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Simple Summary: A growing body of evidence indicates that stem cell-associated molecular features,
collectively known as stemness, are biologically important in cancer development and progression,
and negatively associate with anticancer immunity. The aim of our study was to investigate
the association between TRIM28 level and melanoma stemness accompanied by low antitumor
immune response. Furthermore, we aimed to evaluate potential value for TRIM28 in predicting
stem-like melanoma phenotype. Our results indicate that TRIM28 might facilitate the “stemness
high/immune low” melanoma phenotype by attenuating interferon signaling leading to a worse
prognosis for melanoma patients. TRIM28 emerged as a regulator Interferon Regulatory Factor
family of transcription factors’ expression, mediating epigenetic repression of IRF family members in
“stemness high/immune low” melanomas.

Abstract: TRIM28 emerged as a guard of the intrinsic “state of cell differentiation”, facilitating
self-renewal of pluripotent stem cells. Recent reports imply TRIM28 engagement in cancer stem cell
(CSC) maintenance, although the exact mechanism remains unresolved. TRIM28 high expression is
associated with worse melanoma patient outcomes. Here, we investigated the association between
TRIM28 level and melanoma stemness, and aligned it with the antitumor immune response to find the
mechanism of “stemness high/immune low” melanoma phenotype acquisition. Based on the SKCM
TCGA data, the TRIM28 expression profile, clinicopathological features, expression of correlated
genes, and the level of stemness and immune scores were analyzed in patient samples. The biological
function for differentially expressed genes was annotated with GSEA. Results were validated with
additional datasets from R2: Genomics Analysis and Visualization Platform and in vitro with a panel
of seven melanoma cell lines. All statistical analyses were accomplished using GraphPad Prism 8.
TRIM28HIGH-expressing melanoma patients are characterized by worse outcomes and significantly
different gene expression profiles than the TRIM28NORM cohort. TRIM28 high level related to higher
melanoma stemness as measured with several distinct scores and TRIM28HIGH-expressing melanoma
cell lines possess the greater potential of melanosphere formation. Moreover, TRIM28HIGH melanoma
tumors were significantly depleted with infiltrating immune cells, especially cytotoxic T cells, helper
T cells, and B cells. Furthermore, TRIM28 emerged as a good predictor of “stemness high/immune
low” melanoma phenotype. Our data indicate that TRIM28 might facilitate this phenotype by direct
repression of interferon signaling. TRIM28 emerged as a direct link between stem cell-like phenotype
and attenuated antitumor immune response in melanoma, although further studies are needed to
evaluate the direct mechanism of TRIM28-mediated stem-like phenotype acquisition.
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1. Introduction

TRIM28 (Tripartite Motif-containing 28), also known as KAP1 (KRAB-Associated Protein 1)
or TIF1-β (Transcriptional Intermediary Factor 1β), was previously shown to be involved in many
aspects of cell homeostasis [1]. As a cofactor for an abundant family of KRAB-ZNF (Krüppel
associated box (KRAB) domain Zinc Finger Proteins) transcription factors, TRIM28 mediates the
repression of a vast number of target genes [2,3]. Furthermore, TRIM28 takes part in the DNA damage
response pathway [4], safeguards the genome stability through inhibition of retrotransposition [5],
stimulates the epithelial-to-mesenchymal transition (EMT) [6], inhibits p53 activity [7], and induces the
autophagosome formation that facilitates cell survival [8]. Moreover, TRIM28 is strictly associated with
the maintenance of stem cell self-renewal [9]. Recent studies revealed that TRIM28 safeguards stem
cell phenotype at least partially by repressing the genes related to cell differentiation and inducing
stemness markers [10]. All the above-mentioned functions of TRIM28 are frequently harnessed by
cancer cells to promote cancer development and progression.

The last decades of research have led to the identification of a specific population of cancer cells
endowed with the capability to self-renew, differentiate, and be highly responsible for tumor growth
and progression [11]. These cells, known as cancer stem cells (CSCs), possess intrinsic resistance
to chemo- and radiotherapy, a high metastatic potential, and provide tumor relapse after treatment.
Previously considered to be a small population, CSCs appeared to be heterogeneous and sometimes
numerous within specific types of cancer [12]. Due to their high plasticity, CSCs may experience
phases of transition between stem-like and non-stem-like states. Furthermore, increasing evidence
demonstrates that bulk tumor cells can acquire stem cell-like phenotype in response to exogenous
stimuli. This suggests that the process of cancer cell differentiation can be reversed and further adds to
the cancer heterogeneity [11–13]. Altogether, considerable controversy remains as to how unequivocally
define CSCs and to which extent distinct tumor types possess a hierarchical organization. Nevertheless,
a growing body of evidence indicates that stem cell-associated molecular features, collectively known
as stemness, are biologically important in cancer development and progression [11–13].

As TRIM28 emerges as a guard of the intrinsic state of cell differentiation, maintaining stem cells
and somatic cells in the pluripotent and differentiated state, respectively, its’ role in cancer stem cell
maintenance was not surprising. To date, several possible mechanisms were suggested for TRIM28 to
facilitate the acquisition of stem-cell like phenotype in distinct cancer types, and therefore to contribute
to worse patient outcomes [14,15].

Recently, stem cell-associated molecular features, frequently referred to as stemness,
were recognized as valuable predictive or prognostic characteristics [16–18]. Stem cell gene signatures
were utilized to develop gene expression-based biomarkers that ultimately proved a strong association
of stem-like phenotype with worse patient outcomes across many types of cancer [19]. Furthermore,
molecular signatures capable of grading cancer stemness represent an essential step in designing
novel therapeutic regimens that target cancer stem cells. These strategies may have more success in
preventing long-term recurrence than currently used therapies evaluated based on their ability to
reduce the overall size of a tumor.

Cancer stemness was also negatively associated with antitumor immunity with stemness-high
cancers exhibiting reduced immune cell infiltration [19,20]. Miranda A. et al. [20] suggested that the
stemness phenotype found in cancer cells, similar to that in normal stem cells, involves the expression
of immunosuppressive factors that engender the formation of immune-privileged microenvironments
in which tumor clone diversification can occur.

Here, we analyzed the association of TRIM28 expression with the stemness of patient-derived
melanoma samples and evaluated potential value for TRIM28 in predicting stem-like phenotype.
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Using the sphere-forming assay as a gold standard assay to assess cancer cell stemness in vitro,
we confirmed a role for TRIM28 in facilitating the stem cell-like phenotype of melanoma cells.
Moreover, we revealed TRIM28 as a direct mediator of a low antitumor immune response in high
stemness melanomas. Specifically, TRIM28 high expression correlated with significant depletion of
interferon alpha (IFN-α) and interferon gamma (IFN-γ) response in melanomas, which resulted from
significant downregulation of IRF (Interferon Regulatory Factor) transcription factor family members.
TRIM28 emerged as a regulator of IRF expression, mediating epigenetic repression of IRF family
members in stemness-high melanomas.

However, further studies are needed to determine whether the attenuation of interferon signaling
mediated by TRIM28 is sufficient to acquire the stem cell-like phenotype in melanoma. Moreover,
the role for TRIM28 as a druggable anticancer target should be clarified. Ultimately, it may pave the
way to novel anticancer therapies that directly target cancer stem cell population while enhancing
endogenous antitumor immune response.

2. Results

2.1. The Transcriptome Profile of TRIM28 High Expressing Melanoma Patients Negatively Correlates with
Immune-Associated Gene Signatures While Being Significantly Enriched with Stemness-Associated Biological
Processes

Firstly, using RNA Seq V2 RSEM data from the cBioportal database [21,22] for the skin cutaneous
melanoma (SKCM) patients (n = 469), we analyzed the distribution of TRIM28 expression in tumor
samples resulting in discrimination of 117 samples (25%) with robustly elevated TRIM28 denoted as
TRIM28HIGH (Figure 1A). These patients had a dramatically lower survival rate than the TRIM28NORM

cohort (p = 0.0094) (Figure 1B). Next, we analyzed the association of TRIM28 expression with
clinicopathological features of skin cutaneous melanoma (SKCM) patients in TCGA data (Table 1
and Table S1) and observed that TRIM28HIGH patients harbored higher frequency of fraction genome
altered (FGA) than TRIM28NORM cohort (p = 1.46e-3).

Table 1. Clinicopathological features of the SKCM TCGA patients included in the study.

Clinicopathological Feature TRIM28NORM TRIM28HIGH p-Value 1

Sex: male, n (%) 222 (0.64) 65 (0.56) 0.150
Primary melanoma, n (%) 74 (21.3) 34 (29.3)

0.102Metastasis, n (%) 273 (78.7) 82 (70.7)
Age at diagnosis (years), median (range) 58 (15–90) 60 (20–90) 0.126
Breslov thickness (mm), median (range) 3 (0.25–15.55) 4 (0–17.75) 0.374
Clark level, n (%)
I 0 1 (0.01)

0.229
II 15 (0.06) 3 (0.03)
III 60 (25.9) 17 (19.8)
IV 120 (51.7) 47 (54.4)
V 37 (16.0) 18 (20.9)
Ulceration (present), n (%) 118 (50.9) 51 (60.7) 0.182
BRAF mutant, yes, n (%) 149 (54.2) 34 (42.0) 0.023
NRAS mutant, yes, n (%) 75 (27.3) 19 (23.5) 0.422
NF1 mutant, yes, n (%) 30 (10.9) 15 (18.5) 0.034
FGA, ave (SD) 0.27 (0–0.77) 0.33 (0–0.97) 1.46 × 10−3

1—The associations were tested using Pearson chi2 test for categorical variables and the Mann–Whitney U test for
continuous variables. Symbol n is the number of samples.

Next, we performed differential gene expression analysis to compare the expression profiles of
the TRIM28NORM and the TRIM28HIGH SKCM patients. We identified more than 9000 differentially
expressed genes (DEGs) at either higher (n = 3301) or lower (n = 5864) levels in the TRIM28HIGH

patients (p < 0.05; FDR < 0.05); (Figure 1C).
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Figure 1. The transcriptome profile of TRIM28 high expressing SKCM TCGA patients negatively 
correlates with immune-associated gene signatures while being significantly enriched with stemness-
associated biological processes. (A) Distribution of TRIM28 mRNA expression in the SKCM TCGA 
patients (n = 469). RSEM intervals of every thousand units were designated and the number of 
samples in each interval was plotted. TRIM28HIGH samples (n = 117) are presented in magenta; 
TRIM28NORM samples (n = 352) are presented in blue. (B) Kaplan–Meier overall survival curves for 
SKCM TCGA cohort separated into TRIM28NORM and TRIM28HIGH subgroups. (C) Volcano plot of 
differentially expressed genes between TRIM28NORM and TRIM28HIGH melanoma sub-groups. Blue—
genes downregulated in TRIM28HIGH (upregulated in TRIM28NORM). Magenta—genes upregulated in 
TRIM28HIGH. Cut-off: p-value (t-test) < 0.05. (D) All significantly differentially expressed genes (n = 
9165) were sorted based on their log2FC value resulting in a pre-ranked gene list that was further 
used in a GSEA analysis with MSigDB Hallmark gene sets as a reference. Only biological processes 
with a nominal p-value < 0.05 and FDR < 5% are presented. Note significant downregulation of 
immune-associated terms and significant upregulation of stemness-associated terms in TRIM28HIGH 
group. Bar—Normalized Enrichment Score (NES); gray dot—False Discovery Rate (−log10FDR). (E) 
Volcano plot of genes correlated with the expression of TRIM28, TRIM24, TRIM33, or TRIM66 
expression in SKCM TCGA data. Statistical significance for each correlation (−log10(p-val)) was 
plotted against the Spearman’s correlation coefficient. Blue—genes negatively correlated, FDR < 1%; 
magenta—genes positively correlated, FDR < 1%. (F) All significantly correlated genes (FDR < 1%) 
were sorted based on Spearman’s r value resulting in a pre-ranked gene list that was further used in 

Figure 1. The transcriptome profile of TRIM28 high expressing SKCM TCGA patients negatively
correlates with immune-associated gene signatures while being significantly enriched with
stemness-associated biological processes. (A) Distribution of TRIM28 mRNA expression in the SKCM
TCGA patients (n = 469). RSEM intervals of every thousand units were designated and the number
of samples in each interval was plotted. TRIM28HIGH samples (n = 117) are presented in magenta;
TRIM28NORM samples (n = 352) are presented in blue. (B) Kaplan–Meier overall survival curves for
SKCM TCGA cohort separated into TRIM28NORM and TRIM28HIGH subgroups. (C) Volcano plot
of differentially expressed genes between TRIM28NORM and TRIM28HIGH melanoma sub-groups.
Blue—genes downregulated in TRIM28HIGH (upregulated in TRIM28NORM). Magenta—genes
upregulated in TRIM28HIGH. Cut-off: p-value (t-test) < 0.05. (D) All significantly differentially
expressed genes (n = 9165) were sorted based on their log2FC value resulting in a pre-ranked gene list
that was further used in a GSEA analysis with MSigDB Hallmark gene sets as a reference. Only biological
processes with a nominal p-value < 0.05 and FDR < 5% are presented. Note significant downregulation
of immune-associated terms and significant upregulation of stemness-associated terms in TRIM28HIGH

group. Bar—Normalized Enrichment Score (NES); gray dot—False Discovery Rate (−log10FDR).
(E) Volcano plot of genes correlated with the expression of TRIM28, TRIM24, TRIM33, or TRIM66
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expression in SKCM TCGA data. Statistical significance for each correlation (−log10(p-val)) was
plotted against the Spearman’s correlation coefficient. Blue—genes negatively correlated, FDR < 1%;
magenta—genes positively correlated, FDR < 1%. (F) All significantly correlated genes (FDR < 1%)
were sorted based on Spearman’s r value resulting in a pre-ranked gene list that was further used in
a GSEA analysis with MSigDB Hallmark gene sets as a reference. Only biological processes with a
nominal p-value < 0.05 and FDR < 1% are presented as a heatmap. Significantly enriched genesets
were categorized into three groups: stemness-associated, immune-associated, and other. White boxes
denote a lack of enrichment or insignificant changes. Correlation matrix (Spearman r) for TRIM28,
TRIM24, TRIM33, and TRIM66 expression is presented on the left panel.

All of the identified DEGs were further ranked based on log2FC and subjected for the Gene Set
Enrichment Analysis (GSEA) with MSigDB Hallmarks Collection as a reference database. Compared
to the TRIM28NORM patients, the transcription profile of the TRIM28HIGH SKCM patients was highly
enriched with genes that are targets of Myc transcription factor (Myc targets v2; NES = 3.55, p < 0.0001,
FDR < 0.0001; Myc targets v1; NES = 2.91, p < 0.0001, FDR < 0.0001), or significantly associated
with Oxidative phosphorylation (NES = 2.25, p < 0.0001, FDR < 0.0001) or Wnt/b-catenin signaling
(NES = 1.66, p = 0.018, FDR = 0.027); (Figure 1D). All these terms are known stemness-associated
features [17,23,24].

On the other hand, the transcription profile of the TRIM28HIGH SKCM patients was highly
depleted with genes that are associated with Interferon gamma response (NES = −3.09, p < 0.0001,
FDR < 0.0001), Interferon alpha response (NES = −2.72, p < 0.0001, FDR < 0.0001), Inflammatory
response (NES = −2.86, p < 0.0001, FDR < 0.0001), and other immune-related terms (Figure 1D).

Next, we assessed whether other close-related TRIM family members’ expression correlates
with melanoma patients’ survival. We focused on TRIM24, TRIM33, and TRIM66 members, as these
proteins, together with TRIM28, belong to the Transcriptional Intermediary Factor 1 (TIF1) family of
proteins, whose ultimate function is to remodel chromatin structure [25]. As presented in Figure S1A,
the expression of TRIM24 did not correlate with the survival of SKCM TCGA patients (p = 0.6592).
The SKCM cohort expressing high levels of TRIM33 tend to have a lower survival rate, although the
differences are not statistically significant (p = 0.0644), (Figure S1B). As for TRIM24, the expression of
TRIM66 did not correlate with the survival of SKCM TCGA patients (p = 0.5843); (Figure S1C). To identify
whether TRIM24HIGH, TRIM33HIGH, or TRIM66HIGH melanoma phenotype reflected the one observed
in TRIM28HIGH expressing melanomas, we searched for genes that correlate with the expression of
TRIM24, TRIM33, TRIM66, and TRIM28 in SKCM TCGA data (Figure 1E). The Spearman correlation
was used as a second approach of defining the gene expression profile associated with the elevation of
genes of interest in melanoma and served as a validation method for defining the TRIM28-associated
gene expression profile. The expression of TRIM24, TRIM33, and TRIM66 was negatively correlated
with the expression of TRIM28 (Figure 1F, left panel). Using the GSEA, we demonstrated that significant
enrichment of stemness-associated terms accompanied with substantial depletion of immune-related
terms was present only in the TRIM28HIGH melanoma phenotype (Figure 1F). These data suggest that
TRIM28 is specifically associated with stemness-related gene signature.

Our discovery was further validated with additional datasets (Figure S2). In Jönsson G. et al. [26]
dataset (GSE65904), the survival of the TRIM28HIGH expressing melanomas tend to be worse, although
we did not observe statistical significance (p = 0.1373); (Figure S2A). In Bogunovic D. et al. [27] dataset
(GSE19234), the survival of the TRIM28HIGH cohort was significantly worse (p = 0.0005); (Figure S2B).
In both datasets, high expression of TRIM24, TRIM33, or TRIM66 did not correlate with worse patients’
survival (Figure S2C,D).

Furthermore, the GSEA analysis of genes that correlate with the expression of TRIM28 in each of
the datasets revealed significant enrichment of stemness-associated terms and significant depletion of
immune-related terms in the TRIM28HIGH phenotype (Figure S2E,F) that highly reflected results from
the SKCM TCGA cohort.
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2.2. TRIM28 High Expressing Melanomas Are Dedifferentiated Tumors Enriched with Stem
Cell-Associated Features

Novel stemness indices for assessing the degree of oncogenic dedifferentiation were previously
determined using transcriptomic (mRNA Stemness Index) or epigenetic (mDNA Stemness Index)
features of non-transformed pluripotent stem cells and their differentiated progeny [19]. In our
analyses, we implemented previously identified stemness indices as well as stem cell-derived gene
signatures to address their association with TRIM28 expression in SKCM (Figure 2, Table S2).
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Figure 2. TRIM28 high expressing melanomas are dedifferentiated tumors characterized by high
stemness scores. (A) Spearman correlation of the TRIM28 expression with the Stemness Score [16]
in the SKCM TCGA data. (B) Tukey box plots of the expression of TRIM28 in Stemness Score low
(StemnessLOW) and high (StemnessHIGH) subgroups. Samples were divided into StemnessLOW and
StemnessHIGH using the average value of “Ben-Porath ES core” signature in SKCM group as a cut-off.
(C) The correlation matrix of TRIM28 expression and several stemness-associated signatures [16–19].
White and green represents no or positive Spearman correlation, respectively (p-value < 0.05). (D) The
GSEA of all significantly differentially expressed genes in TRIM28HIGH melanoma patients revealed
significant enrichment of Wong_ESC_core stemness gene signature. (E) The GSEA of all significantly
differentially expressed genes in TRIM28HIGH melanoma patients revealed significant enrichment of
stemness-associated Kim_Myc_targets gene signature. (F) Kaplan–Meier overall survival curves for the
SKCM TCGA cohort separated into StemnessLOW and StemnessHIGH subgroups. (G) Diagnostic value
of the TRIM28 expression in predicting the Ben–Porath stemness signature-based classification (low or
high) of the SKCM TCGA patients. The area under the curve (AUC) was calculated for the receiver
operating characteristic (ROC) curve. (H) Diagnostic value of the TRIM28 expression in predicting
the “stemness high” classification discriminated with 4 distinct stem cell-derived gene expression
signatures. The AUC values calculated for ROC curves are plotted against the −log10(p-value) for each
gene signature.
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We observed significant positive correlation of the Stemness Score (based on Ben-Porath ES
core signature) with TRIM28 expression (Spearman r = 0.5343, p < 0.0001) (Figure 2A). The SKCM
samples with high Stemness Score express higher levels of TRIM28 (p < 0.0001) than the StemnessLOW

cohort (Figure 2B). We further looked at the previously reported stem cell-derived gene signatures and
stemness indices [16–19] and observed a very significant positive correlation with TRIM28 expression
(Figure 2C).

Moreover, using GSEA and all significantly differentially expressed genes in the TRIM28HIGH

samples as an input, we demonstrated that the TRIM28HIGH phenotype is significantly enriched
with markers of Wong_ESC_core stemness gene signature (NES = 3.340, p < 0.0001, FDR < 0.0001)
(Figure 2D) as well as other stemness-associated gene signature (NES = 2.076, p < 0.0001, FDR < 0.0001)
(Figure 2E). Melanoma StemnessHIGH patients are characterized with worse prognosis (p < 0.0001)
(Figure 2F) and TRIM28 expression significantly predicts the classification to “stemness high” cohort,
either discriminated with the Ben–Porath ES core signature (p < 0.0001) (Figure 2G) or other stem-cell
associated gene signatures (Figure 2H).

TRIM28 association with “stemness” signature was further validated with additional datasets.
In Jönsson G. et al. [26] dataset (GSE65904) as well as in Bogunovic D. et al. [27] dataset (GSE19234),
the expression of TRIM28 highly correlates with previously published stem cell-derived gene signatures
(Figure S3A,B). Furthermore, the GSEA analysis of genes that highly correlate (r < −0.4 and r > 0.4) with
TRIM28 expression in each of the datasets revealed significant enrichment with the mRNA Stemness
Index signature in the TRIM28HIGH phenotype (GSE65904: NES = 3.114, p < 0.0001, FDR < 0.0001;
GSE19234: NES = 3.336, p < 0.0001, FDR < 0.0001) (Figure S3C,D). Moreover, TRIM28 expression
significantly predicts the classification of “stemness high” cohorts (discriminated with four distinct
stem cell-derived gene expression signatures) in the GSE65904 dataset (Figure S4).

2.3. TRIM28 High Expressing Melanoma Cell Lines Possess a Higher Potential of Melanosphere Formation

To confirm our observation in in vitro studies, we used seven human melanoma cell lines (Table S3)
and assessed their potential to form melanospheres in nonadherent culture conditions. Sphere-forming
assays are widely used in stem cell biology, as, theoretically, both self-renewal and differentiation can
be evaluated at the single-cell level [28].

First, we compared the expression of TRIM28 on mRNA (Figure 3A) and protein (Figure 3B) level
and discriminated three groups of melanoma cell lines: low (WM115, WM266, WM3211), medium
(SK-MEL28, MEWO), and high (WM9, A375) expressing cell lines.

Next, we tested their potential to form melanospheres in nonadherent culture conditions using
soft agar assay [29]. We observed that TRIM28LOW expressing cell lines form very small and difficult
to count colonies in contrast to TRIM28MEDIUM or TRIM28HIGH-expressing cell lines (Figure 3C).
We compared the average size of obtained colonies at day 7 and day 14 of nonadherent cultures
(Figure 3D) and observed significantly higher colonies from TRIM28HIGH-expressing WM9 and A375
melanoma cell lines (p < 0.0001) than from TRIM28MEDIUM-expressing SK-MEL28 and MEWO cell
lines. Therefore, elevated TRIM28 expression corresponds to a higher potential of sphere formation.

To further confirm TRIM28-mediated regulation of sphere formation, we modified SK-MEL28,
WM9, and A375 cell lines with lentiviral vectors encoding either TRIM28-specific shRNA sequence
alone (shTRIM28) or accompanied with exogenous shRNA-resistant TRIM28 cDNA sequence
(rescue phenotype). We observed significant downregulation of TRIM28 expression in the shTRIM28
phenotype, which was successfully rescued with exogenous TRIM28 cDNA (Figure 3E,F). As expected,
cells with downregulated TRIM28 expression formed significantly smaller colonies in all tested cell
lines (Figure 3G and Figure S4A). As TRIM28 downregulation did not affect melanoma proliferation
(Figure S5B), we suggest that it might attenuate the maintenance of stem cell-like population; therefore,
resulting in smaller sizes of melanospheres. Indeed, TRIM28-depleted melanospheres expressed
lower levels of stem cell markers, namely OCT-3/4 and SOX2 (Figure S5C,D), further supporting our
observation of TRIM28-dependant regulation of stem-cell like population in melanoma.
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formation. (A) Relative expression of TRIM28 in a panel of 7 melanoma cell lines. n = 3 biological
replicates; bar—the mean gene expression; whiskers—SD. The statistical significance is presented
in Table S4 (ANOVA followed by Tukey’s multiple comparisons test). (B) Western blot analysis of
TRIM28 protein in melanoma cell lines. GAPDH was used as an internal control. A representative
result from 3 independent assays was shown. Cell lines marked with (#) did not form countable
melanospheres under nonadherent culture conditions. (C) Representative photographs of spheres
(n = 3) from SK-MEL28, WM115 and A375 cell lines. Soft agar assay was utilized and photographs
were taken at day 7 of nonadherent cell culture. Scale = 250 µm. (D) Tukey box plots of the average
size (diameter, µm) of melanospheres at day 7 (left panel) and day 14 (right panel) under nonadherent
culture conditions. n = 3 biological replicates. The statistical significance is denoted in the graph
(ANOVA followed by Tukey’s multiple comparisons test). (E) Relative expression of TRIM28 in
SK-MEL28, WM9, and A375 cell lines modified with lentiviral vectors encoding either TRIM28-specific
shRNA sequence alone (shTRIM28) or accompanied with exogenous shRNA-resistant TRIM28 cDNA
(rescue). CTRL—cells modified with an empty vector. n = 3 biological replicates; bar – the mean
gene expression; whiskers—SD. The statistical significance is denoted in the graph (ANOVA followed
by Tukey’s multiple comparisons test). (F) Western blot analysis of TRIM28 protein in SK-MEL28,
WM9, and A375 cell lines modified with lentiviral vectors. (G) Tukey box plots of the average size
(diameter, µm) of melanospheres at day 14 under nonadherent culture conditions. n = 3 biological
replicates. The statistical significance is denoted in the graph (ANOVA followed by Tukey’s multiple
comparisons test). CTRL—cells modified with empty vector; shTRIM28—cells with downregulated
TRIM28 expression, rescue—cells with shTRIM28 and exogenous TRIM28 cDNA.

2.4. TRIM28 High Expressing Melanomas Are Significantly Depleted with Tumor-Infiltrating Lymphocytes

Next, we took a closer look at immune-associated features of the SKCM TCGA samples and the
correlation with TRIM28 expression. The TCGA consortium has clinically quantified the lymphocyte
infiltration level (density and distribution of lymphocytes) in 69.9% of melanoma samples (n = 328),
reflected as the Lymphocyte Score (LScore) [30]. We analyzed the expression of TRIM28 in melanomas
with low (0 or 2), medium (3 or 4), or high (5 or 6) LScores, and observed higher level of TRIM28 in low
LScore melanomas (p = 0.0066); (Figure 4A).
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Figure 4. TRIM28 high expressing melanomas are significantly depleted with tumor infiltrating
lymphocytes. (A) Tukey box plots of the expression of TRIM28 in melanomas with low (0 and 2),
medium (3 and 4), or high (5 and 6) lymphocyte score as determined with a pathology review [30]
in the SKCM TCGA data. The statistical significance is denoted in the graph (ANOVA followed by
Tukey’s multiple comparisons test). (B) Tukey box plots of the Immune Score (ESTIMATE [31]) in
TRIM28NORM and TRIM28HIGH melanomas. (C) Tukey box plots of the Leukocyte Infiltration Score
(LIS [32]) in TRIM28NORM and TRIM28HIGH melanomas. (D) The GSEA with all DEGs in TRIM28HIGH

vs. TRIM28NORM (n = 9165) revealed significant depletion of the Immune Score signature (only genes
positively associated with the Immune Score signature were used as a reference). (E) Tukey box plots of
the average z-score values for genes within genesets corresponding to transcriptome profiles of specific
leukocyte subpopulations [33]. The average z-scores were calculated using R2: Genomics Analysis and
Visualization Platform.

Next, we compared the level of transcriptome-based immune-related scores (Table S5), namely,
the Immune Score (calculated as previously reported in [31]) and the Leukocyte Infiltration Score (LIS;
calculated as previously reported in [32]) in TRIM28NORM and TRIM28HIGH melanoma samples and
observed significantly lower level of both scores in TRIM28HIGH samples (p < 0.0001; Figure 4B,C).
Furthermore, the GSEA confirmed significant depletion of the Immune Score-associated signature in
the TRIM28HIGH phenotype (NES = −3.210, p < 0.0001, FDR < 0.0001); (Figure 4D). Moreover, using
previously reported transcriptome signatures of specific leukocyte subpopulations [33], we detected
significant depletion of cytotoxic T cells; helper T cells; B cells; as well as macrophages, dendritic cells,
eosinophils, and neutrophils in the TRIM28HIGH expressing melanomas (Figure 4E). A significant
reduction of these subpopulations that corresponds to higher TRIM28 expression was further confirmed
with additional melanoma datasets (Figure S6). Lower lymphocyte infiltration in the TRIM28HIGH

melanomas might result in significant depletion of IFN-α and IFN-γ signaling (Figure 1D).

2.5. TRIM28 Expression Is Strictly Associated with Stemness-High/Immune-Low Melanoma Phenotype and
Can Predict the Survival of Melanoma Patients

Recently, Miranda A. et al. [20] have found pervasive negative associations between cancer
stemness and anticancer immunity. Our analyses also confirm previously reported tumor stemness vs.
tumor immunity anticorrelation (Figure 5A,B) in the SKCM TCGA data.
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Figure 5. TRIM28 expression is strictly associated with stemness-high/immune-low melanoma
phenotype and can predict the survival of melanoma patients. (A) Spearman correlation of the
Stemness Score with the Immune Score in the SKCM TCGA data (left panel). Light green, dark
green, and gray colors denote StemnessLOW/ImmuneHIGH, StemnessHIGH/ImmuneLOW, and other
SKCM patients, respectively. Right panel presents Tukey box plots of Immune Scores in StemnessLOW

and StemnessHIGH melanomas. (B) Spearman correlation of the Stemness Score with the Leukocyte
Infiltration Score in the SKCM TCGA data (left panel). Right panel presents Tukey box plots of
Lymphocyte Infiltration Scores in StemnessLOW and StemnessHIGH melanomas. (C) Kaplan–Meier
overall survival curves for the SKCM TCGA cohorts separated into three subgroups based on Stemness
Score and the Immune Score. Patients were divided into low or high subgroups based on the mean
values for each score. (D) Tukey box plots of the expression of TRIM28 in three SKCM subgroups.
The statistical significance is denoted in the graph (ANOVA followed by Tukey’s multiple comparisons
test). (E) Diagnostic value of the TRIM28 expression in predicting the StemnessHIGH/ImmuneLOW

classification of the SKCM TCGA patients. The area under the curve (AUC) was calculated for the
ROC curve.

Analysis of the overall survival of three SKCM cohorts discriminated based on the Stemness Score
(above or below the mean) and the Immune Score (above or below the mean) revealed significantly
worse outcomes for the StemnessHIGH/ImmuneLOW cohort (p < 0.0001) (Figure 5C). This cohort is
characterized by the highest expression of TRIM28 (Figure 5D), which was further confirmed in
additional datasets (Figure S7). We also observed that TRIM28 is a great classification predictor in
melanoma patients (either StemnessHIGH/ImmuneLOW or not) with the area under the curve (AUC)
equal to 0.7131 as determined with the ROC analysis (p < 0.0001) (Figure 5E). A similar study with
two independent datasets and using Ben–Porath ES core geneset [16] for stemness and cytotoxic T cell
geneset [33] for immune classification discriminator, respectively, have shown comparable diagnostic
value for TRIM28 (Figure S7).

2.6. Significant Attenuation of the Interferon Signaling by TRIM28-Mediated Epigenetic Silencing of the IRF
Transcription Factor Family Might Facilitate Stemness High/Immune Low Melanoma Phenotype

Using the GSEA, we further searched for target genes of known transcription factors (TFs) in the
list of all differentially expressed genes in TRIM28HIGH phenotype. As TRIM28 is a transcriptional
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co-repressor, we mainly focused on downregulated genesets. Using the p-value < 0.01 and FDR < 0.01
as a cut-off, we identified significant depletion of 13 genesets (Figure 6A) in TRIM28HIGH phenotype.
Out of these, six genesets are targets for interferon regulatory factor (IRF) family of transcription factors
(Figure 6A,B). Several IRF members were previously reported as direct targets for TRIM28-mediated
gene repression [34–36]. Therefore, we compared the expression of IRF family members with TRIM28
level in SKCM TCGA data and observed a significant negative correlation for most of them (Figure 6C).
This was further validated with an additional dataset (Figure S8).
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Figure 6. Significant attenuation of the interferon signaling by TRIM28-mediated epigenetic silencing
of the IRF transcription factor family. (A) The GSEA of all significantly differentially expressed genes in
the TRIM28HIGH melanoma patients revealed significant depletion of 13 transcription factor genesets in
the TRIM28HIGH phenotype. As a reference, MSigDB C3 TFT v.7.1 collection was used. Only datasets
with a nominal p-value < 0.01 and FDR < 1% are shown. (B) Enrichment plots for targets of IRF family
members were significantly downregulated in the TRIM28HIGH melanoma phenotype. Statistical
significance and NES values are shown. (C) Spearman correlation of the TRIM28 expression with
the level of IRF family members in the SKCM TCGA data. (D) The relative expression of IRF family
members in StemnessHIGH/ImmuneLOW cohort (when compared to other SKCM patients). Bar—fold
change (log2 normalized); gray dot—statistical significance (−log10(p-val)). (E) Tukey box plots of the
methylation of IRF1, IRF2, IRF5, IRF7, IRF8, and IRF9 in the SKCM TCGA patients with discriminated
StemnessHIGH/ImmuneLOW cohort. Statistical significance is denoted on the graphs. (F) The relative
expression of IRF family members in SK-MEL28 melanoma cell line with shRNA-downregulated
expression of TRIM28. Specific primers were used for IRF1, IRF2, IRF5, and IRF8 transcripts’ detection.
IRF8 transcript is undetectable in SK-MEL28 cells cultured in standard conditions. n = 3 biological
replicates, bar—the mean gene expression, whiskers—SD. The statistical significance is denoted in the
graph (Student’s t-test).
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Next, we observed robust downregulation of IRF1, IRF2, IRF5, IRF7, IRF8, and IRF9 in the
StemnessHIGH/ImmuneLOW SKCM cohort (Figure 6D and Figure S8). As gene repression requires the
assembly of a methylation-dependent silencing complex that contains TRIM28 protein (which serves
as a scaffolding protein without intrinsic repressive or DNA-binding properties), we further looked at
the methylation of IRF promoters. The methylation of IRF1, IRF2, IRF5, and IRF8 transcription factor
promoters was significantly higher in the StemnessHIGH/ImmuneLOW melanoma patients (p < 0.0001)
(Figure 6E), suggesting that epigenetic silencing of interferon-inducible signaling ultimately results in
the acquisition of melanoma stem cell-like phenotype. Furthermore, using shRNA-mediated depletion
of TRIM28 expression in melanoma cell lines in vitro, we confirmed the TRIM28-mediated repression
of IRF family members. As presented in Figure 6F, we observed significant upregulation of IRF1 and
IRF2 expression in SK-MEL28 cells upon shRNA-mediated TRIM28 depletion which is consistent with
previously reported data [34–36].

3. Discussion

There are several major findings of this study: (i) TRIM28 robust upregulation is associated with a
dramatically lower survival rate of melanoma patients, (ii) the transcriptome profile of the TRIM28HIGH

melanomas is significantly enriched with stemness-associated markers, (iii) the TRIM28HIGH expressing
tumors are robustly depleted with infiltrating leukocytes, (iv) TRIM28 expression can significantly
discriminate the cohort of “stemness high/immune low” melanoma patients, and (v) significant
attenuation of interferon signaling in TRIM28HIGH melanomas might result in the acquisition of stem
cell-like melanoma phenotype.

TRIM28 gene is highly expressed in different cancer types, and higher expression frequently
correlates with poor patient prognosis [14,15,37–39]. Recently, Fernandez-Marrero Y. et al. [40] have
reported a significant association of TRIM28 expression with the survival of melanoma patients. Using
three independent datasets (SKCM TCGA, GSE65904, and GSE19234), we also demonstrated that
TRIM28 upregulation is associated with a dramatically lower survival rate of melanoma patients.
Interestingly, the expression of other close-related TRIM family members’ (namely, TRIM24, TRIM33,
and TRIM66) does not correlate with the survival of melanoma patients, suggesting that TRIM28 is
specifically involved in melanoma progression.

Furthermore, using transcriptomic data from melanoma samples, we revealed distinct gene
expression profiles of the TRIM28HIGH melanomas robustly enriched with genes involved in
stemness-facilitating biological processes and significantly depleted with markers associated with
immune cell infiltration. In contrast to TRIM24- or TRIM33- or TRIM66-associated gene expression
profiles, the one correlated with TRIM28 expression is significantly enriched with stemness-related
biological processes accompanied by robust depletion of the immune response. This confirmed
previously reported relation between TRIM28 level and cancer dedifferentiation status and suggested a
specific role for TRIM28 (and not other close-related TRIM family members) in cancer reprogramming.

To further evaluate this association, we implemented several stemness quantifiers [16–19] and
correlated it to TRIM28 expression. Previously, Ben-Porath I. et al. [16] have found that histologically
poorly differentiated tumors show preferential overexpression of genes normally enriched in embryonic
stem (ES) cells. They demonstrated that this ES-like signature was associated with high-grade estrogen
receptor (ER)-negative tumors, often of the basal-like subtype, and with poor clinical outcome.
Moreover, the ES signature was present in poorly differentiated glioblastomas and bladder carcinomas,
suggesting its’ versatility in the acquisition of cancer dedifferentiation status regardless of the tumor
type. Moreover, Wong DJ. et al. [17] have identified the embryonic stem cell (ESC) transcriptional
program that is frequently activated in diverse human epithelial cancers and strongly predicts metastasis
and death. They also identified the c-Myc oncogene as being sufficient to reactivate the ESC-like
program in cancer cells. Also, we looked at the recently reported the mRNA Stemness Index, developed
with the innovative one-class logistic regression (OCLR) machine learning algorithm. In their analyses,
Malta T. et al. [19] have observed that higher values of the mRNA Stemness Index (mRNA-SI) were
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significantly associated with known biological processes active in the CSCs and with greater tumor
dedifferentiation, as reflected in the histopathological grade.

Here, we analyzed the correlation of TRIM28 expression with the ES-derived gene signatures
and observed significant positive association. We also observed a positive correlation between
TRIM28 expression and the mRNA-SI and significant enrichment of the TRIM28HIGH transcriptome
profile with markers of the mRNA-SI gene signature. Moreover, TRIM28 expression emerged as a
good predictor of stem cell-associated melanoma phenotype, regardless of the stemness quantifier.
The TRIM28HIGH-expressing melanomas were significantly enriched with c-Myc associated gene
signature. As c-Myc is sufficient to induce cancer stem cell phenotype in epithelial cancers [17], it is
possible that (at least partially) melanoma stem cell-like phenotype of the TRIM28HIGH melanomas
results from significant c-Myc activation.

We further suggest that TRIM28 high expression facilitates the acquisition of a stem cell-like
phenotype. Using a panel of melanoma cell lines, we observed that TRIM28 high expressing cells possess
greater melanosphere formation potential, which is reflective of stem cell phenotype. Moreover, using
shRNA-mediated targeting of TRIM28 in three melanoma cell lines, we confirmed the involvement of
TRIM28 in cancer stem cell maintenance. In SK-MEL28, WM9, and A375 melanoma cell lines with
downregulated TRIM28 expression, the sphere formation was significantly reduced. As TRIM28
depletion did not affect cell proliferation or cell death directly (preliminary data for SK-MEL28,
not shown), we suggest that it might attenuate the maintenance of stem cell-like population, therefore
resulting in smaller sizes of melanospheres. Indeed, the expression of stemness markers was lowered
in TRIM28-depleted melanoma cells, which strongly supports TRIM28-mediated acquisition of stem
cell-like phenotype in cancer.

Recently, Lee AK. et al. [41] have demonstrated that TRIM28 affected intratumoral lymphocyte
infiltration in melanoma patients. Higher levels of TRIM28 negatively correlated with different immune
effector subsets as determined using the CIBERSORT. Here, using the gene signatures reflective of
distinct immune cell subpopulations [33], we revealed significant depletion of cytotoxic T cell, helper T
cells, B cells, macrophages, and eosinophils in the TRIM28HIGH melanomas, further supporting the
association between the TRIM28 expression and “immune cold” melanoma phenotype.

Moreover, analyses of the tumor microenvironment performed by Malta T. et al. [19] have revealed
unanticipated correlation of cancer stemness with immune checkpoint expression and infiltrating
immune cells. This was further supported by Miranda A. et al. [20]. They observed that cancer stemness
is associated with suppressed immune response, higher intratumoral heterogeneity, and dramatically
worse outcome for most TCGA cancers. Our results are in line with previous reports, suggesting that
TRIM28 protein is a direct link between cancer stemness acquisition and suppression of antitumor
immune response. TRIM28 may serve as a good predictor, efficiently discriminating the “stemness
high/immune low” melanoma phenotype. It would be critical to determine whether there is a role for
TRIM28 in attenuation of immune cell infiltration, or rather TRIM28 is a mediator of the “immune
cold” phenotype of melanomas.

TRIM28 maintains both normal and cancer stem cells in the pluripotent state at least partially
by repressing the genes associated with differentiation and inducing expression of stemness
markers [15,42–44]. TRIM28 uses KRAB-ZNFs to cause epigenetic silencing of target differentiation
genes via H3K9me3 deposition and DNA methylation [1,45], although interactions with several other
non-KRAB-ZNF transcription factors were also reported [46–49]. Together with the EZH2, a member
of Polycomb Repressor 2 (PRC2) Complex, TRIM28, co-regulates a set of genes associated with stem
cell maintenance [46]. On the other hand, together with the MAGE-A3/6 (Melanoma Antigen member
A3, A6), TRIM28 forms a cancer-specific ubiquitinase that regulates the AMPK level in cancer cells,
enhancing the oxidative phosphorylation and maintaining stem cell traits of breast cancer [15,49].
This mechanism requires the involvement of RING-mediated ubiquitin E3 ligase activity of TRIM28
protein and might be utilized by other cancer types.
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Here, we analyzed the profile of transcription factors significantly associated with the upregulation
of TRIM28 to verify the potential mechanism of cancer stemness acquisition. Interestingly, we observed
significant downregulation of the IRF transcription factor family members (IRF1, IRF2, IRF5, IRF8)
corresponding to attenuated interferon signaling in TRIM28HIGH melanomas, probably as a consequence
of low immune cell infiltration. Recently, Alavi S. et al. [50] have reported that downregulation of
interferon signaling occurred in almost 70% of immunotherapy-naïve melanomas, although they
did not link this phenomenon with TRIM28 expression. As TRIM28 is a well-known transcriptional
co-repressor, we suggest that low IRF1, IRF2, IRF5, and IRF8 expression (in the absence of stimulating
signaling) result from TRIM28-mediated epigenetic modifications within the IRF promoters. Indeed,
TRIM28 was previously reported to interact with the STAT1 transcription factor and to regulate
IFN/STAT1-mediated IRF1 gene repression. As reported by Kamitani S. et al. [34], siRNA-mediated
reduction in TRIM28 expression enhanced IFN-induced STAT1-dependent IRF1 gene expression.
These results indicated that TRIM28 acts as an endogenous regulator of the IFN/STAT1 signaling
pathway [34,35].

Enhanced IRF1 promoter methylation observed in TRIM28HIGH expressing melanoma patients
is in line with the previous report, although further studies are needed to prove the versatility of
TRIM28-mediated repression of other IRF members in “stemness high/immune low” melanomas.
Moreover, it should be clarified whether IRF family members’ repression mediated by TRIM28 is
sufficient for the acquisition of stem-cell like phenotype in melanoma.

4. Materials and Methods

4.1. SKCM TCGA Genomic and Clinical Data

In the current study, we used publicly available TCGA data from the cBioportal (www.cbioportal.
org); [21,22]. For skin cutaneous melanoma (SKCM) TCGA patients (n = 469), the genomic data (copy
number alteration, mutation spectrum, and fraction genome altered) and clinical data (sample type,
sex, age at diagnosis, tumor location, CLARK level, Breslov depth, and overall survival status) were
available for 66.4% to 100% of SKCM samples (Table 1 and Table S1). All data is available online,
and access is unrestricted and does not require patients’ consent or other permissions. The use of the
data does not violate the rights of any person or any institution.

4.2. Transcriptomic Data

The RNA sequencing-based mRNA expression data were directly downloaded from the cBioportal.
RNASeq V2 from TCGA is processed and normalized using RSEM [51]. Specifically, the RNASeq V2
data in cBioPortal corresponds to the rsem.genes.normalized_results file from TCGA. Differentially
Expressed Genes (DEGs) were cut off at p-value < 0.05 and FDR < 0.05.

4.3. Gene Set Enrichment Analysis

The Gene Set Enrichment Analysis [52] was used to detect the coordinated expression of a priori
defined groups of genes within the tested samples [53]. Genesets are available from the Molecular
Signatures Database [54]. All significantly differentially expressed genes (previously ranked based on
their log2FC between analyzed groups) were imported to GSEA. The GSEA was run according to the
default parameters: each probe set was collapsed into a single gene vector (identified by its HUGO
gene symbol), permutation number = 1000, and permutation type = “gene-sets”. The FDR was used to
correct for multiple comparisons and gene set sizes.

4.4. Methylation Data

Analyses of the methylation of IRF family members (CpG islands near the 3′UTR or 5′UTR of
analyzed genes) were performed with the MEXPRESS database, a straightforward and easy-to-use
web tool for the integration and visualization of the expression, DNA methylation, and clinical TCGA

www.cbioportal.org
www.cbioportal.org
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data on a single-gene level [55,56]. In this study, the probes with the highest negative correlation of
methylation (presented as beta values) with the gene expression were analyzed.

4.5. Stemness-Associated Scores

Novel stemness indices for assessing the degree of oncogenic dedifferentiation were previously
determined using transcriptomic (mRNA Stemness Index) or epigenetic (mDNA Stemness Index)
features of non-transformed pluripotent stem cells and their differentiated progeny [19]. In the current
study, we used publicly available information for 469 SKCM samples. For further details, see in [19].
All stem cell-derived scores used in this study are shown in Table S2.

4.6. Immune-Associated Scores

The Lymphocyte Scores were assessed by a pathologist based on the density (scored 0–3) and the
distribution (scored 0–3) of lymphocytes in tumor samples, as previously reported [30]. The Immune
Scores were estimated based on the transcriptome profiles of each sample, as previously reported [31].
The Leukocyte Infiltration Scores (LIS) were calculated based on the expression level of 25 genes,
as previously reported [32]. All immune-associated scores used in this study are shown in Table S4.

4.7. Validation Sets

Additional datasets used in this study (GSE65904, melanoma, n = 214 samples [26]; GSE19234,
metastatic melanoma, n = 44 samples [27]) were obtained from the R2: Genomics Analysis and
Visualization Platform (http://r2.amc.nl). We selected these sets based on the availability of patients’
survival data. GSE65904 and GSE19234 datasets were analyzed online using the R2: Genomic Analysis
and Visualization Platform to find genes that correlate with TRIM28 expression. All data is freely
available online, and access is unrestricted and does not require patients’ consent or other permissions.

4.8. Statistical Analyses

Statistical analyses were carried out with GraphPad Prism 8.0 software (GraphPad Software,
Inc., La Jolla, CA, USA). Single comparisons between two groups were performed with the Student’s
t-test. Multiple comparisons were performed with the ANOVA followed by Tukey’s multiple
comparisons post-test. The correlation between the two variables was assessed with Spearman’s
rank correlation coefficient (r). For differential gene expression analysis, the statistical significance
was tested with the Student’s t-test followed by a False Discovery Rate (FRD) correction with
Benjamini–Hochberg procedure.

Survival analysis was performed according to the Kaplan–Meier analysis and log-rank test.
Overall survival (OS) was defined as the time between the date of surgery and the date of death or the
date of the last follow-up.

4.9. Melanoma Cell Lines

The original cell lines were obtained from American Type Culture Collection (ATCC, Manassas,
VA, USA) or Rockland Immunochemicals, Inc. (Limerick, PA, USA). All cell lines were grown in
Dulbecco’s Modified Eagle’s Medium (DMEM), 4.5 g/L of glucose, with 10% fetal bovine serum (FBS),
50 units/mL penicillin, and 50 µg/mL streptomycin (all from Invitrogen, Carlsbad, CA, USA) in a
humidified atmosphere at 37 ◦C, 21% O2, and 5% CO2.

To produce lentiviral vectors (LV-shTRIM28, LV-puro-ctrl, LV-shTRIM28-TRIM28 (rescue)),
HEK-293T cells were co-transfected with psPAX2, pMD2.G and lentiviral plasmid pWPTS-shTRIM28,
pWPTS-puro-ctrl, or pWPTS-shTRIM28-TRIM28. The culture supernatant was collected 48 h
post-transfection and passed through 0.45 µm filters, and aliquots were stored at −80 ◦C. Three
melanoma cell lines were infected with lentiviruses, and 1 µg/mL puromycin was added 72 h after

http://r2.amc.nl
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infection. The cells were selected using puromycin (Sigma-Aldrich, St. Louis, MO, USA) for 8–10 days
and were subsequently tested for TRIM28 expression.

4.10. RT-qPCR Analyses

Total RNA was extracted using TRI Reagent RNA Isolation Reagent (Sigma Aldrich, St. Louis,
MO, USA) according to the manufacturer’s protocol. The quality and quantity of RNA were evaluated
by the NanoDrop 2000 UV-Vis Spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA)
and was stored in −80 ◦C. Reverse transcription was performed using the iScript cDNA Synthesis Kit
(Bio- Rad Laboratories, Inc. Hercules, CA, USA) with 1 µg of total RNA per reaction. Gene-specific
primers and probes (Universal ProbeLibrary Set, Human, Roche, Basel, Switzerland) were used for
real-time qPCR. PCR amplification and fluorescence detection were performed using a LightCycler® 96
Real-Time PCR detection system (Roche, Basel, Switzerland), and the threshold cycles were determined
using Light Cycler® 96 Software. Fold inductions were determined using the 2(−∆∆Ct) method against
the GAPDH gene.

4.11. Western Blot

Whole-cell lysates were prepared by lysing the cells with radioimmune precipitation assay (RIPA)
buffer (Sigma-Aldrich, St. Louis, MO, USA) completed with Complete Protease Inhibitor Mixture
(Roche) according to the manufacturer’s protocol. Protein lysates were stored in −80 ◦C for further
analyses. Protein concentration was measured with PierceTM BCA Protein Assay Kit (Thermo Fisher
Scientific, Waltham, MA, USA), and then samples were subjected to SDS-PAGE (using Mini-PROTEAN®

Tetra Cell System, Bio-Rad) followed by immunoblotting with antibodies for TRIM28 (ab10483 or
ab10484, Abcam, Cambridge, UK) and GAPDH (ab9485, Abcam). The blots were visualized using an
enhanced chemiluminescence detection kit (ECL-Plus, Amersham Biosciences, Little Chalfont, UK)
and a G:BOX F3 Gel Documentation System (Syngene, Bangalore, India).

4.12. Cell Proliferation Assay

The cells were seeded into 96-well plates in a number of 1 × 103 per well in triplicates.
A 20 µL aliquot of full medium containing 1 µCi of 3H-thymidine (specific activity 70–90 Ci/mmol,
2590–3330 GBq/mmol, Perkin Elmer, Waltham, MA, USA) was added to each well 16–18 h before the
termination of culture by freezing. Incorporated 3H-thymidine was assessed using a Micro Beta TriLux
scintillation counter (Perkin Elmer, Waltham, MA, USA).

4.13. Sphere Formation Assay

For Soft Agar Colony Formation Assay, 12-well culture plates were coated with 0.66% low melting
agarose (Lonza SeaPlaqueTM Agarose, Lonza Group, Basel, Switzerland) in a serum-free DMEM/F12
(350 µL per well) supplemented with B27 supplement (Gibco, Thermo Fisher Scientific, Waltham,
MA, USA), 20 ng/mL basic fibroblast growth factor (bFGF, Invitrogen, Carlsbad, CA, USA), 20 ng/mL
epidermal growth factor (EGF, Invitrogen, Carlsbad, CA, USA), and 1% penicillin–streptomycin
(Sigma-Aldrich, St. Louis, MO, USA). After the bottom layer solidified, the top layer was prepared by
mixing 0.66% agarose/DMEM/F12 (supplemented as described above) with cell suspension to obtain
0.33% concentration of agarose, and then the top layer was added at the bottom layer (350 µL containing
1 × 103 of cells). Each well was checked under the microscope to confirm single-cell suspension with
no cell clusters. The plates were incubated in a humidified atmosphere at 37 ◦C, 5% CO2, and 1% O2

(hypoxia) for two weeks. To determine the efficiency of colony formation, spheres were stained with
250 µL of 0.005% crystal violet for 1 h, and then were counted under the microscope (Leica DMI 3000B
inverted microscope). Besides the number of outgrowing spheres, also the size and the morphology
was monitored.
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5. Conclusions

To conclude, our data indicate that TRIM28 high expression might facilitate “stemness
high/immune low” melanoma phenotype by the attenuation of interferon signaling (leading to
a worse prognosis for melanoma patients). However, further studies are needed to precisely define
the mechanism of TRIM28-mediated acquisition of stem-like melanoma phenotype. Verification of
whether TRIM28 possesses the potential to serve as a druggable target may pave the way to novel
anticancer therapies that directly target cancer stem cell population whilst enhancing endogenous
antitumor immune response.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/10/2998/s1,
Figure S1: Kaplan–Meier overall survival curves for SKCM TCGA patients separated into NORM and HIGH cohorts
based on the expression of distinct TRIM family members; Figure S2: The transcriptome profile of TRIM28-high
expressing melanoma patients in GSE65904 and GSE19234 datasets negatively correlates with immune-associated
gene signatures while being significantly enriched with stemness-associated biological processes; Figure S3:
TRIM28 expression positively correlates with stemness-associated genesets in GSE65904 and GSE19234 datasets;
Figure S4: Diagnostic value of TRIM28 expression in predicting the “stemness high” classification in GSE65904
and GSE19234 datasets; Figure S5: TRIM28 downregulation attenuates melanosphere formation but does not
affect melanoma proliferation; Figure S6: TRIM28 expression negatively correlates with transcriptome profiles of
specific leukocyte subpopulations in GSE65904 and GSE19234 datasets; Figure S7: TRIM28 expression is strictly
associated with stemness-high/immune-low melanoma phenotype and can predict the survival of melanoma
patients in two independent datasets (GSE65904 and GSE19234); Figure S8: Significant interferon regulatory factor
(IRF) family downregulation might facilitate stemness high/immune low melanoma phenotype that corresponds
to TRIM28 upregulation; Table S1: Clinicopathological features of 469 SKCM TCGA patients included in the study;
Table S2: Immune-associated scores determined for the SKCM TCGA samples; Table S3: Melanoma cell line
characteristics. Table S4: The statistical significance corresponding to Figure 3A. Table S5: Stemness-associated
scores calculated for the SKCM TCGA samples.
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Omberg, L.; Gevaert, O.; et al. Machine Learning Identifies Stemness Features Associated with Oncogenic
Dedifferentiation. Cell 2018, 173, 338–354. [CrossRef]

20. Miranda, A.; Hamilton, P.T.; Zhang, A.W.; Becht, E.; Bruun, J.; Micke, P.; de Reynies, A.; Nelson, B.H. Cancer
stemness, intratumoral heterogeneity, and immune response across cancers. Proc. Natl. Acad. Sci. USA 2019,
116, 9020–9029. [CrossRef]

21. Cerami, E.; Gao, J.; Dogrusoz, U.; Gross, B.E.; Sumer, S.O.; Aksoy, B.A.; Jacobsen, A.; Byrne, C.J.; Heuer, M.L.;
Larsson, E.; et al. The cBio Cancer Genomics Portal: An Open Platform for Exploring Multidimensional
Cancer Genomics Data. Cancer Discov. 2012, 2, 401–404. [CrossRef]

22. Gao, J.; Aksoy, B.A.; Dogrusoz, U.; Dresdner, G.; Gross, B.; Sumer, S.O.; Sun, Y.; Jacobsen, A.; Sinha, R.;
Larsson, E.; et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal.
Sci. Signal. 2013, 6, pl1. [CrossRef] [PubMed]

23. Najafi, M.; Farhood, B.; Mortezaee, K.; Kharazinejad, E.; Majidpoor, J.; Ahadi, R. Hypoxia in solid tumors:
A key promoter of cancer stem cell (CSC) resistance. J. Cancer Res. Clin. Oncol. 2020, 146, 19–31. [CrossRef]
[PubMed]

24. Pastò, A.; Bellio, C.; Pilotto, G.; Ciminale, V.; Silic-Benussi, M.; Guzzo, G.; Rasola, A.; Frasson, C.; Nardo, G.;
Zulato, E.; et al. Cancer stem cells from epithelial ovarian cancer patients privilege oxidative phosphorylation,
and resist glucose deprivation. Oncotarget 2014, 5, 4305–4319. [CrossRef]

25. Jaworska, A.M.; Wlodarczyk, N.A.; Mackiewicz, A.A.; Czerwinska, P. The role of TRIM family proteins in
the regulation of cancer stem cell self-renewal. Stem Cells 2020, 38, 165–173.

http://dx.doi.org/10.1038/sj.emboj.7600791
http://dx.doi.org/10.1073/pnas.1217692110
http://dx.doi.org/10.1016/j.scr.2017.07.012
http://dx.doi.org/10.1016/j.stemcr.2017.10.031
http://dx.doi.org/10.5114/wo.2014.47126
http://dx.doi.org/10.4172/2157-7633.1000363
http://www.ncbi.nlm.nih.gov/pubmed/27891292
http://dx.doi.org/10.1016/j.rpor.2018.04.005
http://www.ncbi.nlm.nih.gov/pubmed/29760595
http://dx.doi.org/10.1158/0008-5472.CAN-14-1561
http://www.ncbi.nlm.nih.gov/pubmed/25421577
http://dx.doi.org/10.18632/oncotarget.13273
http://www.ncbi.nlm.nih.gov/pubmed/27845900
http://dx.doi.org/10.1038/ng.127
http://dx.doi.org/10.1016/j.stem.2008.02.009
http://dx.doi.org/10.1182/blood-2003-09-3314
http://dx.doi.org/10.1016/j.cell.2018.03.034
http://dx.doi.org/10.1073/pnas.1818210116
http://dx.doi.org/10.1158/2159-8290.CD-12-0095
http://dx.doi.org/10.1126/scisignal.2004088
http://www.ncbi.nlm.nih.gov/pubmed/23550210
http://dx.doi.org/10.1007/s00432-019-03080-1
http://www.ncbi.nlm.nih.gov/pubmed/31734836
http://dx.doi.org/10.18632/oncotarget.2010


Cancers 2020, 12, 2998 19 of 20

26. Cirenajwis, H.; Ekedahl, H.; Lauss, M.; Harbst, K.; Carneiro, A.; Enoksson, J.; Rosengren, F.; Linda
Werner-Hartman, L.; Törngren, T.; Kvist, A.; et al. Molecular stratification of metastatic melanoma using
gene expression profiling: Prediction of survival outcome and benefit from molecular targeted therapy.
Oncotarget 2015, 6, 12297–12309. [CrossRef] [PubMed]

27. Bogunovic, D.; O’Neill, D.W.; Belitskaya-Levy, I.; Vacic, V.; Yu, Y.-L.; Adams, S.; Darvishian, F.; Berman, R.;
Shapiro, R.; Pavlick, A.C.; et al. Immune profile and mitotic index of metastatic melanoma lesions enhance
clinical staging in predicting patient survival. Proc. Natl. Acad. Sci. USA 2009, 106, 20429–20434. [CrossRef]
[PubMed]

28. Lee, C.-H.; Yu, C.-C.; Wang, B.-Y.; Chang, W.-W. Tumorsphere as an effective in vitro platform for screening
anti-cancer stem cell drugs. Oncotarget 2016, 7, 1215–1226. [CrossRef]

29. Borowicz, S.; Van Scoyk, M.; Avasarala, S.; Karuppusamy Rathinam, M.K.; Tauler, J.; Bikkavilli., R.K.;
Winn, R.A. The soft agar colony formation assay. J. Vis. Exp. 2014, 92, e51998. [CrossRef]

30. Akbani, R.; Akdemir, K.C.; Aksoy, B.A.; Albert, M.; Ally, A.; Amin, S.B.; Arachchi, H.; Arora, A.; Auman, J.T.;
Ayala, B.; et al. Genomic Classification of Cutaneous Melanoma. Cell 2015, 161, 1681–1696. [CrossRef]

31. Thorsson, V.; Gibbs, D.L.; Brown, S.D.; Wolf, D.; Bortone, D.S.; Ou Yang, T.-H.; Porta-Pardo, E.; Gao, G.;
Plaisier, C.L.; Eddy, J.A.; et al. Resource The Immune Landscape of Cancer. Immunity 2018, 48, 812–830.
[CrossRef] [PubMed]

32. Zhao, Y.; Schaafsma, E.; Gorlov, I.P.; Hernando, E.; Thomas, N.E.; Shen, R.; Turk, M.J.; Berwick, M.; Amos, C.I.;
Cheng, C. A Leukocyte Infiltration Score Defined by a Gene Signature Predicts Melanoma Patient Prognosis.
Mol. Cancer Res. 2019, 17, 109–119. [CrossRef] [PubMed]

33. Bindea, G.; Mlecnik, B.; Tosolini, M.; Kirilovsky, A.; Waldner, M.; Obenauf, A.C.; Angell, H.; Fredriksen, T.;
Lafontaine, L.; Berger, A.; et al. Spatiotemporal Dynamics of Intratumoral Immune Cells Reveal the Immune
Landscape in Human Cancer. Immunity 2013, 39, 782–795. [CrossRef]

34. Kamitani, S.; Ohbayashi, N.; Ikeda, O.; Togi, S.; Muromoto, R.; Sekine, Y.; Ohta, K.; Ishiyama, H.; Matsuda, T.
Biochemical and Biophysical Research Communications KAP1 regulates type I interferon / STAT1-mediated
IRF-1 gene expression. Biochem. Biophys. Res. Commun. 2008, 370, 366–370. [CrossRef] [PubMed]

35. Narayan, V.; Halada, P.; Hernychová, L.; Chong, Y.P.; Žáková, J.; Hupp, T.R.; Vojtesek, B.; Ball, K.L.
A multiprotein binding interface in an intrinsically disordered region of the tumor suppressor protein
interferon regulatory factor-1. J. Biol. Chem. 2011, 286, 14291–14303. [CrossRef] [PubMed]

36. Rouillard, A.D.; Gundersen, G.W.; Fernandez, N.F.; Wang, Z.; Monteiro, C.D.; McDermot, M.G.; Ma’ayan, A.
The harmonizome: A collection of processed datasets gathered to serve and mine knowledge about genes
and proteins. Database 2016, 2016, baw100. [CrossRef] [PubMed]

37. Cui, Y.; Yang, S.; Fu, X.; Feng, J.; Xu, S.; Ying, G. High Levels of KAP1 Expression Are Associated with
Aggressive Clinical Features in Ovarian Cancer. Int. J. Mol. Sci. 2015, 16, 363–377. [CrossRef]

38. Hu, M.; Fu, X.; Cui, Y.; Xu, S.; Xu, Y.; Dong, Q.; Sun, L. Expression of KAP1 in epithelial ovarian cancer and
its correlation with drug-resistance. Int. J. Clin. Exp. Med. 2015, 8, 17308–17320.

39. Wang, Y.; Jiang, J.; Li, Q.; Ma, H.; Xu, Z.; Gao, Y. KAP1 is overexpressed in hepatocellular carcinoma and its
clinical significance. Int. J. Clin. Oncol. 2016, 21, 927–933. [CrossRef]

40. Fernandez-Marrero, Y.; Bachmann, D.; Lauber, E.; Kaufmann, T. Negative Regulation of BOK Expression
by Recruitment of TRIM28 to Regulatory Elements in Its 3′ Untranslated Region. IScience 2018, 9, 461–474.
[CrossRef]

41. Lee, A.K.; Pan, D.; Bao, X.; Hu, M.; Li, F.; Li, C.-Y. Endogenous Retrovirus Activation as a Key Mechanism of
Anti-Tumor Immune Response in Radiotherapy. Radiat. Res. 2020, 193, 305–317. [CrossRef] [PubMed]

42. Seki, Y.; Kurisaki, A.; Watanabe-Susaki, K.; Nakajima, Y.; Nakanishi, M.; Arai, Y.; Shiota, K.; Sugino, H.;
Asashima, M. TIF1beta regulates the pluripotency of embryonic stem cells in a phosphorylation-dependent
manner. Proc. Natl. Acad. Sci. USA 2010, 107, 10926–10931. [CrossRef] [PubMed]

43. Cheng, B.; Ren, X.; Kerppola, T.K. KAP1 represses differentiation-inducible genes in embryonic stem cells
through cooperative binding with PRC1 and derepresses pluripotency-associated genes. Mol. Cell Biol. 2014,
34, 2075–2091. [CrossRef] [PubMed]

44. Hu, G.; Kim, J.; Xu, Q.; Leng, Y.; Orkin, S.H.; Elledge, S.J. A genome-wide RNAi screen identifies a new
transcriptional module required for self-renewal. Genes Dev. 2009, 23, 837–848. [CrossRef]

http://dx.doi.org/10.18632/oncotarget.3655
http://www.ncbi.nlm.nih.gov/pubmed/25909218
http://dx.doi.org/10.1073/pnas.0905139106
http://www.ncbi.nlm.nih.gov/pubmed/19915147
http://dx.doi.org/10.18632/oncotarget.6261
http://dx.doi.org/10.3791/51998
http://dx.doi.org/10.1016/j.cell.2015.05.044
http://dx.doi.org/10.1016/j.immuni.2018.03.023
http://www.ncbi.nlm.nih.gov/pubmed/29628290
http://dx.doi.org/10.1158/1541-7786.MCR-18-0173
http://www.ncbi.nlm.nih.gov/pubmed/30171176
http://dx.doi.org/10.1016/j.immuni.2013.10.003
http://dx.doi.org/10.1016/j.bbrc.2008.03.104
http://www.ncbi.nlm.nih.gov/pubmed/18381204
http://dx.doi.org/10.1074/jbc.M110.204602
http://www.ncbi.nlm.nih.gov/pubmed/21245151
http://dx.doi.org/10.1093/database/baw100
http://www.ncbi.nlm.nih.gov/pubmed/27374120
http://dx.doi.org/10.3390/ijms16010363
http://dx.doi.org/10.1007/s10147-016-0979-8
http://dx.doi.org/10.1016/j.isci.2018.11.005
http://dx.doi.org/10.1667/RADE-20-00013
http://www.ncbi.nlm.nih.gov/pubmed/32074012
http://dx.doi.org/10.1073/pnas.0907601107
http://www.ncbi.nlm.nih.gov/pubmed/20508149
http://dx.doi.org/10.1128/MCB.01729-13
http://www.ncbi.nlm.nih.gov/pubmed/24687849
http://dx.doi.org/10.1101/gad.1769609


Cancers 2020, 12, 2998 20 of 20

45. Wiznerowicz, M.; Jakobsson, J.; Szulc, J.; Liao, S.; Quazzola, A.; Beermann, F.; Aebischer, P.; Trono, D. The
Krüppel-associated box repressor domain can trigger de novo promoter methylation during mouse early
embryogenesis. J. Biol. Chem. 2007, 282, 34535–34541. [CrossRef]

46. Li, J.; Xi, Y.; Li, W.; McCarthy, R.L.; Stratton, S.A.; Zou, W.; Li, W.; Dent, S.Y.; Jain, A.K.; Barton, M.C. TRIM28
interacts with EZH2 and SWI/SNF to activate genes that promote mammosphere formation. Oncogene 2017,
36, 2991–3001. [CrossRef]

47. Wang, C.; Rauscher, F.J., III; Cress, W.D.; Chen, J. Regulation of E2F1 function by the nuclear corepressor
KAP1. J. Biol. Chem. 2007, 282, 29902–29909. [CrossRef]

48. Chen, L.; Chen, D.T.; Chen, T.; Kurtyka, C.; Rawal, B.; Fulp, W.J.; Haura, E.B.; Cress, W.D. Tripartite motif
containing 28 (Trim28) can regulate cell proliferation by bridging HDAC1/E2F interactions. J. Biol. Chem.
2012, 287, 40106–40118. [CrossRef]

49. Pineda, C.T.; Potts, P.R. Oncogenic MAGEA-TRIM28 ubiquitin ligase downregulates autophagy by
ubiquitinating and degrading AMPK in cancer. Autophagy 2015, 11, 844–846. [CrossRef]

50. Alavi, S.; Stewart, A.J.; Kefford, R.F.; Lim, S.Y.; Shklovskaya, E.; Rizos, H. Interferon Signaling Is Frequently
Downregulated in Melanoma. Front. Immunol. 2018, 9, 1414. [CrossRef]

51. Li, B.; Dewey, C.N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference
genome. BMC Bioinform. 2011, 12, 323. [CrossRef] [PubMed]

52. GSEA. Available online: http://www.broad.mit.edu/gsea/index.html (accessed on 10 April 2020).
53. Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.;

Pomeroy, S.L.; Golub, T.R.; Lander, E.S.; et al. Gene set enrichment analysis: A knowledge-based approach
for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 2005, 102, 15545–15550.
[CrossRef] [PubMed]

54. MSigDB. Available online: http://www.broad.mit.edu/gsea/.msigdb/msigdb_index.html (accessed on 10
April 2020).

55. Available online: http://mexpress.be (accessed on 20 May 2020).
56. Koch, A.; De Meyer, T.; Jeschke, J.; Van Criekinge, W. MEXPRESS: Visualizing expression, DNA methylation

and clinical TCGA data. BMC Genom. 2015, 16, 636–642. [CrossRef] [PubMed]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1074/jbc.M705898200
http://dx.doi.org/10.1038/onc.2016.453
http://dx.doi.org/10.1074/jbc.M704757200
http://dx.doi.org/10.1074/jbc.M112.380865
http://dx.doi.org/10.1080/15548627.2015.1034420
http://dx.doi.org/10.3389/fimmu.2018.01414
http://dx.doi.org/10.1186/1471-2105-12-323
http://www.ncbi.nlm.nih.gov/pubmed/21816040
http://www.broad.mit.edu/gsea/index.html
http://dx.doi.org/10.1073/pnas.0506580102
http://www.ncbi.nlm.nih.gov/pubmed/16199517
http://www.broad.mit.edu/gsea/.msigdb/msigdb_index.html
http://mexpress.be
http://dx.doi.org/10.1186/s12864-015-1847-z
http://www.ncbi.nlm.nih.gov/pubmed/26306699
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	The Transcriptome Profile of TRIM28 High Expressing Melanoma Patients Negatively Correlates with Immune-Associated Gene Signatures While Being Significantly Enriched with Stemness-Associated Biological Processes 
	TRIM28 High Expressing Melanomas Are Dedifferentiated Tumors Enriched with Stem Cell-Associated Features 
	TRIM28 High Expressing Melanoma Cell Lines Possess a Higher Potential of Melanosphere Formation 
	TRIM28 High Expressing Melanomas Are Significantly Depleted with Tumor-Infiltrating Lymphocytes 
	TRIM28 Expression Is Strictly Associated with Stemness-High/Immune-Low Melanoma Phenotype and Can Predict the Survival of Melanoma Patients 
	Significant Attenuation of the Interferon Signaling by TRIM28-Mediated Epigenetic Silencing of the IRF Transcription Factor Family Might Facilitate Stemness High/Immune Low Melanoma Phenotype 

	Discussion 
	Materials and Methods 
	SKCM TCGA Genomic and Clinical Data 
	Transcriptomic Data 
	Gene Set Enrichment Analysis 
	Methylation Data 
	Stemness-Associated Scores 
	Immune-Associated Scores 
	Validation Sets 
	Statistical Analyses 
	Melanoma Cell Lines 
	RT-qPCR Analyses 
	Western Blot 
	Cell Proliferation Assay 
	Sphere Formation Assay 

	Conclusions 
	References

