insight into the

actual number of functionally distinct antigenic units circulating in a local population. It is the

antigenic functional diversity, as opposed to the antigenic sequence diversity, that is expected

to shape this parasite’s epidemiology and evolution. A meaningful quantification of var func-

tional diversity could facilitate theoretical progress in the field. A long-term goal should be to

understand this functional diversity, how it interacts with the host immune system, and how it

evolves.

Parsing the immense natural variation of var sequences into meaningful functional catego-

ries could have major implications for monitoring, control and treatment of malaria. Some var
sequences have been linked to severe disease, while others appear benign. For example, the

evolution and transmission of virulent antigenic functional groups could be specifically moni-

tored—saving valuable public health resources. Similarly, identifying a limited set of disease-

causing antigenic functional groups would greatly advance the possibility of someday develop-

ing a multivalent vaccine with high efficacy at preventing disease.

The approach we take here for the functional annotation of var antigenic sequences may in

the future be useful for the functional annotation of other ultra-diverse gene families beyond

the var. Other protein families mediate interactions between multiple species, are under strong

diversifying selection, and encode diversity within individual genomes via multi-copy gene

families. Moreover, it is normal for multi-copy gene families to diversify by extensive and fre-

quent non-allelic recombination. Examples include the vertebrate major histocompatibility

complex (MHC) genes and the genes encoding the variant surface glycoproteins (VSGs) of the

African sleeping sickness parasite, Trypanosoma. Our approach might also be useful for decod-

ing the functional diversity of ancient gene families that are so highly diversified at the

sequence level that meaningful sequence alignment becomes difficult (consider for example

the ribosomal protein L36 for which only a single amino acid residue is conserved in indisput-

able homologs [36]). In sum, our approach may be useful for the functional understanding of

any set of sequences with a complex evolutionary history because these methods do not rely on

the assumption of a simple, tree-like bifurcating process dominating.

Materials and methods

Ethics statement

As this study involved human subjects, IRB approvals were obtained prior to data collection

and analysis at the authors’ institutions. IRB approval numbers for this study are as follows

(NYU and Michigan now closed due to transfer): NYU: S12-02449; UniMelb: HREC 1441986;

Michigan: HUM 00078673; Chicago: IRB14-1495; Navrongo: NHRC IRB-131; Noguchi: CPN
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089/11-12. Methods were compliant with ethical practice standards, including that informed

consent was obtained from human subjects prior to their involvement.

Study site and genetic sampling

Our dataset is a sample of Plasmodium falciparum var antigenic sequences collected at the end

of the dry season in Bongo District (BD), Ghana. Details on the study design, study population

and data collection procedures have been described previously [34]. Sampling was carried out

across two broad catchment areas—Vea/Gowrie and Soe. Only P. falciparum positive samples

identified by microscopy were used for molecular analysis. Var DBLα tags were sequenced for

209 P. falciparum positive samples. Twelve microsatellite loci were also sequenced for the

majority of these isolates, as described in detail in in [37]. The multiplicity of infection (MOI),

which is the number of parasite genomes per sample, was estimated as the maximum observed

number of microsatellite alleles per locus. Single infection isolates were thus defined as those

with at most one microsatellite allele at every microsatellite locus.

It is not yet technically possible to include var genetic diversity in studies of genome-wide

variation in P. falciparum [38–41]. Studies of var diversity in the field still rely on sequencing a

molecular marker with degenerate primers: a 100–150 tag sequence within DBLα—the only

domain found in nearly all var genes [20, 42–45]. We sequenced the entire length of the PCR

amplicon without the need for assembly. We assigned DBLα sequences to var types in a man-

ner consistent with the 96% nucleotide identity definition commonly used in the field [42].

Clustering at this threshold is conservative, in order to ensure that distinct var sequence types

represent natural variation as opposed to sequencing errors (thus, some of the sequence varia-

tion within a var type represents natural variation, which is ignored in this analysis).

All analyses were run using Mathematica v8 scripts unless otherwise noted. We translated

DNA sequences to amino acid sequences using the software program EMBOSS Transeq [46,

47]. We excluded from the analysis sequences that had an unexpected reading frame, apparent

frame shift substitutions or stop codons.

Homology block composition of sequence tags

We identified homology blocks within our dataset of var sequence tags using the VarDom

webserver, with a gathering cut-off of 9.97 to define a match [19]. Homology blocks are

defined by hidden Markov models (HMMs) [19]. As such, they have a flexible length, and each

amino acid position along their length is flexible, with the chemical properties of amino acids

being considered implicitly through the HMM transition probabilities. The extent to which

the homology block sequence is conserved in both sequence composition and length is

described by the HMM. These homology blocks are distinct from the DBL “blocks” of Bull

et al. [17], which have a rigid sequence length of 4 amino acids, and a completely rigid

sequence identity. The homology blocks of Rask et al. are also distinct in definition from the

DBL “homology blocks” of Smith et al. [20]. Smith et al. describe DBLα as being decomposable

into a set of semi-conserved regions alternating with hypervariable regions, each of which is

termed a homology block. In practice there is minimal overlap between the homology blocks

of Smith et al. and those of Rask et al.

Community detection method

We use the homology block composition of var sequence types to build a network of homology

block co-occurrence. We use a continuous analogue of a discrete-valued stochastic block-

model to infer the optimal arrangement of homology blocks into groups, with groups being

defined as having similar interactions (co-occurrences) with other groups of homology blocks.
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The algorithm searches for the optimal group arrangement such homology blocks within

groups share similar interactions with other homology blocks. This is a very different criterion

to maximizing within-group connectivity (i.e., to identify modules). We account for variation

in node degree within our null model, so our community detection method will not cluster

homology blocks just because they have similar frequency within the dataset.

We define a real-valued matrix Z, which measures the frequency of co-occurrence of each

pair of homology blocks relative to a null distribution in which homology blocks co-occur ran-

domly according to their observed individual frequencies. We assume that, for each pair of

groups, the entries in the matrix Z are drawn from a common normal distribution. This model

is a continuous analogue of discrete-valued stochastic block model that has been used previ-

ously to describe network data [31, 48, 49].

More specifically, each entry zij of the matrix Z is equal to (nij−mij)/sij, where nij is the num-

ber of samples where homology blocks i and j co-occur; and mij and sij are the expectation and

standard deviation of the number of samples where i and j would co-occur, assuming an inde-

pendent Bernoulli model based with the observed individual frequencies. Specifically, mij =

Npipj, and sij2 = Npipj(1 –pipj), where N is the total number of observations and pi and pj are the

observed individual frequencies of i and j.
We use Bayesian leave-one-out cross validation to evaluate the goodness of fit (GF) of any

particular arrangement into groups. For a particular unordered pair of groups gh, we measure

the goodness of fit of the corresponding entries in the matrix as ‘gh ¼
P

ijE
post
∖ij ½log pðzijÞ�: the

sum of the posterior expectation of the log-probability of each entry zij, leaving out that entry

when computing the posterior distribution. This means we measure the goodness of fit of a

pair of groups (a block within Z) as the sum of the posterior expectations for the log-probabili-

ties of the z-scores within the block. It also means that we cross validate by estimating the

parameters that govern a normal distribution from which a particular entry (z-score) is drawn

while leaving out that entry. The mean μ and precision τ for each block gh are assigned a nor-

mal-gamma prior distribution, where τ is gamma-distributed with shape 0.5 and rate 0.5, and,

conditional on τ, μ is normally distributed with mean 0 and precision 0.5τ. The prior distribu-

tion (for the parameters that govern the normal distribution) is assumed to be normal-gamma,

for convenience, because this is conjugate to the likelihood (the normal distribution describing

the conditional probability of our entries given a particular μ and τ). The fact that the prior is

conjugate to the likelihood means we already know the analytical form of the posterior (it has

the same analytical form as the prior, just with new parameters). This means, in order to esti-

mate the leave-one-out posterior expectation of the log-probability for each entry in the

matrix, we can sample the posterior for μ and τ directly. The total goodness of fit for a particu-

lar arrangement into groups is then just GF ¼
P

gh‘gh, the sum of the goodness of fit measures

for each pair of groups (i.e., blocks within Z).

For computational efficiency, we use greedy agglomerative clustering to find the best

arrangement into groups. If the total number of groups is equal to k, and the total number of

elements being grouped is equal to N, we start with each homology block assigned to its own

group such that k = N. We calculate the GF for this arrangement Gk. We then see which pairing

of two groups gives us the best improvement in GF, and we make that new pairing, to produce

a new arrangement Gk = N-1. We then continue to combine groups until we no longer improve

the fit, or for a complete hierarchical clustering, until all elements are within a single group

and k = 1. The code that implements this procedure is provided in the Supporting information

(S1 CodeAndData), and an outline of the algorithm follows below:

1. Assign each item i of N items to its own group, and name this assignment GN.
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2. Calculate the goodness of fit GF(GN).

3. Repeat with k = N–1 to k = 1:

a. For each pair of groups gh in assignment Gk+1:

i. Combine g and h into a single group to form assignment Gk(g+h)

ii. Calculate the goodness of fit GF(Gk(g+h))

b. Set Gk equal to the assignment Gk(g+h) with the best goodness of fit GF(Gk(g+h))

c. If GF(Gk)< GF(Gk+1), terminate.

Upon termination, the best grouping G is the one with the best goodness of fit GF(G). This

clustering algorithm will not necessarily identify a global maximum in GF; at the expense of

computational efficiency, a non-greedy search algorithm such as simulated annealing could be

used instead.

Assessing similarity between distinct homology blocks

In this study we test for sequence similarity among distinct homology blocks. We also test for

similarity between homology blocks with respect to their location with the larger sequence tag.

To distinguish the two, we use the term “sequence similarity” to mean considerations of simi-

larity with respect to amino acid identity, and “location similarity” to refer to similarity with

respect to homology block location within the larger sequence tag.

We assess homology block sequence and location similarity qualitatively by visualizing the

homology blocks as logos [50] (Fig 5). To generate each logo we use the sequence variation

within our dataset that matches a given homology block. We also statistically test whether

sequence similarity within homology block functional groups is greater than expected at ran-

dom, given the set of 28 homology blocks in our dataset. We compare the sequences of distinct

homology blocks by comparing their consensus sequences within our dataset, which is defined

as the most common amino acid state at each position along the homology block sequence,

given the sequence variation in our dataset that corresponds to a given homology block. We

use two different indices of similarity to compare pairs of consensus sequences: Needleman

Wunsch (NW) similarity and Smith Waterman (SW) similarity. While it is unconventional to

use metrics other than Hamming distance to compare genetic sequences, NW similarity and

SW similarity are more appropriate and informative than Hamming distance for our purposes,

because we need to be able to meaningfully compare sequences of different length, often with-

out clear homology.

We assess location similarity between distinct homology blocks by considering the distance

(in amino acid residue positions) between their consensus start positions. Homology block

start positions are defined with respect to their start position within the DBLα tag. The DBLα
tag, in turn, has a consistent start site within the larger DBLα domain because it is character-

ized by one of the only consistent and highly conserved amino acid motifs in the entire extra-

cellular portion of PfEMP1 [42]. We qualitatively assess similarity between homology blocks

by plotting the start positions of a homology block in each of the sequences within our dataset

(Fig 5). We also statistically test whether the distance between the start sites of pairs of homol-

ogy blocks is on average smaller within functional groups than the expectation for random

pairs of homology blocks.

We use a randomization procedure to statistically test whether there is significantly greater

conservation within homology block functional groups than expected randomly given our

complete set of 28 homology blocks. The random expectation is expressed as a null
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distribution generated by taking samples of pairs of homology blocks from all 378 possible

pairwise comparisons, without replacement. Random samples are the same size as the

observed sample of pairwise comparisons (N = 42). The observed average index (for sequence

similarity or distance between start positions) is then simply compared to the distribution of

averages from 100,000 random samples. This generates a one-tailed p-value for the observed,

within-functional-group index.

Mapping functional groups onto the var recombination network

To address whether homology block functional groups reflect var recombination groups, and

in particular the cys-2 var gene distinction, we first created a recombination network of var
genes (Fig 6). We accomplished this by representing the var DBLα sequence types as nodes,

connected by edges representing historical recombination events. For this visual analysis we

only consider the DBLα types that occur within the single infection dataset more than once—a

very restrictive criterion that dramatically reduces the number of sequence types, and thus, the

size of the resulting network. We connect nodes with an edge when the DBLα types share any

homology block other than the three most pervasive ones (HB 5, HB 14 and HB 36) that are

present in>50% of the sequences. After constructing this var recombination network, we map

cys-2 var genes onto it. One of the most robust functional groups among var types that has

been described previously is the cys-2 group, and these var types can be inferred directly from

the DBLα tag region based on the number of cysteines within the tag (i.e., by the presence of

exactly two cysteines within the DBLα sequence tag). While defined differently than group A

var genes, the cys-2 var group correlates tightly with the group A var group, and the expression

of group A var genes has been shown to correlate with severe malaria symptoms in multiple

populations [12]. DBLα sequence tags containing other number of cysteines correlate with

group B and C var types, and these have been associated with mild and/or asymptomatic

malaria generally—although there are notable exceptions [12].

Supporting information

S1 CodeAndData. A compressed file containing all the code and data needed to run the

main analysis of this study. The data is in the form of a CSV file with the homology block

presence/absence state for each of the var types used in this study. The code files are written in

R.
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