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Abstract
Background: Computer simulations are of increasing importance in modeling biological
phenomena. Their purpose is to predict behavior and guide future experiments. The aim of this
project is to model the early immune response to vaccination by an agent based immune response
simulation that incorporates realistic biophysics and intracellular dynamics, and which is sufficiently
flexible to accurately model the multi-scale nature and complexity of the immune system, while
maintaining the high performance critical to scientific computing.

Results: The Multiscale Systems Immunology (MSI) simulation framework is an object-oriented,
modular simulation framework written in C++ and Python. The software implements a modular
design that allows for flexible configuration of components and initialization of parameters, thus
allowing simulations to be run that model processes occurring over different temporal and spatial
scales.

Conclusion: MSI addresses the need for a flexible and high-performing agent based model of the
immune system.

Background
Computer simulations are becoming increasingly impor-
tant in biological research, complementing both labora-
tory experiments and the venerable models of
mathematical biology. While the line between mathemat-
ical modeling and simulation is somewhat indistinct, sim-
ulation typically incorporates a greater level of biological
detail than mathematical models, facilitating the map-
ping between the biological and formal representations at
the cost of increased complexity and reduced analytical
tractability. This more direct correspondence allows sub-

ject-matter specialists with little mathematical experience
to participate in the design and interpretation of compu-
tational experiments more easily; a consideration of great
importance for the evolution and improvement of the
model.

We have undertaken the development of an individual
cell-based simulation system comprising components of
the immune system, based on the relevant biophysics and
intracellular dynamics, to help elucidate the early
immune response to vaccination and natural infection.
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We believe that such a framework for immunological sim-
ulations can be used to explore the details of molecular
and cellular dynamics, in much the same way as a new
optical technology such as two-photon microscopy has
radically advanced our understanding of leukocyte
dynamics by permitting visualization of in vivo cell motil-
ity and interactions. The construction of realistic complex
spatiotemporal simulations, however, is relatively new to
mathematical and theoretical immunology, and poses sig-
nificant software engineering challenges with which few
researchers in the field will be familiar.

The immune response to an antigenic challenge such as
vaccination consists of processes occurring over several
temporal and spatial scales, from intracellular signaling
(seconds to minutes), to the complex spatial reorganiza-
tion that occurs in the draining lymph nodes some dis-
tance away (hours to days). The outcome depends on
interactions between several cell types communicating by
direct cell-cell contact and over short distances by diffusi-
ble small messenger molecules known as cytokines, and
on the interactions of the motile immune cells, known as
leukocytes, with the resident parenchymal cells. Adding to
the complexity, all these interactions may be modulated
by the local extracellular matrix, which guide the motions
of leukocytes and provide a substrate upon which bound
cytokines interact with these cells. While many of these
individual interactions have been studied in detail exper-
imentally, there is yet little real understanding of how
these components add up to produce a coherent immune
response. The reconstructive approach embodied by com-
putational simulation holds promise for effecting the nec-
essary synthesis.

We therefore describe the challenges and trade-offs inher-
ent in building such a simulation, and our specific
choices, in the hope that other researchers will gain a bet-
ter understanding of the issues involved and consequently
make more informed software engineering choices.
Finally, we compare our package with two closely related
simulation software packages with similar goals, namely
Compucell [1-3] and Simmune [4,5], that illustrate com-
plementary approaches to engineering complex immune
simulation software.

Implementation
Development Environment
The first decision was that of programming language. We
wanted a design driven by the immunological domain we
are simulating, while maintaining the high performance
necessary for such a complex simulation, which would
have to deal with reaction-diffusion equations as well as
the intracellular dynamics and interactions of thousands
to millions of leukocytes and parenchymal cells. Our spe-
cific needs for a language included support for robust

pseudorandom number libraries, multi-dimensional
arrays and parallel computation. While languages such as
Fortran and C fit these requirements well, they failed at
our other requirement of a flexible high-level interface for
description of the model domain. C++ includes C as a
subset while providing high-level object-oriented facili-
ties, and also has the advantage of being well-known and
familiar to the scientific community. For better or worse,
C++ has strong static typing, and this basic feature to a
large extent dictates usage of the language. Strongly typed
languages are comparatively inflexible and are poorly
suited to rapid development, particularly in exploratory
modes of programming. As a compromise, we opted to
use a mixed language environment, where an interpreted
dynamically typed language extends a statically typed
compiled language. This hybrid system to some extent
inherits the advantages of both languages.

For pragmatic reasons, we decided on a Python/C++
hybrid. Python is a popular object-oriented interpreted
language in widespread use as a scripting language, but it
also has good and ever-improving scientific support. It is
also well-suited as a glue language, facilitating the connec-
tion of the base simulation code with databases and visu-
alization systems. An important technical tool that made
such a hybrid system feasible was the existence of the
Boost Python library [6], which offers a sophisticated C++
API to convert functions and data types automatically to
and from the two languages. One approach to exploiting
such a hybrid system is to code most of the simulation in
Python, using C++ only for the time-intensive routines.
We were constrained, however, by the need for high per-
formance and the consequent need to develop for imple-
mentation on Beowulf cluster architectures; the Python
MPI wrappers are, for this purpose, unacceptably slow.
We chose instead to create two functionally identical sys-
tems, one in Python and one in C++. Synchrony between
the two was enforced by writing a suite of Python unit
tests, which depending on a switch, tests either the Python
directly or C++ system via Boost Python wrappers. This
seems to enhance productivity: it is simpler to code and
test prototypes in Python and, at the appropriate point in
their development, port them to C++ than to develop and
test prototypes from scratch in C++. We also take advan-
tage of flexible and efficient arrays in Fortran by calling
individual Fortran routines from C++ for low level matrix
and vector computations.

Just as fundamental were the choices we made for our
software development environment. We chose to use the
distributed version control system Mercurial [7], because
a distributed version control system offered superior sup-
port for multiple developers in terms of branching, merg-
ing and disconnected operations. For software builds, we
chose Scons [8]. Among other benefits, Scons automati-
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cally manages file dependencies, and allows us to custom-
ize our build scripts using the full power of Python. We
elected to use Trac for bug and issue management, as it
allows us to manage version control, bug tracking and
documentation within the same web-based package. Not
coincidentally, all the tools we chose are Python based,
which makes it possible for us to extend these tools if nec-
essary.

Design
One of our design constraints was that the primary
domain for our simulation was molecular and cellular
immunology, not mathematics, physics or computer sci-
ence. At the least, this meant that we had to be able to
specify and describe a simulation run using the vocabu-
lary of immunology. Another constraint was that we were
constantly researching new prototypes, adding more func-
tionality to the system and investigating more efficient
data structures and algorithms for performance bottle-
necks, so the system had to be extensible; ideally, we
would be able to swap in new functionality for old with
minimal additional effort. To meet these constraints, we
decided on a hierarchical modular system. The implemen-
tation of such a system was naturally object-oriented, a
paradigm both C++ and Python support. At the top level,
we split the project into Catalog, Core and Graphics/Anal-
ysis modules. Within each of these were separate sub-
modules and classes that actually implemented the func-
tionality of the system. This organization allowed us to
develop individual modules independently, so long as
there was a standard API that allowed communication
between modules.

The Catalog module is a repository of biological and phys-
ical information. Its entries include, for example, parame-
ters governing the locomotion and behavior of specific
leukocyte types and the diffusion coefficients and reaction
rates of cytokines. The information in the Catalog is stored
in a PostgreSQL relational database, and simulation
classes are mapped to database tables using the strategy of
mapping each inheritance tree to a table. To facilitate data
entry into the Catalog, the Python library

SQLAlchemy citesqlalchemy was used to provide an
object-relational mapping, making it possible for devel-
opers to create new class specifications without knowing
SQL. Our plans call for the development of a web inter-
face to the Catalog, so that experimentalists and other
non-developers can contribute items to the database. After
describing the Experiment module, we will describe how
the Catalog is used to construct class entities in a simula-
tion at run-time.

The Core module is where the code for running a simula-
tion actually resides. To allow the description of a compu-
tational experiment using immunological terminology,
there are only a few base classes in the public interface that
a typical simulation is required to specify, namely Simula-
tion, Environment, Cell, Vessel and Soluble_factor (Figure
1). We have designed our classes to have a relatively flat
inheritance structure and to use abstract base classes
where possible. We find that this design promotes loose
coupling and facilitates maintenance.

Class composites and aggregates in the Core moduleFigure 1
Class composites and aggregates in the Core module. Top level classes (Environment, Vasculature, Cell, Solfac) are 
shown as diamonds and component classes that provide specific functionality as ovals. Instances of component classes are 
passed in as parameters to the constructor of its enclosing class for a flexible specification of the behavior of the top level 
classes. The Environment instance contains cell, soluble factor and vasculature instances which are autonomous and may inter-
act with each other.
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The Simulation class manages administrative tasks, with
the ability to run or step through a simulation and log
simulation details. It will also provide hooks to interface
with run-time logging, computational steering and visual-
ization systems when these are developed.

The Environment class represents a physical spatial vol-
ume, which may be simple, such as when modeling an in
vitro environment, or complex, such as when modeling
physiological tissue. Since our task allocation is done in a
parallel environment using a spatial decomposition, each
processor in a parallel run will contain its own Environ-
ment instance. Most of the work done by the Environ-
ment class is delegated to three private classes which
handle the reaction-diffusion equations (Diffusion), col-
lision detection (Occupation) and cellular immigration
and emigration (Trafic). Since these classes are an imple-
mentation of the well-known Strategy design pattern, it is
simple to upgrade the functionality provided by simply
pointing to a new class. For example, we recently replaced
the original forward Euler scheme with a Multigrid reac-
tion-diffusion algorithm [9], resulting in an order of mag-
nitude speedup. This was accomplished by simply
replacing the Diffusion class in Environment. The Envi-
ronment also serves as a container for various cell types
(Cell), blood and lymphatic vessels (Vessel), and various
cytokines and chemokines (Soluble_factor), and manages
the interactions among these components.

Similar to Environment, the Cell base class is also a com-
posite class, with distinct behaviors delegated to their own
classes, and hence also extensible. A cell's functional state
is given by, among other things, the local concentrations
of various proteins in each of their post-translationally
modified states (e.g., phosphorylated on specific resi-
dues). These characteristics of a protein are themselves
dynamically regulated, and typically modeled using non-
linear ordinary differential equations. Importantly, these
proteins determine the functional behavior of the cell,
and it is sufficient to couple cell behavior modules to
these protein concentrations to model cell stimulus-
response behavior. The protein readouts are encapsulated
in a State class, which tracks and exposes the fluctuating
protein levels. In our current implementation, there is a
mechanistic model that governs the protein levels, in
which the rates of protein synthesis and/or degradation
are governed by an explicit cascade involving model
classes for Receptors, Inducers, Promoters, Genes and reg-
ulatory Proteins. It would be straightforward, however, to
replace this mechanistic model with a probabilistic
model, or even a much more detailed mechanistic model
depending on the goals of the simulation. By having a
flexible granularity, we can study an immune response at
different levels of spatiotemporal resolution. When stud-
ying the behavior of individual cells, for example, we can

increase the resolving power, while for studying large pop-
ulation behaviors, a coarser approximation of internal cell
dynamics might be sufficient. Other behaviors like Motil-
ity and Secretion can then base the quality/quantity of
their response at any time step on the internal environ-
ment represented by the State class and/or the external
environment (e.g. concentration or gradient of various
cytokines or cell-cell contacts). This design allows an
extremely flexible stimulus-response coupling between
the internal and external cellular environments and cellu-
lar behavior. Because of the loose coupling and the ability
to change cellular behavior by "plug-in", an inheritance
hierarchy to represent the different cell types is not neces-
sary. Instead, we just "plug-in" different behavior mod-
ules for the various cell types to implement their observed
behaviors. In practice, this means that specific behaviors
for a particular cell type are implemented as instances of
their respective classes that are given to the cell class con-
structor as parameters.

The Vessel class is used for the representation of the blood
vessels that permeate host tissue. Leukocytes typically
enter tissue by migrating across the endothelial barrier at
capillaries, and egress at post-capillary venules to enter the
lymphatic system. The rate of entry and egress of various
cell types is regulated by pro-inflammatory cytokines,
which regulate the adhesiveness and permeability of the
blood vessels, as well as by chemokines, which influence
leukocyte migratory properties. Our implementation of
blood vessels is simple; the entry and egress vessels are
stored in matrices representing positions in space, and the
probability of cell trafficking at a point depends on the
permeability and adhesiveness of the corresponding
matrix entry, which in turn is sensitive to the local concen-
tration of the relevant soluble factors. We currently
assume that the blood vessels are homogeneously distrib-
uted; it is trivial to relax this assumption to reflect tissue
histology more accurately by masking certain matrix
entries.

The Soluble_factor class is essentially a container for a
array of concentrations, with a few accessor and mutator
methods for convenience and some basic attributes
including its diffusion coefficient. An instantiation of the
Soluble_factor class is made for every cytokine, chemok-
ine and other soluble factor of concern in the simulation.
The array is updated by the Diffusion class which takes
into account secretion from cellular sources, adsorption
by cells and extracellular matrix, binding reactions
between soluble factors, and diffusion. There are several
classes derived from Diffusion that represent different
methods for solving the diffusion problem, including a
forward Euler method and a backward Euler method
which incorporates multigrid.
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While the bundling of distinct behaviors into separate
classes certainly simplifies the dynamical configuration of
classes, their instantiation can be clumsy, accounting for a
significant proportion of the code required to run a simu-
lation. Biological cells, however once adequately charac-
terized, can be reused in many different simulations, just
as an experimentalist would use the same cultured cell
lines (possibly ordered from a catalog!) for many different
experiments. This was the idea driving the creation of the
Catalog module, and here we will describe how it is used
for instantiation of Experiment classes.

We started by writing generic code that could construct a
class instance without advance specification of the
instance type or even its constructor parameters. This
design provided the flexibility to easily incorporate new
classes in the database, or new subclasses of currently
existing types. To do so, we adopted the object factories
scheme, which allows flexible creation of object instances
using C++ templates [10].

We also extended the factory to take arbitrary constructor
parameters with partial template specialization, and
wrote a Python script to generate templates for up to 20
arbitrary constructor arguments. Our specific implemen-
tation of the factory pattern follows [11]. To create a fac-
tory for a particular class, we instantiate the factory and
register it with the appropriate constructor arguments
passed in as a string. While this process is a somewhat
involved, it has to be done only once for each class; the
typical user does not have to be exposed to any of it, since
all that is required once the infrastructure is in place is to
call a function such as create_cell("macrophage"), which
will call the appropriate constructor for a macrophage. As
described earlier, a cell such as a macrophage is a hierar-
chically organized composite class, and each subclass in
the hierarchy will require the appropriate parameters to
be passed in to its factory. We store the parameters for
instances of each class in the open source relational data-
base PostgreSQL, using foreign key constraints to relate
the correct subclass instances in any given object hierarchy
(Figure 2). Foreign key constraints allow one field in a
database table to refer to fields in another table, allowing
information retrieval from tables with a matching entry.
The component parameters can then be retrieved via such
foreign key references when a specific cell type like macro-
phage is constructed, and this ensures that the appropriate
parameters are used to instantiate all levels of the compos-
ite class. In practice, we connect to a local or remote data-
base containing the data using the libpqxx C++ API for
PostgreSQL at the beginning of the simulation, and also
use the libpqxx utility functions to execute the necessary
SQL statements to find the correct parameters when the
constructor is called.

For visualization and analysis, we export simulation vari-
ables using the standard HDF5 format [12], which can
then be visualized using our own wxPython and OpenGL
based visualization application or imported into a statis-
tical package such as R or Matlab for further analysis.

Mathematical Considerations

The standard equations that describe the dynamics of the
soluble factors as well as the cells are as follows. Suppose
ci(x, t) is the local concentration of soluble factor i at the

position x and time t. Let xμ be the position of the center

of cell μ in the bounded domain Ω ∈ . Then the reac-
tion-diffusion equations that describe the behavior of the
soluble factors from [13,14] are

where gμ is a smoothly cut-off Gaussian with support over
the volume of the cell. Here Di denotes the diffusion coef-
ficient for soluble factor i, rij is the rate at which soluble
factor i is removed by interaction with soluble factor j, and
λi is the rate of removal of soluble factor i by other proc-
esses. These positive constants are stored in the
Soluble_factor class. The secretion of soluble factor i
through the surface of cell μ is approximated by a source
term centered at the cell position xμ with secretion rate
Jiμ(x, t). Although the model in [13,14] contains point
sources, the existence of a solution to (1) requires a
smooth source term as discussed in [9]. In the simulation,
the rate Jiμ (x, t) is determined by the Secretion member of
each cell. The source term for each soluble factor is a sum
over the M individual cells indexed by μ.

The system (1) is coupled with M systems of stochastic
differential equations that describe the motions of each

cell individually. For each cell, indexed by μ, denote by xt

∈  the position and by  the velocity. The cell

motion is modeled by the Langevin process

where dWt is a standard Wiener process in . The cell

velocity is stochastic but biased toward the direction of
the gradients of the relevant soluble factors by the relation
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Database schema for the Cell class in the CatalogFigure 2
Database schema for the Cell class in the Catalog.

  cells 

 cell_id  serial  PK    

 cell_name  character varying(200)      

 cell_cls  character varying(200)      

 shape_id  integer    FK  

 motility_id  integer    FK  

 state_id  integer    FK  

  motilities 

 motility_id  serial  PK    

 motility_name  character varying(200)      

 motility_cls  character varying(200)      

 speed  double precision      

 solfac  character varying(200)      

 beta  double precision      

 gamma  double precision      

 chi  double precision      

 lam  double precision      

 c0  double precision      

 sigma0  double precision      

 q  double precision      

 grad0  double precision      

cells_motility_id_fkey

  shapes 

 shape_id  serial  PK    

 shape_name  character varying(200)      

 shape_cls  character varying(200)      

 radius  double precision      

 x  double precision      

 y  double precision      

 z  double precision      

cells_shape_id_fkey

  states 

 state_id  serial  PK    

 state_name  character varying(200)      

 state_cls  character varying(200)      

cells_state_id_fkey

  cells_secretions 

 cell_id  integer    FK  

 secretion_id  integer    FK  

cells_secretions_cell_id_fkey

  secretions 

 secretion_id  serial  PK    

 secretion_name  character varying(200)      

 secretion_cls  character varying(200)      

 sec  double precision      

 k  double precision      

 sto  character varying(200)      

 sto0  double precision      

 reg  character varying(200)      

cells_secretions_secretion_id_fkey

  genes 

 gene_id  serial  PK    

 gene_name  character varying(200)      

 gene_cls  character varying(200)      

 act_rate  double precision      

 deact_rate  double precision      

 activity  double precision      

  inducers 

 inducer_id  serial  PK    

 inducer_name  character varying(200)      

 inducer_cls  character varying(200)      

 threshold  double precision      

 max_rate  double precision      

 intensity  double precision      

  inducers_promoters 

 inducer_id  integer    FK  

 promoter_id  integer    FK  

inducers_promoters_inducer_id_fkey

  promoters 

 promoter_id  serial  PK    

 promoter_name  character varying(200)      

 promoter_cls  character varying(200)      

 relax_k  double precision      

 state  boolean      

inducers_promoters_promoter_id_fkey

  promoters_genes 

 promoter_id  integer    FK  

 gene_id  integer    FK  
promoters_genes_gene_id_fkey

promoters_genes_promoter_id_fkey

  proteins 

 protein_id  serial  PK    

 protein_name  character varying(200)      

 protein_cls  character varying(200)      

 conc  double precision      

 max_conc  double precision      

 degrade_rate  double precision      

 gene_id  integer    FK  

  receptors 

 receptor_id  serial  PK    

 receptor_name  character varying(200)      

 receptor_cls  character varying(200)      

 ligand  character varying(200)      

 activity  double precision      

 k  double precision      

 threshold  double precision      

 coop  double precision      

  receptors_inducers 

 id  serial  PK    

 receptor_id  integer    FK  

 inducer_id  integer    FK  

 weight  double precision      

receptors_inducers_inducer_id_fkey

receptors_inducers_receptor_id_fkey

  states_genes 

 state_id  integer    FK  

 gene_id  integer    FK  
states_genes_gene_id_fkey

states_genes_state_id_fkey

  states_inducers 

 state_id  integer    FK  

 inducer_id  integer    FK  states_inducers_inducer_id_fkey

states_inducers_state_id_fkey

  states_promoters 

 state_id  integer    FK  

 promoter_id  integer    FK  states_promoters_promoter_id_fkey

states_promoters_state_id_fkey

  states_proteins 

 state_id  integer    FK  

 protein_id  integer    FK  states_proteins_protein_id_fkey

states_proteins_state_id_fkey

  states_receptors 

 state_id  integer    FK  

 receptor_id  integer    FK  states_receptors_receptor_id_fkey

states_receptors_state_id_fkey
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Here χi is the chemotactic constant that controls how
much the drift is influenced by the gradient of soluble fac-
tor i and h0 is the length of the gradient of i at which h
attains half its maximum value. The magnitude of the
Wiener process depends on the soluble factor concentra-
tion by

The positive constants γ, c0, h0, σ0, q and χi are stored in
the Motility class, which is a member of Cell.

The reaction-diffusion-stochastic system (1), (2) contains
a set of coupled partial differential equations that interacts
with a set of stochastic differential equations. Instead of
solving this complex system, we consider the following
three problems for which there are known numerical
methods:

1. The diffusion of the soluble factors,

2. The reactions of the soluble factors,

3. The motion of the cells (2).

Given initial concentrations c0(x), initial positions x0 and
initial velocities v0, we can approximate ci(x, Δt), x(Δt)
and v(Δt) by the following splitting scheme [9]:

1. Solve the diffusion, (5), for Δt using the initial data ui(x,
t), and x0 and v0.

2. Solve the reaction, (6), for Δt using the solution from
the previous step as initial data.

3. Move the cells according to (2) for one time step Δt
using the soluble factors from the previous step and the
initial cell positions and velocities, x0 and v0, as initial
data.

The error due to this splitting is (Δt). This result is well-
known for ordinary and partial differential equations; we
have extended it to the reaction-diffusion-stochastic sys-
tem [9]. Furthermore, if the numerical schemes for (5),

(6) and (2) are at least (Δt), then the resulting error is

(Δt). Here we see that operator splitting allows us to
solve three tractable problems rather than one complex
system. Splitting the reaction and the diffusion reduces a
system of nonlinear partial differential equations to a sys-
tem of linear partial differential equations for the diffu-
sion, and a system of ordinary differential equations for
the reaction. The partial differential equations can be
solved using a backward Euler scheme with multigrid for
the linear solve as described in [15] and [16]. The multi-
grid scheme is implemented as a member function of the
Multigrid_diffusion class which is derived from Diffusion.
This class contains a necessary set of parameters, as well as
functions to compute the relevant sinks and sources from
the list of cells. The reaction equations are solved numer-
ically using a first order semi-implicit Euler scheme. A sep-
arate scheme for the reaction is also a member function of
the Diffusion class; it updates the entire list of soluble fac-
tors for one time step. Finally, the Langevin process for the
cell motion can be simulated exactly as described in [17].
The Langevin motility class stores a set of parameters that
are relevant to the equations and numerical scheme. It
also contains member functions that use the concentra-
tions of the soluble factors to update the velocity and
return the displacement of the cell for one time step.
Although the soluble factors and the cells depend on each
other, operator splitting allows us to update them sequen-
tially instead of simultaneously and further modularizes
the simulation.

We have also implemented multiple schemes for diffu-
sion, reaction and cell motility, which are derived classes
from Diffusion and Motility (Figure 3). The derived
classes may represent a change in the dynamical equa-
tions themselves or in the numerical methods used to
solve them. For each simulation, the user can choose a set
of equations and schemes that best models the desired
behavior, approximates the mathematical equations most
accurately or produces results most efficiently. In particu-
lar, different cell types can display different motility
behaviors within the same simulation. As researchers
develop more realistic models and more accurate and effi-
cient numerical methods, the system facilitates simple
swapping of these new classes for old ones and simplifies
comparison and testing.
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Testing
We run unit tests using the Python unittest module, with
the only novelty being that since all our C++ classes are
compiled to a shared library readable in Python, we can
drive both Python and C++ unit tests with the same test
code. At a slightly higher level, the user may compare sim-
ulated behavior with analytical predictions where closed
form solutions (either deterministic or statistical) are
available. Examples include testing cell motility modeled
as Langevin processes or simple diffusion from a single
point-source secreting at a constant rate. There are also
informal eyeball tests, in which simulations with simple
configurations are run and visually checked to ensure that
the resulting behavior is qualitatively consistent with
experimental results. We have not incorporated code cov-
erage analysis [18] or continuous build systems [19] yet,
but these would certainly be sensible additions.

Optimization
Due to the highly modular nature of our code, it is gener-
ally simple to replace an inefficient module with a more
efficient one. Identification of bottlenecks is done using
the callgrind tool widely available on Unix platforms, and
the kcachegrind GUI to visualize the resulting profile.
Examples of such high level optimizations include the
replacement of a forward Euler diffusion scheme with a
Multigrid scheme, and replacing collision detection by
looping over all cells with a grid-based method imple-
mented as a hash table. At a lower level, we have removed
unnecessary copies by using references where possible for
large data structures, and rearranged code to minimize
unnecessary looping. So far we have avoided doing micro-
optimizations (e.g. loop unrolling) believing that such
tasks are best left to the compiler. One simple optimiza-
tion we did incorporate was to specify the appropriate
compiler flags for each machine architecture, allowing the

compiler to make optimal use of pipelining and vectoriza-
tion.

1 Results and Discussion
Functionality
Running a complex simulation inevitably requires a fairly
sophisticated supporting computer software infrastruc-
ture. The primary purpose of the MSI software is to pro-
vide such an infrastructure for running simulations of the
immune response, making it possible for users inexperi-
enced in simulation methods to conduct, visualize and
analyze complex computational experiments. The func-
tionality provided by the software falls into three main
categories – providing plug-in components for an
immune simulation that can be assembled to form com-
plex simulations, data and parameter management via a
relational database, and a graphical user interface for vis-
ualization and control.

The MSI software provides components that model both
the physical and biological aspects of an immune simula-
tion as a hierarchy of loosely coupled classes. We provide
physics-based classes that model chemical reaction and
diffusion, contact forces and collisions, and biology-
based classes that model the environment, cells and solu-
ble factors. Some of these may be composite classes and
have sub-components that can be plugged in to provide
new functionality. Cells can, for example, be fitted with
different model classes that provide specific motility,
secretion, sensory abilities etc.

The development of useful biological models requires
extensive parameterization, typically done by mining the
available literature or conducting experimental measure-
ments. Within the MSI system, these data are managed by
storing the parameters that characterize specific biological

Motility and Diffusion inheritance treesFigure 3
Motility and Diffusion inheritance trees.

Motility

Brownian Motility Chemotactic Motility

Langevin Motility Forward Euler Motility

Diffusion

Forward Euler Diffusion Multigrid DiffusionKernel Diffusion
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entities (e.g. cell types such as macrophages, neutrophils,
fibroblasts, etc.) in a relational database. The database is
closely integrated with the model classes in the code, so
that biological entities can be instantiated by the appro-
priate database name lookup. The integration of the data-
base catalog of biological entities and model classes
makes it possible to specify a computational experiment
using the appropriate domain by simply specifying the
appropriate environment, cell types and soluble factors
that must be present in the simulation. Clearly, this frame-
work also makes re-use simple; the same cell types used in
one simulation can be used to populate another one with,
say, a different environment.

Another aspect of data management is the collection of
the vast quantities of numerical and descriptive data that
can be generated in simulation runs. To support this func-
tionality, we use the HDF5 hierarchical data format devel-
oped by NCSA, which is highly efficient, scalable and
provides a utility library for data access and manipulation.
The HDF5 files are stored for off-line analysis and visuali-
zation. Paraview [20] is an example of a tool that can read
and parse the stored HDF5 files to generate an openGL-
based rendering of the simulation.

The primary purpose of the MSI software is to run large-
scale cell-based immune simulations. A basic example of
individual cellular motile behavior governed by Equa-
tions (2), (3) and (4) where leukocytes migrate up a fixed
chemotactic gradient in both 2D and 3D is shown in Fig-
ure 4. To show how the software can be set up to run such
simulations, we provide a pseudocode walk-through of a
slightly more complex simulation in which three discrete
point sources set up dynamic soluble factor gradients,
which in turn recruit and activate leukocytes.

The first step in the simulation is initialization of the data-
base, in which the parameters of the various objects are
stored. This results in the creation of a singleton DBMaker
instance, which provides the factory functions to create all
the simulation classes by name. An environment is cre-
ated and populated with cells serving as point sources,
three soluble factors and a vasculature that regulates cell
immigration. Finally, a specified number of macrophages
is initially created and put in random positions. The sim-
ulation itself consists simply of a high level call to step
through time in fixed increments dt, which in turn
updates the cells, soluble factors and vasculature. Each
time step is then logged to an appropriate data storage for-
mat like HDF5. Snapshots of this simulation are shown in
Figure 5, and pseudocode is given in Table 1.

We have also recently completed a series of computa-
tional experiments which illustrate how the software can
be used to gain insight into a biologically relevant process

– the mechanisms regulating inflammation following a
tissue insult. The insult triggers the release of chemotactic
soluble factors (chemokines) by parenchymal cells
(fibroblasts), which in turn recruit immune cells (leuko-
cytes). Using multiple simulation runs to systematically
perturb the system variables, we studied the feedback reg-
ulation of tumor necrosis factor alpha (TNF-α) by its shed
receptor soluble TNF receptor (sTNFR) and its effect on
the recruitment and spatial distribution of the leukocytes
over time. The results have been published [14] and serve
to illustrate the kinds of simulations enabled by the MSI
software package.

The two most closely related software packages that simu-
late multiple cells interacting in a dynamic environment
for immune simulation are Compucell [1-3] and Sim-
mune [4,5]. Compucell uses the cellular Potts model to
model cell dynamics by partitioning space into pixels,
each of which is regarded as a cellular automata. The over-
all behavior of individual cells, modeled as a collection of
pixels, depends on minimizing the total effective energy
of the system subject to constraints that channel the
dynamics. In contrast to our direct mapping of cell behav-
ior modules to the underlying biology, the specification of
cell behaviors in Compucell is indirect, via constraint
terms in the energy function. Such an abstract specifica-
tion limits its appeal to experimental immunologists,
since it is difficult to translate the simulation to detailed
biological mechanisms. Simmune is also an agent-based
model with a sophisticated user interface design that
allows a graphical specification of the simulation bio-
chemistry and inter-cellular interactions by biologists. In
particular, Simmune uses a GUI which allows cellular
behavior to be copied across cell types. Also, it simulates
explicit reaction-diffusion across all scales, and uses an
adaptive integrator to separate the different timescales
with a user-defined precision. We agree with Simmune's
philosophy that immune simulations must have models
that map closely to the underlying biology to be useful to
experimentalists. Our approach is slightly different, in
that we provide 'default' collections of cells and cellular
behaviors in the Catalog, that can be used as a template
and easily modified to simulate experimental perturba-
tions, making it simpler to set up typical simulated exper-
iments of cellular immune responses. Currently, the
software emphasis is also different – Simmune focuses
more on biochemistry, while we have paid more attention
to the biophysics of cell motility and diffusion from a
motile source. Due to the complexity and scope of
immune systems, we strongly believe that multiple com-
plementary approaches to large-scale quantitative
immune simulations will continue to develop and cross-
fertilize each other's development.
Page 9 of 13
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Roadmap
The code is currently functional and has been tested on
Debian, Ubuntu, OpenSuSE and Mac OS X platforms. We
are hereby releasing it as an Open Source project and
invite interested developers to participate in the project.
Source code, documentation and a community wiki can
be found at the Multiscale Systems Immunology website
[21]. In the near future, our priorities are to populate the
Catalog with additional cell types, soluble factors and
environments, so that more realistic and complex

immune simulations can be conducted. We also plan to
fully parallelize the code using MPI so that larger-scale
simulations can be run in a reasonable time on a moder-
ate-size Beowulf cluster. We are also prototyping more
capable visualization frontends based on the Visualiza-
tion Toolkit (VTK) [22], as well as the possibility of real-
time visualization and control with computational steer-
ing techniques. We intend to provide the means to simu-
late immune processes in heterogeneous environments
with virtual tissue architectures based on histological

Behavior of cell modules in a point source chemotactic field in two and three dimensionsFigure 4
Behavior of cell modules in a point source chemotactic field in two and three dimensions. (A) The chemokine 
concentration in a 2-D plan (400 mm by 400 mm) following a Gaussian distribution. (B) The trajectories of 4 cell modules, each 
starting from one of the corners of this 2-D plan. (C) The concentration profile of chemokine of the middle section through 
the 3-D tissue volume. (D) The trajectories of 8 cell modules starting from the corners of the 3-D tissue. This simple simula-
tion of cell chemotaxis involves the interaction between the Motility (as part of Cell), Soluble factor and Diffusion (as part of 
Environment) classes in the system. (B) and (D) were generated by simply changing the "dim" template argument, as an exam-
ple of the generic programming abilities afforded by the C++ language and built into the system.
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analysis of biological tissues. The primary challenge for
this task will be the development of efficient methods for
the integration of reaction-diffusion equations in irregu-

larly bounded spaces. Our group is actively engaged in
research in this area. Finally, while we use the software
exclusively for simulating immune responses, the soft-

Snapshots of test_simulation as described in Table 1Figure 5
Snapshots of test_simulation as described in Table 1. Snapshots are shown at 0 (left), 5 (center) and 10 (right) hours of 
simulation time. Cell colors indicate degree of activation of pro- and anti-inflammatory genes.

Table 1: test_simulation pseudocode

procedure Initialize(n0)  Number of leukocytes.
DBConnStr ← (user, dbname, host, port, password)  Initialize database.
DBMaker ← DBMaker::Instance(DBConnStr)
Environment ← DBMaker.CreateEnvironment("testenv")
Source1 ← DBMaker.CreateCell("source")  Creating and adding point sources to Environment.
Source1.SetPosition(x1, y1, z1)
Environment.AddProp(Source1)
Source2 ← DBMaker.CreateCell("source")
Source2.SetPosition(x2, y2, z2)
Environment.AddProp(Source2)
Source3 ← DBMaker.CreateCell("source")
Source3.SetPosition(x3, y3, z3)
Environment.AddProp(Source3)
TNF ← DBMaker.CreateSolfac("tnf")  Creating and adding soluble factors to environment.
Environment.AddSolfac(TNF)
STNFR ← DBMaker.CreateSolfac("stnfr")
Environment.AddSolfac(TNF)
MCP1 ← DBMaker.CreateSolfac("mcp1")
Environment.AddSolfac(TNF)
Vasculature ← DBMaker.CreateVasculature("testvessel")
Environment.AddVasculature(Vasculature)
for i ← 1, n0 do  Creating and adding leukocytes to environment.

Cell ← DBMaker.CreateCell("macrophage")
Cell.SetPosition(Random(Environment.Bounds))
Environment.AddCell(Cell)

end for
end procedure
procedure Main(dt, numsteps)

Initialize(n0)
Simulation ← new Simulation(Environment)
for i ← 1, numsteps do

Simulation.Step(dt)
Log(i, Simulation)  Log of simulation results.

end for
end procedure
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ware is sufficiently generic to run simulations of any cell
population phenomena with minimal adaptation.

Conclusion
There are many software engineering techniques that can
enhance productivity and make more pleasant (or at least
less painful) the development of large, complex scientific
simulations. Since most biological modelers today come
from a more theoretical background and their coding
experience is often limited to smaller single-developer
efforts, these important techniques may not be familiar to
researchers who could most profit from them. We have
here described some of the tools and methods that we
have found useful in the construction of an cell-based
immune simulation, including setting up sensible version
control and build systems, and testing suites; the use and
integration of a relational database, modular decomposi-
tion of the project, object-oriented design incorporating
ideas from domain-driven design and the patterns com-
munity, and the use of standard formats to facilitate com-
munication between subsystems (RDBMS, HDF5).
Perhaps more unusually, we have opted to use a mixed
language approach to software development – this choice
has worked well for us, and we are comfortable recom-
mending it to others. We hope that this paper will help
other groups develop better, more sophisticated simula-
tors for molecular and cellular biology, and allow a more
integrated understanding of organisms.

Availability and requirements
• Project name: The Multiscale Systems Immunology
(MSI) Project.

• Project home page: [21].

An apt repository for the MSI code is available for readers
using the Debian or Ubuntu operating systems. This
repository currently contains the source code and binary
packages for Debian etch (i386 and amd64) and Ubuntu
feisty (i386 and amd64). The source code can also be
obtained here as a tar.gz file [Additional file 1]. For further
information about the apt repository, see the README at
[21] (Documentation → Installation from the main MSI
project page).

• Operating system(s): Linux (tested on Debian 4.0 (etch)
and Ubuntu 7.04 (Feisty Fawn)).

• Programming language: Python, C++ and Fortran.

• Other requirements: See README in source for code
dependencies.

• License: GPL.
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API: Application Programming Interface; HDF5: Hierar-
chical Data Format 5; IDE: Integrated Development Envi-
ronment; MPI: Message Passing Interface; NCSA: National
center for Supercomputing Applications; PDE: Partial Dif-
ferential Equation; RDBMS: Relational Database Manage-
ment System; SQL: Structured Query Language; VTK:
Visualization ToolKit.
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