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Abstract: In this study, we investigated the exciton binding energy and interband transition between
the electron and heavy-hole for the single and double quantum wells which have different hyperbolic-
type potential functions subject to electric, magnetic, and non-resonant intense laser fields. The
results obtained show that the geometric shapes of the structure and the applied external fields
are very effective on the electronic and optical properties. In the absence of the external fields,
the exciton binding energy is a decreasing function of increasing well sizes except for the strong
confinement regime. Therefore, for all applied external fields, the increase in the well widths produces
a red-shift at the absorption peak positions. The magnetic field causes an increase in the exciton
binding energy and provides a blue-shift of the absorption peak positions corresponding to interband
transitions. The effect of the electric field is quite pronounced in the weak confinement regime, it
causes localization in opposite directions of the quantum wells of the electron and hole, thereby
weakening the Coulomb interaction between them, causing a decrease in exciton binding energy, and
a red-shift of the peak positions corresponding to the interband transitions. Generally, an intense laser
field causes a decrease in the exciton binding energy and produces a red-shift of the peak positions
corresponding to interband transitions.

Keywords: exciton binding energy; exciton absorption; electric and magnetic field; intense laser field

1. Introduction

The primary purpose in selecting the most appropriate potential when investigating
low-dimensional quantum systems is to best reflect the atomic structure of the material
of interest and to provide the design of new optoelectronic devices by manipulating the
electronic and optical properties. In this context, the shape of the confinement potential is
very important for the manufacture of advanced devices. Analytical modeling is widely
used in many areas of physics. Analytic models are employed to establish paradigms, or
to form the main properties of a physical system. For example, the harmonic oscillator
problem is widely used in many areas of physics, such as quantum optics, solid state
physics, or molecular physics, to describe modes of the electromagnetic field, crystal lattice,
or molecular vibrations. The deficiency of analytically solvable models in physics led to the
development of quasi-exactly solvable analytical models.

Apart from fully solvable potentials by using many different approximation methods
such as the hydrogen atom, quantum harmonic oscillator, and pseudoharmonic and Mie-
type potentials [1–4], many so-called quasi-exactly solvable (QES) potentials, such as Man-
ning–Rosen [5,6], Hultheen [7], Morse [8], Razavy [9,10], generalized Pöschl–Teller [11,12],
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and Kratzer-type [13] potentials, are very useful in describing the potential energies of the
diatomic or polyatomic molecules. The use of the hyperbolic-type potentials, which in
this work depends on the adjustable parameters, is an excellent strategy to implement the
non-abrupt variations of the potential in the interfaces of the materials that make up the
heterostructures, which in real systems have a width of a few tenths of a nanometer. Using
such types of potential models is possible to account for the electro- and magneto-optical
properties of isolated and coupled double quantum wells (DQW) with finite potential
barriers and explain the interdiffusion phenomena in multiple quantum wells (QW) [14].

Exact solutions of QES-type potentials have been generally obtained by using the
phenomenological potentials in the form of polynomial [15], exponential [16], trigonomet-
ric [17], and hyperbolic-type functions [18]. As known, the phenomenological potentials are
obtained by using approaches such as selecting a mathematical function and fitting its un-
known parameters to some properties, experimentally determined, of the material. Thanks
to advances in technology, growth techniques have a high degree of precision and control
over the characteristics, such as the size and shape of the semiconductor heterostructures
to be formed. Before the growth of any low-dimensional quantum structure, investigating
by choosing suitable phenomenological potential for the structure to be studied is very
efficient in terms of both cost and time. The more the realistic structure of the confinement
potential on the electronic and optical properties of low-dimensional systems (LDS) is
important, the more the effects of the applied external fields are important. Thus, these
potentials mentioned above have been extensively investigated under external fields such
as electric, magnetic, and intense laser fields (ILFs). The effects of the ILF on the electronic
structure in a Gaussian quantum well were investigated by Sari et al. [19]; Kasapoglu
et al. investigated the effects of non-resonant high-frequency ILF on the electronic and
optical properties of both the symmetric and asymmetric double Morse quantum wells, and
quantum wells/quantum dots which have Razavy potential [20,21]. Furthermore, some
of these potentials, which are called QES, have been studied under electric and magnetic
fields [22–27].

It is an undeniable fact that the transition from bulk structure to LDSs such as quantum
well, quantum wire, and quantum dots causes an increase in Coulomb interaction and
more strongly bound electron–hole pairs (excitons). Since the excitons are confined in a
narrower plane than their Bohr radius in most semiconductor heterostructures, quantum
confinement enhances the exciton binding energy (EBE), altering the wavelength of light
they absorb and emit. These physical facts cause excitons to bind even at room tempera-
ture [28]. In this context, LDSs make the excitons easily tunable, with a variety of external
fields and different sample geometries, enabling them as potential candidates for various
applications in optics and optoelectronics. The changes in physical properties caused
by the reduction in size make these systems promising candidates for next-generation
electronics and optoelectronics [29]. By using the Casida equation formalism for molecular
excitations to periodic solids, Yang et al. obtained the exciton binding energies directly [30].
Particularly, they calculated the exciton binding energies for both small- and large-gap semi-
conductors and insulators. Weerasinghe and coworkers used a coherently degenerate state
strategy to design and synthesize an organic small molecule dimer compound consisting of
two triphenylamine-based monomers [31]. The time-resolved fluorescence measurements
showed that the lifetime of the Wannier excitons in the newly designed dimer compound
is less solvent-dependent than that of the Frenkel excitons in the monomer. In addition,
the authors showed that the power conversion efficiency of the photovoltaics constructed
using this new material increases by eight-fold in comparison to that using the monomer.

In recent years, semiconductor growth technology has advanced to such an extent that
it is now possible to grow thin-layered semiconductor structures of very high quality. These
layers can be controlled so thin that the particle confinement of electrons and holes in a box
is easily possible [32,33]. For instance, with the GaAs/AIGaAs material system, because
the larger band-gap AlGaAs “barriers” have both lower valence-band edges and higher
conduction-band edges than the GaAs, the alternate thin layers result in confinement
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of both electrons and holes within the GaAs layers. Consequently, excitons may also
be confined within the GaAs layers. If the AlGaAs barriers are sufficiently thick and
have a sufficiently large Al concentration so that the potential barriers are high, then
penetration of the wavefunctions from one GaAs layer (or quantum well) to another
may be neglected at least for the low-energy states within the quantum well; then we
may refer to the structure as a multiple-quantum-well structure (MQWS). The physics of
such an MQWS for these low-energy states is, for many purposes, the physics of a single
quantum well, although it is convenient for optical-absorption studies to grow an MQWS
to obtain sufficient optical absorption [33]. Another important feature of these systems that
should be emphasized is that in multiple-quantum-well structures, the exciton resonances
can be clearly observed at room temperature [34–36]. This phenomenon is remarkable
because in most bulk semiconductors, the exciton resonance is all but unresolvable at room
temperature. The observation is of potential practical importance, as this property of low-
dimensional semiconductor heterostructures allows the development of room-temperature
optical devices using excitons. On the other hand, in comparison with conventional
electronic devices, excitonic devices show great potential in efficient signal processing at a
higher speed. Excitons can be used for signal processing and simultaneously can directly
link to optical communication. Therefore, the delay between optical communication
and signal processing can be effectively eliminated in excitonic devices, which possess a
significant advantage in high-speed communications [37–39].

The present work is concerned with the theoretical study of the EBE and interband
excitonic transitions in single and double QWs represented by hyperbolic functions of the
spatial coordinate under the electric field, magnetic field, and non-resonant ILF. The paper
is organized as follows: Section 2 contains the theoretical description; the obtained results
are discussed in Section 3; finally, the conclusions are given in Section 4.

2. Results and Discussion

Other than those given in the theory section, the values of material parameters of
GaAs/AlGaAs used in our calculations are (with x = 0.3 for the aluminum concentration
in the barrier regions) m∗e = 0.067 m0, m∗h = 0.45 m0 (where m0 is the free electron mass),
ε = 12.5, Γ = 1.0 meV, Ep = 25.7 eV, and EGaAs

g = 1.424 eV [40,41].
Heavy-hole EBEs as a function of the well width (k parameter) for confinement po-

tential (V1(ze(h) < 0) in Equation (2) (see the next section) under the external applied
fields such as electric field, magnetic field, and ILF are given in Figure 1a–c, respectively.
Results are given for ν1 = 1. In the absence (solid lines) and presence of the external fields
(dashed and dot lines), confinement potential profiles for the electron and hole are given
separately in the insets for each applied external field. In the absence of the external fields
(in the presence of any external field taken into consideration), the binding energy is a
decreasing function of all the well sizes (in the weak confinement regime). This result is
unavoidable. As the well sizes increase, although the electron and the hole are very well
localized in the well, the probability of finding them in the same plane decreases since
the spatial spreads of the electron and hole wavefunctions become very large (at the same
time, the λ exciton extension also becomes larger), and therefore EBEs decrease due to the
weakening of the Coulomb interaction between them. When the electric field is applied,
due to the increment in the well width, the EBEs increase until reaching a maximum value,
where the system has a quasi-two-dimensional character, and then they decrease again.
It should be noted that this change in binding energy will occur at smaller k values than
we considered here in the absence of any external field. This behavior depends on the
confinement degrees of the electron and hole in the quantum well. For the small values
of k parameter, due to penetration from the barriers of the electron and hole which have
higher energy, the weakening of the Coulombic interaction between the electron and hole
pair results in a decrease in the EBE. For the large values of k parameter, although the
low-energy electron and hole are localized better in the well due to the weak confinement,
the EBE decreases due to the probability of finding the electron and the hole in the same
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plane and the weakening of the Coulombic interaction between them. At sufficiently small
k−values, EBE is almost independent of the electric field since geometric confinement is
dominant. For the wells with large size, the binding energy becomes sensitive to the electric
field. As seen in the inset in Figure 1a, the electric field that is applied in the z-direction
causes the quantum wells in which the electron and hole are confined to bend in opposite
directions. Thus, the electron on the left side and the hole on the right side of the wells
are localized. EBE decreases since the Coulombic interaction between the electron and
hole decreases with the electric field. The magnetic field provides extra confinement for
the electron and hole; since the electron is lighter and more energetic than the hole, the
magnetic field effect is more effective on the electron. As seen from the inset in Figure 1b,
the magnetic field creates sharply parabolic confinement for the electron while the effect
of its on the hole has not started yet, but the effect of the magnetic field on the hole will
also become evident in the weaker confinement regime. Thus, the magnetic field leads
to an increment in the EBE. The effect of the ILF on the EBE is as seen in Figure 1c. EBE
for α0 = 0 is greater than those of α0 = 5.0 nm and α0 = 10.0 nm values. The bottom of
the quantum wells and also energies for both the electron–hole pair shift towards higher
energy values with the effect of ILF. As the ILF increases, the particles become localized
in the wider wells, and the binding energy decreases due to the increase in λ, as seen in
Table 1, and the weakening of the Coulomb interaction between the electron–hole pair. The
ILF effect is very dominant at small well widths, not at large L values, contrary to the effect
of the electric field. We want to emphasize that the values we used for the magnitudes of
the electric, magnetic, and laser fields are perfectly plausible in low-dimensional systems
such as QWs with dimensions in the range of those we considered in this study; see, for
example, refs. [42,43], and references therein.
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Figure 1. Heavy-hole exciton binding energy as a function of the k well width parameter for con-

finement potential V1(ze(h)) = −Ve(h)
0 ν1 sech2(z/k) in the presence of the external fields: (a) electric

field (B = 0 and α0 = 0), (b) magnetic field (F = 0 and α0 = 0), and (c) intense laser field (F = 0
and B = 0), respectively. The inset in each figure shows the changes in the confinement potentials
(thick lines) and the square of the ground state wavefunction (thin lines) for the electron and hole
and considering the lowest and highest value of the corresponding field in each panel. Results are for
ν1 = 1.

Figure 2a–c have the same arrangements as Figure 1a–c but the results correspond to
the confinement potentials (V2(ze(h)) > 0) defined in Equation (3) (see the next section)
for ν2 = −2. The insets are not given because the variation of potentials in the presence
of external fields are as in Figure 1a–c. For this potential, for the same k values being
taken into account, the EBEs are greater than the results of V1(ze(h)) potential in all applied
external fields since the Coulomb interaction between the electron and hole is greater. The
behavior of the binding energy observed in Figure 1a is not observed at the initial values of
the k parameter in Figure 2a since the electron and hole are localized in QWs which have
moderate well widths—not a very strong confinement regime. When the λ values for each
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well in Tables 1 and 2 are checked, it can be seen that the exciton extension for the V2(ze(h))
potential is smaller than the V1(ze(h)) potential; therefore, the EBE is greater at the QW
which has V2(ze(h)) potential.

Table 1. The variations of λ and ∆E parameters versus well sizes and external fields for V1(ze(h)) potential.

Le f f F B α0 λ ∆E = Ee + Eh + EGaAs
g − Eb

(nm) (kV/cm) (Tesla) (nm) (nm) (meV)

10 0 0 0 13.3321 1462
25 0 0 14.1653 1464
0 10 0 13.4987 1475
0 0 10 15.4985 1439

15 0 0 0 15.1652 1442
25 0 0 17.9983 1443
0 10 0 14.1653 1459
0 0 10 15.6652 1438

Table 2. The variations of λ and ∆E parameters versus well sizes and external fields for V2(ze(h))

potential.

Le f f F B α0 λ ∆E = Ee + Eh + EGaAs
g − Eb

(nm) (kV/cm) (Tesla) (nm) (nm) (meV)

10 0 0 0 13.1654 1481
25 0 0 13.3321 1479
0 10 0 12.9988 1489
0 0 10 14.8319 1711

15 0 0 0 14.332 1450
25 0 0 15.3318 1447
0 10 0 13.832 1463
0 0 10 14.8319 1533
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Figure 2. Cont.
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Figure 2. Heavy-hole exciton binding energy as a function of the well width parameter for confine-

ment potential V2(ze(h)) = −Ve(h)
0 ν2 tanh2(z/k) in the presence of the external fields: (a) electric

field (B = 0 and α0 = 0), (b) magnetic field (F = 0 and α0 = 0), and (c) intense laser field (F = 0 and
B = 0), respectively. The insets are not provided here because they are the same as in Figure 1a–c.
Results are for ν2 = −2.

Figure 3a–c have the same arrangements as Figure 1a–c, but results correspond to
the hyperbolic double QW which has the confinement potentials defined for ν3 = 4 in
Equation (4) (see the next section). The dependence of the binding energy on the well
dimensions is as in Figures 1a and 2a, but because the effective length in the hyperbolic
double QW is greater than those of the other single hyperbolic QWs, the spatial spread of
electron and hole wavefunctions is quite high, and therefore EBE is lower. The variation in
the EBE in the presence and absence of the electric field is larger than that of single QWs,
and this variation increases as k increases. While the binding energy in the single QWs
is sensitive to different electric field intensities at large k values, the EBE in double QWs
is independent of different field intensities. As is known, applying an external electric
field causes distortion of the symmetries of the heterostructures (see inset of Figure 3a).
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Depending on the distortion, the electron and hole gradually start to localize in the opposite
directions of the well. As the electric field strength and also the well widths increase, the
electron (hole) becomes completely localized in the left (right) well, which causes a large
increase in the λ, as seen in Table 3. In this case, since the spatial spreads of the electron
and hole wavefunctions increase more and more, the Coulombic interaction also decreases
gradually, and a wavy decrease in EBE is observed. The reason for the wavy decrement is
because the electron and the hole are localized gradually, not simultaneously, in different
wells with the effect of the electric field depending on their effective masses. For double
QW, the magnetic field effect on the EBE is given in Figure 3b. With the effect of the
magnetic field, as seen in the inset, the double QW in which the electron is confined turns
into a narrower double QW that bottom-shifts towards high energies, whereas the hole is
still localized in a larger double QW. The hole will have this type of confinement potential
at greater magnetic field intensities. While the magnetic field compresses the electron
wavefunction, the spatial spread of the hole wavefunction is still large; thus, the Coulombic
interaction between the particles is weak and the EBE decreases. In fact, as the magnetic
field increases, an increase in EBE is expected, but the energies of the electron and hole
shift towards higher energies with the magnetic field, so the EBE decreases due to the
weakening of Coulomb interaction between the electron and the hole (increasing magnetic
field creates a decrease in EBE since the negative Coulomb term in Equation (6) (see the next
section) becomes too large). The ILF effect on the EBE for the hyperbolic-type double QW
is given in Figure 3c. As seen in the inset, the effects of ILF on geometric confinement are
interesting. With the ILF effect, while the central barrier turns into a well (wells turn into a
barrier), the bottoms of the wells also shift upwards and EBE decreases as the Coulombic
interaction between the electron–hole pair reduces. The wavy reduction is observed in
EBE towards increasing k−values due to the degree of competition between the ILF and
confinement effects.

2 4 6 8 10 12 14 16 18 20

2

3

4

5

6

7

8

-20 -10 0 10 20

 F = 0
 F = 20 kV/cm
 F = 25 kV/cm

E b
 (m

eV
)

k (nm)

(a)

z (nm)

Vh 3
 (m

eV
)

Ve 3 
(m

eV
)

Figure 3. Cont.
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Figure 3. Heavy-hole exciton binding energy as a function of the well width parameter for con-

finement potential V3(ze(h)) = −Ve(h)
0 ν3 sinh2(z/k) sech4(z/k) in the presence of the external fields:

(a) electric field (B = 0 and α0 = 0), (b) magnetic field (F = 0 and α0 = 0), and (c) intense laser
field (F = 0 and B = 0), respectively. The inset in each figure shows the changes in the confinement
potentials (thick lines) and the square of the ground state wavefunction (thin lines) for the electron
and hole, considering the lowest and highest values of the corresponding field in each panel. Results
are for ν3 = 4.

From Equations (7) and (8) (see the next section), it can be inferred that we have
chosen the exciton trial wavefunction as the product between the z-dependent one-particle
ground-state wavefunctions of the confined electron and hole multiplied by an exponential
function which depends on the relative radial coordinate and the λ variational parameter.
The resulting product is multiplied by the inverse of λ. It is clear that when the k parameter
is large enough (k→ ∞), and in the absence of the applied electric field, our results must
converge exactly to the binding energy of the freed exciton in the GaAs bulk material. That
is, to Eb = 1 Re f f (1 Re f f = 5.2 meV). That is exactly the trend shown in our results in
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Figure 1a–c for F = 0, B = 0, and α0 = 0, respectively. The presence of the 1/λ term in the
trial wavefunction helps us to solve the problem of having chosen a hydrogenic function
dependent only on the relative radial coordinate, and for that reason, our results reach
the correct limit when k = 200 nm = 17.9 aB (1 aB = 11.2 nm is the GaAs exciton effective
Bohr radius). Many authors decide to use a three-dimensional hydrogenic trial function
which gives an excellent account of the limits of weak confinement, as k→ ∞, and strong
confinement, as k→ 0. When the electric field turns on, a polarization of the electron–hole
pair appears. This polarization depends on the magnitude of the applied electric field.
When k is large enough, the overlap between the electron and hole wavefunctions tends to
zero, and leads to essentially zero binding energy, as shown, for example, by the trend in
Figures 1a, 2a, and 3a for F = 25 kV/cm when k = 20 nm. Thus, we can conclude that our
results are in complete agreement with what is expected to happen at the limit of the large
values of the k parameter.

Table 3. The variations of λ and ∆E parameters versus well sizes and external fields for V3(ze(h)) potential.

Le f f F B α0 λ ∆E = Ee + Eh + EGaAs
g − Eb

(nm) (kV/cm) (Tesla) (nm) (nm) (meV)

30 0 0 0 19.4987 1483.5
25 0 0 32.8303 1484.4
0 10 0 19.6648 1493
0 0 10 14.4986 1456

50 0 0 0 22.4979 1453
25 0 0 47.9955 1455
0 10 0 29.4972 1450
0 0 10 23.6645 1447

From Equation (8) (see the next section), it can be seen that the number λ is directly
connected with the extension of the exciton wavefunction in the plane of the heterostructure.
Considering that 1 aB = 11.2 nm, the extension of the wavefunction for V1 potential,
according to Table 1, is in the range 1.19 aB − 1.38 aB for Le f f = 10 nm, and in the range
1.26 aB− 1.60 aB for Le f f = 15 nm. In the case of the V3 potential, due to the double structure
considered, these λ values of the wavefunction extension are significantly higher and are
in line with the highest Le f f values that are considered. Large values of λ parameter mean
more extended wavefunctions and consequently lower value of the electron–hole Coulomb
interaction, which leads to a lower binding energy. The opposite case occurs when the λ
parameter takes smaller values: the Coulomb interaction is strengthened and, consequently,
the binding energy is higher.

Figures 4, 5a,b and 6 show the exciton absorption coefficients (EACs) for interband
transitions as a function of the resonant photon energy for V1(ze(h)), V2(ze(h)), and V3(ze(h))
confinement potentials, respectively. Results are in the absence and presence of the external
electric, magnetic, and intense laser fields. The values of the effective well widths (Le f f )
for each potential are given in the figures to which they belong.

In the absence and the presence of all external fields, the EACs corresponding to
interband transitions in the QW, which has potential V1(ze(h)) for two different effective
well widths, are given in Figure 4. The peak positions of EAC shift to the blue with
increasing magnitudes for the electric and magnetic fields, while they shift to the red with
increasing magnitudes for the ILF, for both Le f f values. Furthermore, as Le f f increases, the
peak positions of EAC shift to red with decreasing magnitudes. As Le f f increases, the ITE
(∆E) in the denominator of the last factor in Equation (13) (see the next section) decreases
due to the decrement in energies of the electron and hole, causing these peaks to shift to
lower photon energies. The decrease in amplitudes of EACs is the result of the increase in
the exciton extension. In fact, as Le f f (or k parameter) increases, the λ variational parameter
increases. The increase in the λ parameter means an increase in the exciton extension;
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amplitudes of EACs decrease with increasing well widths and also applied external fields
since EAC in Equation (13) (see the next section) is proportional to 1/λ2. To prove the
accuracy of the explanations mentioned above, the effects of ITE and exciton extension
on the peak positions and amplitudes of the EACs are numerically presented in Table 1,
depending on the well sizes and the externally applied fields.
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Figure 4. Exciton absorption coefficients for interband transitions as a function of the incident photon
energy for confinement potential V1(ze(h)) with ν1 = 1. Several combinations of the fields (F, B, α0)

(with F in kV/cm, B in Tesla, and α0 in nm) were considered and are indicated by labels 1, 2, 3, and 4:
(0,0,0) (1), (25,0,0) (2), (0,10,0) (3), and (0,0,10) (4). Solid lines are for Le f f = 10 nm, whereas dashed
lines are for Le f f = 15 nm.

In Figure 5a,b, as the well width increases, the peak positions of the EACs shift towards
the red. For both Le f f values, the magnetic field and the ILF cause the blue-shift while the
electric field causes the red-shift in the peak positions of EACs. The variations of the peak
positions and amplitudes of EACs versus the well widths and also applied external fields
are given in Table 2 numerically.

In the absence and the presence of the external fields, EACs for double hyperbolic
QW, which has V3(ze(h)) potential as a function of the resonant photon energy, are given in
Figure 6 for two different effective lengths. Inset shows the variation of the potential under
ILF. It should be noted that the values of Le f f = 10 nm and Le f f = 15 nm correspond to
values of k = 10 nm and k = 20 nm for both V1(ze(h)) and V2(ze(h)) potentials, respectively.
The values of Le f f = 30 nm and Le f f = 50 nm correspond to values of k = 10 nm and
k = 20 nm for V3(ze(h)) potential, respectively. There is no reason other than those explana-
tions above for the variation of the peak positions and amplitudes of the EACs versus the
resonant photon energy concerning the well sizes and the external fields. In addition to the
explanations above, in the presence of ILF and in the wider double QW, the magnitude of
the EAC increases, unlike the magnitudes of the other peaks and/or the previous cases. As
seen in the inset of this figure, due to the ILF-induced change on the QW, both the electron
and hole are localized in the well at the center, which causes the overlap integral between
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the electron and hole pair, and hence the magnitude of this peak, to increase. For example,
the overlap integral is OI = 2.011 and OI = 0.919 for Le f f = 30 nm. Since the overlap
integral is usually OI ≤ 1, the effect of λ parameter on the peak magnitudes was very
dominant, but here, OI > 1 and EAC in Equation (13) (see the next section) is proportional

to (OI)2 =
∣∣∣〈ψi(zh)|ψ f (ze)〉

∣∣∣2; hence, the magnitude of this peak increases.
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Figure 5. The exciton absorption coefficients for interband transitions as a function of the incident
photon energy for confinement potential V2(ze(h)), with ν2 = −2. Several combinations of the fields
(F, B, α0) (with F in kV/cm, B in Tesla, and α0 in nm) were considered and are indicated by labels 1,
2, 3, and 4: in (a) the results are for (0,0,0) (1), (25,0,0) (2), and (0,10,0) (3). In (b) the results are for
(0,0,10) (4). Solid lines are for Le f f = 10 nm, whereas dashed lines are for Le f f = 15 nm.

Finally, we would like to add that very careful studies of interdiffusion effects in QWs
were reported by Li and Weiss [44]. The interdiffusion process of the trivalent elements
across the well–barrier interface was described via Fick’s second law. In that sense, we want
to emphasize that, for example, for the potential given by Equation (2) (see the next section),
when k = 20 nm the obtained energy for the ground state electron is −208 meV, and that
such energy value is obtained for a QW with abrupt barriers whose width is 15.8 nm. More
detailed studies of the interdiffusion process for the structures given by Equations (2)–(4)
(see the next section) are in progress and will be published elsewhere.
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Figure 6. Exciton absorption coefficients for interband transitions as a function of the incident photon
energy for confinement potential V3(ze(h)) with ν3 = 4. Several combinations of the fields (F, B, α0)

(with F in kV/cm, B in Tesla, and α0 in nm) were considered and are indicated by labels 1, 2, 3, and 4:
(0,0,0) (1), (25,0,0) (2), (0,10,0) (3), and (0,0,10) (4). Solid lines are for Le f f = 30 nm, whereas dashed
lines are for Le f f = 50 nm. The inset shows the changes in the confinement potentials and the square
of the electron ground state wavefunction for α0 = 10 nm.

3. Materials and Methods

In the effective mass approximation, the exciton Hamiltonian for a confined electron–
hole pair in a quantum well region under the effects of applied electric and magnetic fields
is as follows:

H =
1

2 m∗e

[
~pe +

e
c
~A(~re)

]2
+ V(ze) + e F ze +

1
2 m∗h

[
~ph −

e
c
~A(~rh)

]2
+ V(zh)− e F zh −

e2

ε |~re −~rh|
, (1)

where m∗e (m∗h) is the electron (hole) effective mass, ~pe(~ph) is the electron (hole) momentum
operator, and ~A( ~re) (~A( ~rh)) is the electron (hole) vector potential associated with the
magnetic field; note that here the magnetic field is applied perpendicular to the structure
growth direction (z-direction), i.e., the magnetic field and vector potential have the forms
of ~B = (B, 0, 0) and ~A = (0, B z, 0). In addition, e is the absolute value of the electron
charge, c is the speed of light in vacuum, ε is the QW dielectric constant, F is the strength
of electric field, which is applied parallel to the structure growth direction, and V(ze(h)) is
the confinement potential for electron and hole in the z-direction. Before the ILF is applied,
the functional forms of the confinement potentials which are formed using three different
hyperbolic-type functions are as follows:

V1(ze(h)) = −Ve(h)
0 ν1 sech2(z/k) , (2)

V2(ze(h)) = −Ve(h)
0 ν2 tanh2(z/k) , (3)
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V3(ze(h)) = −Ve(h)
0 ν3 sinh2(z/k) sech4(z/k) , (4)

where Ve(h)
0 is the band discontinuity for electron (hole) (Ve

0 = 228 meV and Vh
0 = 176 meV.

Note that these values correspond to an aluminum concentration value of x = 0.3 in
GaAs-AlxGa1−xAs QWs), ν1, ν2, and ν3 are the parameters related to the well depth, and k
is the parameter that determines the well width.

In the presence of the ILF, the laser-dressed potential is defined as below:

〈Vi(ze(h), α0)〉 =
ω

2 π

∫ 2 π/ω

0
Ve(h)

i (ze(h) + α0 sin ωt) dt , (i = 1, 2, 3) , (5)

where α0(= e A0/µ ω) is the laser-dressing parameter for the exciton, with A0 and ω the
magnitude of the vector potential and the angular frequency of the non-resonant ILF,
respectively. For the dressed potentials defined in Equation (5), the details and the non-
perturbative approach based on the Kramers–Henneberger translation transformation
developed to describe the atomic behavior in intense high-frequency ILF can be found in
Refs. [45,46]. For a given laser source, whose frequency is ν and output power is I, the
following practical formulae are useful: F0 (in kV/cm)≈ 0.87

√
I/ 4
√

ε and α0 (in units of aB,
the effective Bohr radius)≈ 7.31 ε−5/4

√
I/ν2, for I in kW/cm2 and ν in THz [47].

By defining the electron–hole center of mass (~R = (m∗e~re + m∗h~rh)/(m∗e + m∗h)) and
the relative coordinates (~r =~re −~rh), and assuming that the motion of the center of mass is
constant, the exciton Hamiltonian in cylindrical coordinates is obtained as follows:

H = − h̄2

2 µ

(
∂2

∂ρ2 +
1
ρ

∂

∂ρ
+

1
ρ2

∂2

∂φ2

)
− h̄2

2 m∗e

∂2

∂z2
e
+ V(ze, α0) + e F ze +

e2 B2 h̄2

4 µ c2 R2
e f f

z2
e

− h̄2

2 m∗h

∂2

∂z2
h
+ V(zh, α0)− e F zh +

e2 B2 h̄2

4 µ c2 R2
e f f

z2
h −

e2

ε
√

ρ2 + (ze − zh)2
, (6)

where ρ =
[
(xe − xh)

2 + (ye − yh)
2]1/2 is the relative distance between the electron and

hole in the (x− y) plane. Additionally, µ = m∗e m∗h/(m∗e + m∗h) is the reduced electron–hole
mass and Re f f = µ e4/2 ε2h̄2 is the exciton effective Rydberg. Note that in this work we did
not include the intense laser field effects on the diamagnetic terms in Equation (6), i.e., on
the quadratic terms for ze and zh.

It is important to note that the term associated with the vector potential that connects
with the magnetic field for both particles (electron and hole) gives rise to quadratic terms
in the coordinate of each particle, as shown by the fifth and ninth terms on the right side
of Equation (6). This corresponds to parabolas that open to infinity as the z-coordinate of
each particle increases. By applying Equation (5) to these terms, the dressed potential that
is obtained corresponds exactly to the same parabola displaced vertically in the energy axis.
In that case, the wavefunctions of each particle, the matrix elements in Equation (11), the
energy differences between confined states, and the binding energy do not change. Thus,
considering the dressed potential for a parabola does not change the results presented
here at all. As for the electric-field-dependent terms, this corresponds to linear equations,
as shown by the fourth and eighth terms on the right-hand side of Equation (6). In this
case, applying Equation (5), the resulting dressed potential gives rise to the same original
equation. It is for all this that Equation (5) only applies to the confinement potentials given
by the second and fifth terms on the right-hand side of Equation (1).

For the excitonic structure, by choosing the wavefunction in the form of

Φ(ρ, φ, ze, zh, λ) = ψ(ze)ψ(zh) ϕ(ρ, λ) , (7)

the Schrödinger equation in the form of H(ρ, φ, ze, zh)Φ(ρ, φ, ze, zh, λ) = E Φ(ρ, φ, ze, zh, λ)
for the Hamiltonian in Equation (6) is solved by using the diagonalization method combined
with the variational method. Details of the method used are given in Ref. [48]. Here E, ψ(ze),
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and ψ(zh) are the total energy and the electron and hole wavefunctions in the z-direction,
respectively. The wavefunction with λ variational parameter describing the exciton motion
in the (x− y) plane is given by [40,49,50]

ϕ(ρ, λ) =
1
λ

(
2
π

) 1
2
e−

ρ
λ . (8)

The λ variational parameter also means the exciton spatial extension; Ee and Eh are
the first subband energies of the electron and heavy-hole. After the subband energies and
the expectation value of the Hamiltonian in Equation (6) are obtained, EBE is defined as
follows:

Eb = Ee + Eh − 〈Φ|H|Φ〉
∣∣∣
min, λ

. (9)

It should be noted that the value of λ, which minimizes the energy, is determined
numerically. In the dipole approximation, the linear absorption coefficient corresponding
to the excitonic transition for the heavy-hole electronis given by [51]

α(ω) =
1
V

4 π2 e2

n c m2
0 ω

∑
i, f
|〈i|ε̂ · p̂| f 〉|2 δ(E f − Ei − h̄ ω) , (10)

where ω is the incident photon angular frequency, V = Lx Ly Lz is the volume of the sample,
n is the material refractive index, ε̂ is the incident radiation polarization vector, p̂ is the
electron momentum operator, and 〈i| and | f 〉 are initial and final states of the system,
respectively. In the previous equation, the following condition can be demonstrated:

|〈i|ε̂ · p̂| f 〉|2 = |〈UV |ε̂ · p̂|UC〉|2
∣∣∣〈ψi(zh)|ψ f (ze)〉

∣∣∣2 δK⊥,0
Lx Ly |gt(ρ = 0, λ)|2, (11)

where Lx and Ly are the lengths in free directions, and K⊥,0 = k⊥C − k⊥V is the differ-
ence between the conduction and valence band electron and heavy-hole wave vectors,
respectively. The Kronecker δK⊥,0 symbol in Equation (11) dictates that, for the interband
transitions, the electron momentum in the x and y directions are conserved. Additionally,
the gt(ρ = 0, λ) term indicates that only excitons that have amplitude different from zero
can absorb light at ρ = 0. For z-polarized incident radiation, and the allowed interband
transitions between the first heavy-hole and the first electron subbands, the first factor on
the right-hand side in Equation (11) satisfies the condition [52,53]

|〈UV |ε̂ · p̂|UC〉|2 = |〈UV |pz|UC〉|2 =
m0

4
Ep , (12)

where Ep is the Kane matrix element. Thus, inputting Equation (12) into Equation (10),
and considering the Lorentzian representation of the δ-Dirac function, for excitons in a
two-dimensional QW, the absorption coefficient, for heavy-hole electron transition [40,54],
reduces to

α(ω) =
1

Le f f λ2
e2 Ep

n c m0 ω

∣∣∣〈ψi(zh)|ψ f (ze)〉
∣∣∣2 Γ

(Ee + Eh + EGaAs
g − Eb − h̄ ω)2 + (Γ/2)2

. (13)

where Le f f is the well width (it should be noted that effective length has the form
of Le f f = LW + Lb + LW for double hyperbolic QW with V3(ze(h) potential), Γ is the
broadening parameter of the Lorentzian function, EGaAs

g is the band gap corresponding to
GaAs material, h̄ ω is photon energy required for the transition to conduction band from
valence band, and OI = 〈ψi(zh)|ψ f (ze)〉 is overlap integral between the electron and hole
wavefunctions [55]. In this context, the term ∆E = Ee + Eh + EGaAs

g − Eb in the denominator
of the last factor in Equation (13) is the interband transition energy (ITE), which we defined
as ∆E.
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4. Conclusions

In the present study, we investigated the exciton binding energy and absorption
coefficient for the interband transition corresponding to the first electron and first heavy-
hole states in the single and double QWs which have different hyperbolic-type potentials
under the effects of electric, magnetic, and intense laser fields. The results obtained show
that the geometric shape of the structure and the applied external fields are very effective on
the electronic and optical properties. Our results show the following: (i) The exciton binding
energy is a decreasing function of the effective well width, because the spatial spreads of the
wavefunctions of the electron–hole pair, the exciton extension, and overlap integral between
them increase more, and these cause the weakening of the Coulomb interaction between
electron and hole. (ii) As the effective well width increases, the peak positions of exciton
absorption coefficients shift towards the red with decreasing magnitudes. (iii) Since the
interband transition energy (∆E) decreases due to the decrement in energies of the electron
and hole with increasing the well size, the resonant peaks shift to the lower photon energies.
(iv) The decrease in amplitudes of exciton absorption coefficients is the result of the increase
in exciton extension. (v) As a result, the tunability of the excitonic effects is expected to be
of importance in developing stable and high-efficiency nanoscale excitonic optoelectronic
devices. Moreover, before the growth of any low-dimensional quantum structure, it will be
very practical and instructive to create and study the single, double, or triple quantum wells
by selecting the appropriate hyperbolic potential functions and their different combinations
by using the relevant material parameters. Finally, we would like to emphasize that the
results we obtained in this study are quite consistent with the results of similar studies
on QWs [33,54–56]. In particular, we want to emphasize that the maximum binding
energy values that we found in this investigation for the strong confinement regime (the
situation in which the electron and hole wavefunctions overflow into the barrier regions)
are in excellent agreement with the report of Belov and Khramtsov for excitons in narrow
quantum wells [57]. Considering the effect of the electric field applied along the growth
direction, the reduction of the QW effective gap, for the considered heterostructures and
shown in the insets of Figures 1a and 3a, is in agreement with the observed red-shifts in
experimentally obtained and theoretically modeled photoluminescence spectra in single
and double QWs (see, for example, de Dios-Leyva et al. and reference therein [42]).
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