
1SciEntific RePorts |         (2018) 8:17298  | DOI:10.1038/s41598-018-35487-0

www.nature.com/scientificreports

Feature Ranking in Predictive 
Models for Hospital-Acquired  
Acute Kidney Injury
Lijuan Wu1,2, Yong Hu1,2, Xiaoxiao Liu1,2, Xiangzhou Zhang   1,2, Weiqi Chen1,2, Alan S. L. Yu   3, 
John A. Kellum4, Lemuel R. Waitman5 & Mei Liu5

Acute Kidney Injury (AKI) is a common complication encountered among hospitalized patients, 
imposing significantly increased cost, morbidity, and mortality. Early prediction of AKI has profound 
clinical implications because currently no treatment exists for AKI once it develops. Feature selection 
(FS) is an essential process for building accurate and interpretable prediction models, but to our best 
knowledge no study has investigated the robustness and applicability of such selection process for 
AKI. In this study, we compared eight widely-applied FS methods for AKI prediction using nine-years 
of electronic medical records (EMR) and examined heterogeneity in feature rankings produced by the 
methods. FS methods were compared in terms of stability with respect to data sampling variation, 
similarity between selection results, and AKI prediction performance. Prediction accuracy did not 
intrinsically guarantee the feature ranking stability. Across different FS methods, the prediction 
performance did not change significantly, while the importance rankings of features were quite 
different. A positive correlation was observed between the complexity of suitable FS method and 
sample size. This study provides several practical implications, including recognizing the importance 
of feature stability as it is desirable for model reproducibility, identifying important AKI risk factors for 
further investigation, and facilitating early prediction of AKI.

Acute Kidney Injury (AKI) is a common and highly lethal clinical problem in patients, affecting up to one in 
five hospitalized adults worldwide1. Early prediction or detection of AKI has profound clinical implications but 
remains a major challenge2. Data-driven approaches that incorporate “big” electronic medical record (EMR) data 
has presented a unique analytic opportunity for AKI, meanwhile a variety of feature selection (FS)3–5 methods 
have been developed to tackle the issue of high dimensionality of EMR data.

Feature selection (FS), including three broad categories6: filter, wrapper and embedded methods3–5, has 
become an essential part for developing EMR based predictive models. In AKI predictive modeling, logistic 
regression with backward or forward selection (wrapper method) is often used to select a subset of features for 
model building7; chi-squared test (filter)8, random forest (embedded)9, and gradient boosting machine (embed-
ded)10 have also been applied to illustrate the feature importance and ranking in AKI prediction. With the 
increasing variety of feature selection methods and their frequent utilization in the health informatics research 
community, new questions arise, namely there is no systematic way to choose the most appropriate feature 
selection method for a given domain and problem, which often depends on two aspects11: (a) the stability of FS 
ranking with respect to different samples, and (b) the prediction accuracy of FS subset effectively representing 
the entire data. In the context of clinical data analysis, a stable feature selection technique is desirable because 
selection of relevant clinical risk factors for a given disease on different subsampling of patients should produce 
similar results. However, most research ignore this aspect and only consider the obtained feature ranking list from 
a particular method or data sample as a standard and unequivocal result.
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To the best of our knowledge, no study has investigated the robustness and applicability of different feature 
selection techniques and their influence on AKI prediction and risk factor importance ranking. In fact, robust-
ness of feature selection methods has only received attention recently in biomedical applications such as gene and 
SNP selection, and cancer diagnostics12,13. Haury et al.14 investigated the influence of FS methods on accuracy, 
stability and interpretability of molecular signatures, and found that the simple filter methods can outperform 
more complex wrapper or embedded methods. On the contrary, FS methods involving reduced exhaustive search 
was demonstrated to outperform simple filter methods in another study15. The research by Drotár et al.11 stressed 
the fact that there is no unique and single solution to the issue of feature selection, and comparative research is 
important for understanding FS methodology in specific application domains.

In this study, we used nine years of EMR data from a tertiary academic hospital to compare the behavior of 
eight state-of-the-art FS methods from three aspects: stability of AKI predictor rankings with respect to data 
sampling variation, similarity between selection results, and AKI prediction performance. The main objective 
is to investigate which FS method is more suitable for AKI prediction and predictor importance ranking from 
high-dimensional EMR data.

Results
The final analysis cohort of the present study consists 76,957 eligible hospital encounters, including all adult 
patients (age at visit ≥18) who were hospitalized for at least two days from November 2007 to December 2016. 
Detailed summary of patient demographics in the final analysis cohort is presented in Table 1. In this study, we 
modeled AKI severity stages separately. Overall AKI occurred in 7,259 (9.43%) encounters with 6,396 (8.31%) 
at stage 1,678 (0.88%) at stage 2, and 185 (0.24%) at stage 3. Total number of clinical variables collected for each 
hospital encounter is 1917 (details in Table 2). The flow chart in Fig. 1 illustrates the entire FS comparison exper-
iment conducted in this study.

Feature stability analysis.  Stability analysis of each FS method with respect to sampling variation was eval-
uated as a function of top-k (i.e., the number of top-ranking features) where k = 10, 20, …, 200 over 100 different 
bootstrapped samples. Figure 2 shows the stability trend of each FS method with top-k (10–200) features for AKI 
stages 1–3. When comparing the stability results, the unsupervised multivariate filter method Laplacian score 
(LS) achieved the highest stability values for the AKI datasets.

To obtain a more reliable ranking list based on the same method, aggregation of feature rankings from var-
ious bootstrapped data samples was conducted as shown in Fig. 1. Then, we compared the similarity between 
eight FS methods based on their aggregated rankings. Table 3 compares the similarity of the selected features 
between eight feature selection methods for AKI stages 1–3. Both multivariate filter methods, e.g. LS and local 
learning-based clustering with feature selection ILFS (LLCFS), and embedded methods, e.g. gradient boosting 
machine (GBM) and random forest (RF) algorithms, showed a high degree of similarity. On the contrary, LS and 
another filter method minimum redundancy-maximum relevance (mRMR) procedure returned the most dis-
similar results. Supplementary Table S5 contains details on the top-50 feature sets obtained by eight FS methods, 
which may serve as basis for further knowledge discovery.

Prediction accuracy.  In terms of prediction performance, as shown in Fig. 3, the area under the receiver 
operating curve (AUC) increased significantly at the beginning with the increasing number of top features 
included, and then plateaued around 50. Interestingly for AKI stages 1 and 2 predictions, different feature selec-
tion methods converged to a similar AUC after top-200 features were included in the model, while for AKI 
stage-3 prediction in which much smaller set of samples was available, AUC varied greatly across methods even 
after top-200 features were included. Among the eight feature selection methods, the complex embedded GBM 
technique achieved the best prediction performance in most cases. The best AUC for prediction was 0.76 (95% CI, 

Characteristic n (%)
AKI-1 
(n = 6,396)

AKI-2 
(n = 678)

AKI-3 
(n = 185)

non-AKI 
(n = 69,698) P value

Age, year

18–25 303 (4.74) 29 (4.28) 25 (13.51) 4596 (6.59) <0.001

26–35 514 (8.04) 44 (6.49) 23 (12.43) 7339 (10.53) <0.001

36–45 711 (11.12) 76 (11.21) 25 (13.51) 8601 (12.34) 0.004

46–55 1218 (19.04) 157 (23.16) 35 (18.92) 14374 (20.62) 0.016

56–64 1672 (26.14) 185 (27.29) 49 (26.49) 16192 (23.23) <0.001

>64 1978 (30.93) 187 (27.58) 28 (15.14) 18596 (26.68) <0.001

Race

White 4791 (74.91) 487 (71.83) 130 (70.27) 53177 (76.30) <0.001

African American 918 (14.35) 111 (16.37) 36 (19.46) 9336 (13.39) 0.003

Asian 45 (0.70) 7 (1.03) 2 (1.08) 600 (0.86) 0.302

Other 642 (10.04) 73 (10.77) 17 (9.19) 6585 (9.45) 0.079

Gender

Male 3822 (59.76) 378 (55.75) 109 (58.92) 37850 (54.31) <0.001

Table 1.  Clinical demographics of patients in the analysis cohort. Note: P value for the comparison of any AKI 
and non-AKI group was obtained by using Chi-square test.
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0.75–0.76) for AKI stage 1, 0.80 (95% CI, 0.80–0.81) for AKI stage 2, and 0.82 (95% CI, 0.81–0.84) for AKI stage 
3, respectively. As the AUC increment from additional features across all feature selection methods appear to slow 
down drastically after top-50 features, this suggest that the minimum feature number required for accurate AKI 
prediction may be 50.

Trade-off analysis of stability and accuracy.  Although stability matters, stability alone is not a good 
quality measure because one could conceive a trivial selection algorithm which always returns the same features. 
We stress the importance of stability as a criterion for choosing an appropriate FS method; however, the selection 
criteria should not be only based on the stability because a stable ranking is not necessarily accurate. For example, 
LS performed quite well in terms of stability but achieved rather poor AUC with top-50 features (see Figs 2 and 3),  

Feature Category
# of 
Variables Details

Demographics 3 Age, gender, race

Patients’ status 5 BMI, diastolic BP, systolic BP, pulse, temperature

Lab tests 14
Albumin, ALT, AST, Ammonia, Blood Bilirubin, 
BUN, Ca, CK-MB, CK, Glucose, Lipase, Platelets, 
Troponin, WBC

Comorbidities 29 University Health System Consortium (UHC) 
comorbidity

Admission diagnosis 315 University Health System Consortium (UHC) 
APR-DRG

Medications 1271 All medications are mapped to RxNorm 
ingredient

Medical History 280 ICD9 codes mapped to CCS major diagnoses

Table 2.  Clinical variables considered in the encounters.

Figure 1.  The comparison flow chart of feature selection methods. (t denotes the feature ranking of tth 
bootstrap samples, where 0 < t ≤ 100; i (or j) stands for ith (or jth) feature selection method, where 1 ≤ i, j ≤ 8).
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Figure 2.  The stability of different feature selection methods.

AKI Methods Chi2 ILFS ReliefF LS LLCFS mRMR RF GBM

Stage 1

Chi2 1.00 0.32 0.30 0.22 0.25 0.35 0.28 0.35

ILFS 1.00 0.39 0.35 0.45 0.25 0.45 0.35

ReliefF 1.00 0.41 0.45 0.19 0.64 0.39

LS 1.00 0.59 0.12 0.52 0.25

LLCFS 1.00 0.22 0.61 0.30

mRMR 1.00 0.25 0.45

RF 1.00 0.45

GBM 1.00

Stage 2

Chi2 1.00 0.32 0.32 0.27 0.30 0.56 0.45 0.39

ILFS 1.00 0.39 0.35 0.37 0.27 0.39 0.33

ReliefF 1.00 0.37 0.43 0.27 0.52 0.39

LS 1.00 0.79 0.19 0.47 0.30

LLCFS 1.00 0.23 0.52 0.32

mRMR 1.00 0.37 0.41

RF 1.00 0.52

GBM 1.00

Stage 3

Chi2 1.00 0.20 0.25 0.22 0.20 0.54 0.27 0.37

ILFS 1.00 0.22 0.27 0.28 0.18 0.28 0.28

ReliefF 1.00 0.30 0.30 0.25 0.32 0.28

LS 1.00 0.79 0.16 0.45 0.30

LLCFS 1.00 0.15 0.47 0.32

mRMR 1.00 0.23 0.33

RF 1.00 0.56

GBM 1.00

Table 3.  Similarity of the 8 feature ranking methods with top 50 features.
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and vice versa, GBM performed well in terms of AKI prediction with top-50 features but achieved rather poor 
stability (see Figs 2 and 3).

Hence, others have argued that stability needs to be assessed together with classification performance16. 
Figure 4 illustrates this important trade-off between stability and prediction performance of eight FS methods 
for each AKI stage. When considering the trade-off between stability and accuracy in choosing an appropriate 
FS method, we found that the choice depends on the sample size. More specifically, the multivariate embedded 
RF method appeared to be more suitable for AKI-1 that have larger number of samples, the multivariate filter 
Relief-F method seemed to be more appropriate for AKI-2 with medium number of samples, and the univariate 
filter Chi-square test approach was better for small AKI-3 samples.

Risk factor identification and knowledge discovery.  Although different feature selection methods 
have their own specific criteria for ranking these features, some features are more frequently selected by the meth-
ods compared to others. Table 4 shows the top 10 features selected by eight FS methods for AKI stages 1–3, and 
their corresponding frequency information is illustrated in the Supplementary Table S4. Meanwhile, the top 50 
features selected by eight FS methods for AKI stages 1–3 are shown in the Supplementary Table S5. In addition, 

Figure 3.  The prediction performance of different feature selection methods.
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in Supplementary Table S6, we summarized AKI predictors that not only ranked among the top-50 in this study, 
but also supported by existing literature.

Traditionally known AKI risk factors include inherent risk factors and medication exposure/disease-related 
AKI risk factors. Considering the inherent risk factors, namely the susceptibility of each individual patient, age 
is one of the most important risk factors for AKI, for example, previous research found that age is so substantial 
that other risk factors (e.g., sepsis, hypertension and nephrotoxins) lost their prediction ability for AKI among 
patients older than 75 years17. In our study, age ranked first by two FS methods as shown in Table 4. Other inher-
ent risk factors for AKI are those associated with reduced kidney reserve or failure of other organs with known 
cross-talk with the kidneys (e.g., heart, liver, and respiratory system)18. As shown in Tables 4 and S4, those related 
features (e.g. DRG178, DRG179, COM2, COM24, and CCS219) received higher rankings. Medication expo-
sure/disease-related AKI risk factors include exposure to nephrotoxins (i.e., non-steroidal anti-inflammatory 
drugs, antibiotics), and some disease-related procedures and surgeries, such as vancomycin (MED321), supro-
fen (MED1212), liver transplant (DRG0), and tracheotomy w/dmv w exten proc (DRG3) were all identified as 

Figure 4.  The trade-off between stability and prediction performance.
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important factors in this study. Moreover, tazobactam, a known nephrotoxic drug, was ranked second among all 
risk factors for AKI across four FS methods.

In recent years, there have been several reports regarding novel and previously unknown risk factors for AKI, 
such as hyperuricemia19, hypoalbuminemia20, obesity21, obstructive sleep apnea22, hypochloremia and hyperchlo-
remia23. In our study, BMI and obesity (COM2) were both selected in the top ten by several FS methods as shown 
in Table 4. Furthermore, laxatives medicines such as magnesium sulfate and polyethylene glycol 3350 have been 
identified by previous studies as prerenal cause of AKI24, but were not used in existing AKI prediction models.

Other top-ranked features or potential risk factors warrant further analysis for new knowledge discovery. As 
shown in Table 4, medication appeared more frequently in the top 10 features across FS methods, which implies 
their important role in AKI prediction. Since medications are modifiable factors, they can be embedded into 
clinical decision support systems to generate actionable alerts in effort to prevent AKI.

Discussion
EMR-based prediction and risk factor discovery is a crucial problem with enormous applications in medicine 
such as prognosis, patient stratification in clinical trials and prediction of disease risk or response to a given 
treatment. Feature selection has been extensively studied for many years and has found applications in many 
domains, especially for problems involving high dimensional data25–27. However, stability is a major issue for 
feature selection, especially in the context of sample variation. Such stability or robustness of the selection process 

AKI Chi2 ILFS ReliefF LS LLCFS mRMR RF GBM

Stage 1

MED134 MED746 MED1086 Age Pulse MED134 Age WBC

MED1086 MED1100 WBC Temperature Systolic BP MED1086 Pulse MED1086

MED516 MED582 MED321 Pulse BMI WBC WBC MED1039

BUN MED880 Glucose WBC WBC Glucose BMI MED134

WBC MED308 MED12 BMI BUN MED548 Systolic BP CCS58

MED548 Calcium MED880 Systolic BP Age MED1039 MED1086 BUN

MED746 Glucose MED134 AST Glucose BUN MED134 COM24

MED939 MED134 Calcium BUN AST DRG0 BUN DRG179

MED321 WBC Age Glucose Bilirubin DRG3 Calcium DRG97

MED880 MED139 MED677 Diastolic BP Temperature COM2 MED516 MED319

Stage 2

MED1086 MED1100 MED1086 Age Age MED1086 MED1086 WBC

MED321 Calcium Glucose Temperature BMI WBC Age MED1086

MED516 MED582 MED321 Pulse Pulse DRG0 WBC DRG261

WBC WBC WBC BMI Systolic BP COM12 MED321 DRG0

DRG261 MED746 MED655 WBC WBC DRG261 Systolic BP MED1039

DRG0 MED321 MED880 Systolic BP AST MED516 Pulse MED677

Glucose MED134 MED12 AST Glucose Glucose BMI MED321

Bilirubin Glucose AST Diastolic BP BUN Temperature MED516 COM2

Temperature MED1086 MED134 MED655 MED655 Bilirubin Glucose Calcium

MED548 Albumin COM12 MED314 Platelets COM2 Diastolic BP DRG3

Stage 3

MED1086 MED321 DRG178 Age Age MED1086 Age Age

MED321 Glucose DRG3 Temperature WBC DRG0 Systolic BP MED1086

DRG0 MED1086 DRG97 Pulse Pulse Systolic BP MED1086 MED321

Temperature WBC MED1086 BMI BMI Temperature Pulse MED516

MED516 BMI COM24 Systolic BP Systolic BP WBC Diastolic BP Temperature

DRG3 MED139 CCS71 WBC AST MED314 BMI DRG261

Systolic BP MED308 MED314 AST BUN DRG3 MED321 DRG0

DRG261 Systolic BP BMI Diastolic BP Diastolic BP COM12 Temperature WBC

WBC MED582 DRG0 MED655 Platelets MED321 WBC CCS219

DRG263 MED880 COM12 MED314 Temperature DRG261 MED314 MED314

Table 4.  Top 10 features selected by 8 feature ranking methods for AKI stages 1–3. Abbreviation: DRG0: 
Liver transplant; DRG3: Tracheotomy w/dmv w exten proc; DRG97: Maj small & large bowel proc; DRG178: 
Kidney/urinary trach malignancy; DRG179: Kidney/urinary trach-nonmalig; DRG261: Infect & parasitic 
disease; DRG263: Septicemia & dissem infect; COM2: Renal failure; COM12: Obesity; COM24: Hypertension; 
MED12: oxycodone; MED134: benzoic acid; MED139: 1,2,6-hexanetriol; MED308: (all-z)−4,7,10,13,16-
docosapentaenoic acid; MED314: lactate; MED319: amphotericin b liposome; MED321: vancomycin; MED516: 
glucose; MED548: insulin regular, human buffered; MED582: levofloxacin; MED655: calcium chloride; 
MED677: polyethylene glycol 3350; MED746: insulin, aspart, human/rdna; MED880: heparin, porcine; 
MED939: amiodarone; MED1039: aldesleukin; MED1086: tazobactam; MED1100: magnesium sulfate; CCS58: 
Cystic fibrosis; CCS71: Skin and subcutaneous tissue infections; CCS219: Cancer of liver and intrahepatic bile 
duct.
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with respect to sample variation has profound impact on the confidence of an expert in the results for further 
clinical validation. Additionally, from a practical point of view, the ranking list of feature variables from EMR data 
is often as important as the value of the statistic. Most often the ranking list determines whether the feature would 
be selected for future analysis in the process of research projects. Hence providing a reliable list of top-ranking 
features is of great significance.

This study explored the use of FS techniques for AKI prediction and risk factor identification from EMR data. 
By comparing eight different FS algorithms on a large number of bootstrapped samples, we analyzed and dis-
cussed on which FS method is more suitable for AKI prediction from three aspects: stability, similarity between 
selected features and prediction performance. Some interesting results were found: (1) feature ranking lists 
showed considerable variability across different data samples and FS techniques; (2) prediction accuracy did not 
intrinsically guarantee feature stability; (3) prediction performance did not vary significantly across FS methods; 
however, the final set of selected features was quite different; and (4) a positive correlation was observed between 
the complexity of suitable FS method and sample size.

An important aspect of FS analysis while under-considered in the literature is the variability of the obtained 
ordered lists of selected features. Ranked feature lists may be highly instable in the sense that different feature 
selection method may yield different rankings, and that changes in data set also affects the obtained feature rank-
ing considerably. As shown in Fig. 2, the stability of different FS methods presented diverse trends with the 
increase of the number of top-k features. In particular, LS (unsupervised multivariate filter method) showed a 
steady tendency and the stability of ILFS (supervised multivariate filter method) decreases as the number of top-k 
feature sets while the stability of LLCFS (unsupervised multivariate filter method) increases as top-k increases. 
Besides, most of filter FS methods are more stable than those complex embedded FS on smaller samples (e.g., 
AKI-3). With smaller number of samples, the ranking output of univariate Chi-square test outperformed that of 
most multivariate FS methods in terms of stability.

In short, ideal rankings should have high stability and low bias (i.e., high reliability); however, “reliability” in 
the context of EMR feature ranking for AKI prediction is difficult to define because the absolute truth is unknown. 
Therefore, in this study, we chose to assess the reliability not only by prediction performance of AKI using the 
top-ranked features, but also by comparing the obtained top-ranking features with previous medical knowledge 
as shown in Supplementary Table S6. Moreover, we observed that the top-ranked features selected by Chi-square 
method are often those having a higher relative percentage than that of non-AKI samples (e.g., medication fac-
tors); the multi-valued discrete variables (such as demographics, patient’s status and lab test categories) would 
receive higher rankings from the unsupervised multivariate filter methods LS and LLCFS.

Strengths and Limitations.  Our study leveraged nine-years of EMR data containing 76,957 eligible hos-
pital encounters and compared eight widely-applied FS methods for AKI prediction. A positive correlation was 
observed between the complexity of suitable FS method and sample size. This study provides several practical 
implications, including recognizing the importance of feature stability as it is desirable for model reproducibility, 
identifying important AKI risk factors for further investigation, and facilitating early prediction of AKI.

Our analysis has a few limitations. First, the ranking lists were based on a single-center data, and external 
validation in other institutions would improve generalizability28. Second, we limited the analysis to patients who 
were admitted to the hospital with a minimum eGFR of 60 ml/min/1.73 m2 and had normal serum creatinine 
on the day of admission. Although patients with reduced estimated glomerular filtration rate (eGFR) are at 
increased risk for AKI, in this study it is difficult to determine which of these patients had hospital-acquired vs 
community-acquired AKI without adequate longitudinal assessment of kidney function. Third, we only selected 
lab tests based on previous literature for AKI prediction, not all lab values such as anemia data (i.e., RBC or HGB) 
were included. Since the selected features varied across AKI stages, identifying specific rules that explain the 
difference is an interest in our future work. In addition, we also plan to study the issue of adding the important 
“timing of AKI” and temporal information in EMR for the prediction task. Finally, the study did not use urine 
output to define AKI nor include it as a risk variable. Although urine output is one of the diagnostic criteria of 
AKI, it may not be specific enough for designation of AKI because it can be influenced by factors other than renal 
health and urine output is not frequently collected among the general inpatient population.

In conclusion, our study investigated the behaviors of eight popular state-of-the-art feature selection methods 
in terms of stability with respect to data sampling variation, similarity between selection results, and AKI pre-
diction performance. Our results illustrated that (1) stability does not intrinsically guarantee prediction accuracy 
and vice versa, (2) only when the sample size is large enough, complex FS methods should be used, otherwise, 
a simple FS method is more suitable. Furthermore, many medication features were observed to be important 
predictors of hospital-acquired AKI, which has important implications for clinical practice and research as they 
can be embedded into clinical decision support systems to generate actionable alerts for physicians to modify 
treatment on patients at high AKI risk.

Methods
Study Population.  A retrospective cohort was built from the University of Kansas Medical Center’s (KUMC) 
de-identified clinical data repository called HERON (Health Enterprise Repository for Ontological Narration)29 
containing EMR data from the University of Kansas Health System (KUHS), which is a tertiary academic medical 
center with >700 staffed beds and >25,000 inpatient admissions per year. No IRB approval was required for this 
study as the data used met the de-identification criteria specified in the HIPAA Privacy Rule. Our de-identified 
data request was approved by the HERON Data Request Oversight Committee (DROC) composed of represent-
atives from KUMC and participating clinical organizations.

The research cohort included all adult patients (age at visit ≥18) who were hospitalized for at least two days 
from November 2007 to December 2016. Given that a patient may have multiple hospital admissions (encounters) 
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of at least two days and develop AKI during one but not another, this study was conducted at the encounter level 
with a total of 179,370 encounters. From those encounters, we excluded those (a) missing necessary data for 
outcome determination, i.e. less than two serum creatinine measurements and (b) had evidence of moderate 
or severe kidney dysfunction at admission, i.e. estimated Glomerular Filtration Rate (eGFR) less than 60 mL/
min/1.73 m2 or abnormal serum creatinine (SCr) level of >1.3 mg/dL within 24 hours of hospital admission. The 
final analysis cohort consisted of 76,957 encounters.

AKI Definition.  AKI and its stages of severity were defined according to the Kidney Disease Improving 
Global Outcomes (KDIGO) serum creatinine criteria24 (see Supplementary Table S1). Baseline SCr level was 
defined as either the last measurement within two-day time window prior to hospital admission or the first SCr 
measured after hospital admission. All SCr levels measured between admission and discharge were evaluated to 
determine the occurrence of AKI. Out of the total 76,957 encounters in the final analysis cohort, 7,259 encounters 
had any AKI of stage 1, 2, or 3 (total 9.43%) and 69,698 had no AKI events.

Clinical Variables.  For each hospital encounter in the final analysis cohort, we extracted EMR data types 
including demographic information, admission and discharge dates, medications, laboratory values, past medical 
diagnoses, comorbidities, and admission diagnosis. Details of the clinical variables considered are available in 
Table 2. This study explored the entirety of the above mentioned EMR data types except for laboratory tests where 
a selected list of labs that may represent potential presence of a comorbidity correlated with AKI30 was consid-
ered. SCr and eGFR were not included as predictive variables as they were used to determine the outcome AKI vs 
non-AKI. Laboratory values were categorized as “unknown”, “less than standard value”, “the standard value”, or 
“more than the standard value”. Patients’ status was categorized into groups as shown in Supplementary Table S2.

Medication exposure included inpatient (i.e. dispensed during stay) and outpatient medications (i.e. med-
ication reconciliation and prior outpatient prescriptions). All medication names were normalized by mapping 
to RxNorm ingredient. Comorbidity and admission diagnosis, i.e., all patient refined diagnosis related group 
(APR-DRG) variables were collected from the University Health System Consortium (UHC; https://www.
vizientinc.com) data source in HERON. Patient medical history was captured as major diagnoses (ICD-9 
codes grouped according to the Clinical Classifications Software (CCS) diagnosis categories by the Agency for 
Healthcare Research and Quality). Medical history, medication, comorbidity and admission diagnosis were all 
binary variables.

Data Processing.  For the patients’ status and laboratory values, variables missing in more than 30% of the 
population were excluded31, otherwise the median value across the entire cohort for the variable was imputed8. 
Only the most recently recorded patients’ status and labs before the AKI prediction point were used for each 
sample. Medication exposure was defined as true if it is taken within 7-days before the AKI prediction point. 
Categorical differences were tested with chi-squared tests of homogeneity. Statistical analysis was conducted using 
MATLAB version R2015b and two-tailed P values < 0.05 denoted statistical significance for all comparisons.

Feature Selection Methods.  Eight popular state-of-the-art feature selection methods were analyzed as 
representatives of different FS approaches, including: Chi-square test (Chi2), Infinite latent feature selection 
(ILFS)32, Relief-F (ReliefF)33, Laplacian score (LS)34, Local learning-based clustering with feature selection ILFS 
(LLCFS)35, Minimum redundancy-maximum relevance (mRMR)36, Random forests (RF)37,38, and Gradient 
boosting machine (GBM)39. Supplementary Table S3 describes their categories and computing complexity. We 
did not include wrapper methods due to its high computational complexity and inability to produce a ranked list 
of features.

Evaluation Protocol.  In order to measure stability of feature selection methods with respect to sampling 
variation, we generated variations of the original dataset through the bootstrapping sampling technique, which 
is by far one of the most widely used sampling procedures. Since aggregated ranking over multiple subsampled 
datasets are often believed to be more reliable than rankings obtained from a single dataset, we aggregated a 
collection of outputs from t (here t = 100) bootstrap samples by averaging the feature importance scores or coef-
ficients for a specific FS method. Using the aggregated result from each FS method, we assessed prediction per-
formance for each of the AKI stages (1, 2, and 3) vs non-AKI and used similarity index to quantify the variability 
across multiple FS methods. The entire evaluation protocol is illustrated in Fig. 1.

Let us formalize the evaluation measures as follows. The term ‘data set’ denotes a pair D = (X, y), where the 
n × m matrix = = … = … .X x i n j m( ), 1, 2, ; 1, 2, ,ij  If l is a ranking list, the ≤k k m( ) top features would be 

…l l l, , , k1 2 . For instance, biomedical articles often report top-20 or top-50 lists. For the sake of simplicity, in this 
study we considered top-ranking variables only.

Stability.  Stability over different bootstrapped samples but with the same FS technique was obtained by 
Kuncheva similarity measure15. For a given feature set size m, let t be the number of bootstrapped datasets, si and 
sj be the selected feature subsets, where = = | |s sh i j , and ∩= | |s sr i j . The Kuncheva Index = ⋅ −

⋅ −

r m h
h m h

2

2  is a stabil-
ity index between si and sj that takes into account the probability that a feature is selected by chance, which could 
avoid the tendency to increase when the h approaches the m and ensures that the stability has high value only if it 
exceeds the stability by chance40. Then stability index can be defined as

https://www.vizientinc.com
https://www.vizientinc.com
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Similarity.  We applied Tanimoto distance41 to evaluate the similarity of different FS methods. Let si, sj be the 
selected feature subsets obtained by FSi and FSj, respectively. The similarity index is denoted as follows:

∩
∩

= −
| + | | − | |

| | + | | − | |
s s

s s s s
s s s s

Sim( , ) 1
2

(2)
i j

i j i j

i j i j

Prediction.  To compare prediction performance of different FS methods, we implemented Random Forest clas-
sifiers39 trained over each AKI stage vs non-AKI using the top-k feature ranking set. Random Forest was chosen 
as the base classifier because it is easy to tune, robust to overfitting, and often demonstrates better performances 
than other standard classifiers42. Area under the receiver operating characteristic (AUC)43 curve was calculated as 
the evaluation metric for prediction performance using a 10-fold cross-validation scheme.

Data Availability Statement
Due to patient privacy concern, we will not be able to make the EMR dataset used in this study available to the 
public. Other materials including methods and programming codes will be made available to all readers.
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