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Abstract: The endocrine regulation of reproduction in a multiple spawning flatfish with an 

ovary of asynchronous development remains largely unknown. The objectives of this study 

were to monitor changes in mRNA expression patterns of three gonadotropin hormone 

(GTH) subunits (FSHβ, LHβ and CGα) and plasma GTH levels during ovarian maturation 

of half-smooth tongue sole Cynoglossus semilaevis. Cloning and sequence analysis revealed 

that the cDNAs of FSHβ, LHβ and CGα were 541, 670 and 685 bp in length, and encode for 

peptides of 130, 158 and 127 amino acids, respectively. The number of cysteine residues and 

potential N-linked glycosylation sites of the flatfish GTHs were conserved among teleosts. 

However, the primary structure of GTHs in Pleuronectiformes appeared to be highly 

divergent. The FSHβ transcriptional level in the pituitary remained high during the vitellogenic 

stage while plasma levels of FSH peaked and oocyte development was stimulated. The LHβ 

expression in the pituitary and ovary reached the maximum level during oocyte maturation 

stages when the plasma levels of LH peaked. The brain GTHs were expressed at the different 

ovarian stages. These results suggested that FSH and LH may simultaneously regulate 

ovarian development and maturation through the brain-pituitary-ovary axis endocrine 

system in tongue sole. 
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1. Introduction 

The two gonadotropin hormones (GTHs), follicle-stimulating hormone (FSH) and luteinizing 

hormone (LH), secreted by the pituitary gland, are key modulators of gametogenesis and gonadal 

steroidogenesis in almost all vertebrates, including fish. These GTHs contain a common glycoprotein α 

subunit (CGα) that forms a heterodimer with a hormone-specific β subunit (FSHβ or LHβ) [1,2].  

The hormones react to specific receptors at the reproductive organs which is an essential requirement 

for their physiological action [3,4]. It is generally accepted that FSH and LH of fish have complementary 

functions during reproduction; FSH is mainly involved in the control of puberty and gametogenesis, 

whereas LH predominates at final gonadal maturation, ovulation or spermiation [2,5–8]. 

Different temporal expression patterns of GTH subunits suggested the different regulatory mechanisms 

for endocrine control of oogenesis. Expression patterns of GTHs in female fish spawning single batches 

of eggs, have shown that the FSHβ transcription increased during the vitellogenic stage and decreased 

during final maturation of gametes. However the LHβ transcription increased rapidly during final  

ovarian maturation, correlating the fluctuations of plasma FSH and LH levels in rainbow trout 

(Oncorhynchus mykiss) [9]. On the other hand, GTH regulation mechanisms are not clear for multiple 

spawner fish, in which different results have been reported depending on the species, the methodologies 

used or because different oocyte stages coexist in the same ovary [10]. For instance, expression patterns 

of GTHs have been reported during the ovarian cycle of several multiple batch spawners [11–16].  

It is suggested that both GTHs transcription seem to fluctuate in parallel to stimulate the development of 

asynchronous batches of follicles in multiple spawning fish. Moreover, recently, two clear peaks have 

been found of plasmatic FSH and LH levels in Nile tilapia (Oreochromis niloticus) females in the course 

of one reproductive cycle, one peak during vitellogenesis and the other during spawning [17]. Some 

interesting information on the physiological function of GTHs has been revealed through molecular 

approaches by analyzing gene expression in the tissue of the extrapituitary. In brain of Nile tilapia,  

the brain-derived GTHs may function as hypophysiotropic hormones and neuromodulators of eproductive 

behaviors [18]. Moreover, in the ovary of gilthead seabream (Sparus aurata), the existence of a 

gonadotropin-releasing hormone (GnRH)-GTH axis was found. The GTHs may have novel roles in 

teleost intraovarian communication between oocytes and ovarian follicle cells [19,20]. For better 

understanding of the mechanism of GTH subunits in the brain-pituitary-ovary endocrine system at 

different gonadal development stages of multiple spawner fish, further studies should be performed in 

this field. 

Half-smooth tongue sole (Cynoglossus semilaevis) is a commercially exploited flatfish that is widely 

distributed in Chinese coastal waters. This species exhibits a sexually dimorphic growth. In nature,  

the females grow over three times faster and larger than males. The mature testis is from 1000th to 

5000th the volume and weight of the ovary [21]. Moreover, ovarian development in this flatfish is 

asynchronous with clutches of oocytes undergoing final oocyte maturation, ovulation, and spawning 
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over a period of up to three months. The tongue sole exhibits some degree of reproductive dysfunction  

under rearing conditions. The major obstacle for its large-scale aquaculture is the control of reproduction 

in captive stocks, especially of females which often show a low oocyte maturation rate. Thus, it is important 

to improve our understanding of the reproductive endocrinology of this flatfish and enhance the 

efficiency of reproduction. Recently, a number of studies have been conducted in this species for 

potential applications in aquaculture, such as ZW sex chromosome evolution and benthic lifestyle 

adaptation [22], sexual reversal [23], sex determination [24,25], development and growth [26,27] and 

reproduction [28–31]. Up to now, there is no information on the biological functions and mechanisms 

of GTHs in tongue sole. 

In the present study, three GTHs cDNA were cloned from tongue sole and the transcript levels 

quantified in different tissues and in the brain-pituitary-ovary axis endocrine system at the different 

ovarian development stages, combined with the detection of plasma FSH and LH levels, as well as 

gonadosomatic indices. The purpose of this study was to elucidate the role of GTH subunits during the 

ovarian development and maturation of tongue sole by analyzing their mRNA expression patterns and 

plasma circulating levels of FSH and LH. The results generated in this study provide useful information 

for artificial propagation and reproduction regulation of the tongue sole. 

2. Results and Discussion 

2.1. Gonadal Stages and Changes in Gonadosomatic Index (GSI) 

Representative sections of ovaries showing the morphological characteristics at different developmental 

stages of the tongue sole ovary are shown in Figure 1. These flatfish have asynchronous ovarian development 

with oocytes at different developmental stages at the same time throughout reproduction. The changes 

in GSI values during this study are shown in Figure 2. The gonadosomatic index (GSI) value was low, 

when the ovaries were at the previtellogenic (stage II) and beginning of vitellogenic stages (stage III) 

(Figure 1A,B). The GSI value rapidly increased from the late vitellogenesis stage (stage IV) (Figure 1C) 

until it reached its highest level at the ovarian maturation stage (stage V) (Figure 1D). A rapid decrease 

of the GSI value was then observed after ovulation (stage VI), this stage showed mainly atretic oocytes 

with degenerated late-vitellogenetic oocytes in their ovaries (Figure 1E). Moreover, the GSI value of 

this stage was higher than the one observed during previtellogenesis. 

 
(A) (B) 

Figure 1. Cont. 
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(E) 

Figure 1. Representative stained sections for each of the five stages of C. semilaevis ovarian 

development. (A) previtellogenesis, ovary in stage II, bar = 100 μm; (B) vitellogenesis, ovary 

in stage III, bar = 100 μm; Balck arrow denotes vitellogenic oocyte; (C) late vitellogenesis, 

ovary in stage IV, bar = 200 μm; and (D) maturation, ovary in stage V, bar = 200 μm; (E) 

After ovulation, ovary in stage VI, bar = 200 μm; Balck arrows indicate post-ovulatory follicles 

or atretic oocyte. VO: Vitellogenic oocyte; PF: Post-ovulatory follicles; and AO: Atretic oocyte. 

 

Figure 2. Changes of the Gonadosomatic Index (GSI) values at different ovary stages in 

C. semilaevis (n = 4). Each bar represents the mean ± standard error (SE). The values with 

different letters differ significantly from each other (p < 0.05). 
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(C) 

Figure 3. Nucleotide and deduced amino acid sequences of C. semilaevis gonadotropin 

subunits (FSHβ (A), LH β (B) and CGα (C)). Nucleotides (upper sequence) and amino acid 

(lower sequence) are numbered on the left. Amino acids that comprise the signal sequence 

are underlined. The start and stop codon are shown by boxes. The stop codon (TAA or TGA) 

is indicated by asterisks (*). The putative polyadenylation signal (AATAAA or ATTAAA) 

is underlined. 

2.2. cDNA Cloning of Tongue Sole Gonadotropin Hormone (GTH) Subunits 

The tongue sole FSHβ cDNA (GenBank accession number: JQ277933) was 541 bp in length,  

and consisted of a 5' Untranslated region (UTR) of 53 bp, a coding sequence of 393 bp, and a 3' UTR of 

95 bp. A putative polyadenylation signal (AATAAA) was located 24 bp upstream of the poly-A tail 

(Figure 3A). The predicted mature FSHβ peptide consisted of 103 amino acids preceded by a signal 

peptide of 27 amino acids. The tongue sole LHβ cDNA (GenBank accession number: JQ277934) was 

670 bp in length with a 5' UTR of 46 bp, a coding region of 477 bp, and a 3' UTR of 147 bp. A putative 

polyadenylation signal (AATAAA) was located 17 bp upstream of the poly-A tail (Figure 3B). The 
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putative protein contained 158 amino acids including a signal sequence of 25 amino acids. The tongue 

sole CGα cDNA (GenBank accession number: JQ364953) was 685 bp in length with a 5' UTR of 36 bp, 

a coding region of 384 bp, and a 3' UTR of 265 bp. A putative polyadenylation signal (ATTAAA) was 

located 25 bp upstream of the poly-A tail (Figure 3C). The open reading frame (ORF) encoded a mature 

peptide of 127 amino acids which was preceded by a signal peptide 33 amino acids long. 

 
(A) 

 
(B) 

Figure 4. Cont. 
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Figure 4. Alignment of amino acid sequences of C. semilaevis mature FSHβ (A), LHβ (B) 

and CGα (C) subunits with those of representative vertebrates. The cysteine residues are 

marked by gray shadow and numbered from the N terminus. The N-linked glycosylation sites 

are indicated by black shadow. Sole: Cynoglossus semilaevis, Senegalese: Solea senegalensis, 

Halibut: Hippoglossus hippoglossus, Flounder: Paralichthys olivaceus, Seabass: 

Dicentrarchus labrax, Grouper: Epinephelus coioides, Seabream: Pagrus major, Mtilapia: 

Oreochromis mossambicus, Killifish: Fundulus heteroclitus, Goldfish: Carassius auratus, 

Zebrafish: Danio rerio, Trout: Oncorhynchus mykiss, Eel: Anguilla anguilla, Sturgeon: 

Acipenser baerii, Catfish: Clarias gariepinus, Stickleback: Gasterosteus aculeatus, Ntilapia: 

Oreochromis niloticus, Human: Homo sapiens. 

2.3. Amino Acid Sequence Analysis of Tongue Sole GTH Subunits 

The homology analysis based on the amino acid sequence of the tongue sole FSHβ and LHβ mature 

peptides indicated that they were 22% identical, whereas the tongue sole CGα showed similar identities 

to FSHβ as to LHβ (9% and 15%, respectively). The mature peptides of tongue sole GTH subunits 

showed 46% and 49% (FSHβ), 66% and 67% (LHβ) and 67% and 62% (CGα) identity to the  

homologs of other pleuronectiform teleosts Senegalese sole (Solea senegalensis) and Japanese fiounder 

(Paralychthys olivaceus), respectively. However, the same range of sequence identities was observed 

between tongue sole and perciforms such as European sea bass (Dicentrarchus labrax) or orange-spotted 

grouper (Epinephelus coioides). Thus, three mature subunits of tongue sole showed 46% (FSHβ),  

72% (LHβ) and 70% (CGα) to the European seabass GTH subunits, and 44%, 74% and 69% identity, 

respectively, to those of the orange-spotted grouper. 

The alignment of mature protein of tongue sole FSHβ, LHβ and CGα with those of other teleosts and 

human revealed that the Cys residues and putative N-glycosylation sites of three GTH subunits were 
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highly conserved. The protein of tongue sole CGα contains 10 Cys residues while FSHβ and LHβ contain 

12 Cys residues, respectively. The mature peptide sequences of tongue sole FSHβ and LHβ have one 

putative N-glycosylation site while CGα have two putative N-glycosylation sites (Figure 4). 

(A) 

(B) 

Figure 5. Cont. 
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(C) 

Figure 5. Phylogenetic tree based on the amino acid sequences of FSHβ (A), LHβ (B) and 

CGα (C) from vertebrate. The tongue sole FSHβ, LHβ and CGα are highlighted by boldface. 

Bootstrap values (%) are indicated by 1000 replicates. 

Interestingly, the sequence of KMPSPQSPF was only found in the mature peptide of LHβ (Figure 4B). 

One possible explanation may be that the Cynoglossidae fish are highly specialized groups in 

Pleuronectiformes. Phylogenetic trees constructed for comparative analysis of tongue sole FSHβ, LHβ 

and CGα with known fish and selected vertebrate sequences are shown in Figure 5. Comparison of amino 

acid sequences indicated that both tongue sole FSHβ and LHβ were more similar to their orthologs of 

Percomorphs (Perciforms, Pleuronectiformes; 44%–49% identity) than to Elopomorphs (Anguilla sp.; 

30% identity) and Ostariophysis (Cyprinids; 27%–31% identity). However, the identity of tongue sole 

FSHβ and LHβ with those from other Pleuronectiformes (Senegalese sole and Japanese fiounder) was 

relatively low, 46%–49% (FSHβ) and 66%–67% (LHβ), and similar to those with FSHβ and LHβ from 

perciforms (44%–46% and 72%–74%, respectively). The amino acid sequence of tongue sole CGα 

showed the highest identity with the perciform species (69%–70% identity), whereas identity with other 

teleost groups ranged from 62%–67% for Pleuronectiformes, 58%–60% for Cyprinids and 53%–58% 

for Salmonids, Anguilliforms and Silurids. 

2.4. Tissue Distribution of GTH Subunits in Maturing Female Tongue Sole 

As expected strong expression of all three GTH subunit mRNAs was detected by qRT-PCR in the 

pituitary. In addition, positive signals were obtained for all three subunits in ovary and brain, although 

the resulting transcript levels were at least 120-fold lower than in the pituitary (Figure 6). Weak but still 

positive signals resulting in very low transcript levels of FSHβ mRNA were obtained when analyzing 
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kidney, as well as stomach (Figure 6A). Additionally, LHβ mRNA was detected in the heart, liver and 

kidney whereas CGα mRNA became positive in the gill, kidney and intestine (Figure 6B,C). 

 
(A) 

(B) 

Figure 6. Cont. 
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(C) 

Figure 6. Relative mRNA expression levels in maturing female C. semilaevis tissues. The 

abundance of FSHβ (A), LHβ (B) and CGα (C) transcripts, respectively, was determined  

by qRT-PCR and normalized to 18S (n = 4). Each bar represents the mean ± SE. Tissues 

marked by the different letters differing significantly from each other (p < 0.05). B: Brain,  

P: Pituitary, G: Gill, H: Heart, HK: Head kidney, K: Kidney, L: Liver, S: Spleen, St: Stomach, 

I: Intestine, O: Ovary, M: Muscle. 

2.5. Changes in GTH Subunits Transcript Levels in Brain, Pituitary and Ovary at Different Gonadal Stages 

The temporal changes of FSHβ, LHβ and CGα mRNA levels in brain-pituitary-ovary axis at different 

ovarian stages of tongue sole are shown in Figure 7. In pituitary, the transcript levels of FSHβ gradually 

increased with ovarian development. It attained the climax at stage IV, followed by a significant decline 

during stage V (p < 0.05). In brain and ovary, the expression levels of FSHβ decreased from stage II to 

stage V, and reached the lowest values in stage V. From then on, FSHβ transcript levels increased significantly 

in stage VI (Figure 7A). In pituitary and ovary, the transcript levels of LHβ were progressively elevated 

from stage II and reached a maximum in stage V (p < 0.05), and then dropped sharply in stage VI. 

Moreover, the curve for the GSI followed a very similar variation pattern. In brain, the transcript level 

of LHβ fell from stage II to stage V, but significantly increased in stage VI (p < 0.05) (Figure 7B). 

In pituitary, the transcript level of CGα significantly increased from stage II, peaked during stage V, 

then markedly decreased in stage VI (p < 0.05). In brain, the transcript level of CGα gradually decreased 

from stage II to stage V, but increased slightly in stage VI. In ovary, the transcript level of CGα increased 

from low levels during stage II, peaked during stage IV, and significantly dropped during stage V, and 

then increased during stage VI (Figure 7C). 
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(A) 

(B) 

(C) 

Figure 7. Relative mRNA expression levels of FSHβ, LHβ and CGα mRNA at different 

ovary stages in maturing C. semilaevis. Abundance of FSHβ (A), LHβ (B) and CGα (C) 

transcripts, respectively, was determined by quantitative real-time PCR and normalized to 

18S (n = 4). Each bar represents the mean ± SE. Tissues marked by the different letters differ 

significantly from each other (p < 0.05). The superscript “'” denotes the letter of statistical 

significance difference in the pituitary at different ovary stages. And the superscript “''” 

denotes the letter of statistical significance difference in the ovary at different. 
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2.6. Plasma Gonadotropins Levels at Different Gonadal Stages 

Plasma FSH and LH levels of female tongue sole were measured by radioimmunoassay (RIA) to 

evaluate the relationship between GTH subunits transcript level and plasma gonadotropin level. Plasma 

FSH and LH changes showed a stage dependent variation. In stage II, the high levels of FSH were noted, 

and the levels showed very high values during stage IV (Figure 8A). Plasma LH levels were relatively 

high during stage V (Figure 8B). Thereafter, the plasma levels of FSH and LH declined during stage VI. 

In the present study, the distinct correlation between the plasma hormone levels and the gonadal 

development stages was observed. 

 
(A) 

 
(B) 

Figure 8. Concentration of plasma FSH (A) and LH (B) at different ovary stages in maturing  

C. semilaevis (n = 4). Each bar represents the mean ± SE. The different letters differ 

significantly from each other (p < 0.05). 
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2.7. Discussion 

In this study, three cDNAs with complete ORF of the tongue sole FSHβ, LHβ and CGα were cloned 

and characterized, and the spatial and temporal expression of three genes in the brain-pituitary-ovary 

axis were investigated by qRT-PCR. The plasma levels of GTHs and ovarian histology were examined 

by RIA and hematoxylin-eosin staining. The analysis of the primary structure of tongue sole FSHβ  

and LHβ indicated the presence of one N-glycosylation site in each polypeptide that is almost  

conserved among teleosts and higher vertebrates since this site seems to be involved in the biosynthesis 

and regulation of the hormones [6,32]. In southern catfish (Silurus meridionalis), African catfish 

(Clarias gariepinus), channel catfish (Ictaluris punctatus), marbled eel (Anguilla marmorata) and 

Japanese eel (Anguilla japonica), FSHβ show two putative N-glycosylation sites. There was only one 

N-linked glycosylation site in tongue sole, Senegalese sole and European seabass and red seabream 

(Pagrus major). In orange-spotted grouper and Atlantic halibut (Hippoglossus hippoglossus), FSHβ does 

not have a potential glycosylation site. As suggested in Atlantic halibut [33], the carbohydrate chains of 

functional importance for tongue sole FSHβ may be also supplied by the CGα.  

The tongue sole FSHβ and LHβ both have typically 12 highly conserved cysteines which may form 

crosslinked disulphide bonds with the CGα, and thus are suggested to be involved in the processes of 

subunit assembly and receptor binding [34]. However, the tongue sole mature FSHβ lacks the 3rd Cys 

and shows an additional Cys at the N terminus, in agreement with the situation in Salmonids, Perciforms 

and Pleuronectiformes [6,13,33]. In human, the 3rd cysteine seems to be involved in the formation of 

the so called “seat-belt” structure that is wrapped around the CGα subunit upon dimerization and appears 

to be essential for receptor binding and heterodimer formation [35]. So the variation in the primary 

structure of tongue sole FSHβ may lead to differences in the nature of receptor interactions and the 

stability of the heterodimer. The tongue sole LHβ mature peptide has some conserved sequences between 

the 7th and 10th cysteine residue, which have been suggested to be important for heterodimerization, 

stability and the metabolism of GTHs such as Gly-Val-Asp and Pro-Val-Ala [32,36]. Other key residues 

suggested for the binding of LHβ to the CGα subunit, such as Cys and Gly in the teleost-specific 

sequence Cys-Ser-Gly-His between the 4th and 5th cysteine [37], are also shared by tongue sole LHβ. 

For tongue sole CGα, 10 cysteines and two putative N-linked glycosylation sites towards the  

C terminus of the mature peptide are conserved. From amino acid sequences comparison, it appeared 

that one region was highly conserved. This region from 33–66 amino acid residues, consisted of two 

pairs of adjacent Cys and the first putative N-linked glycosylation site, was believed to be involved in 

this process of subunit assembly and/or receptor binding in fish [38,39]. The alignment results also 

showed that fish CGα is more conservative than FSHβ and LHβ. The high conservation of the primary 

structure of CGα between mammals and teleosts is likely due to the fact that CGα is shared by all 

pituitary glycoprotein hormones, including FSH, LH and thyrotropin (TSH), and hence it is probably 

under higher selective pressure during vertebrate evolution. 

Comparison of amino acid sequences and phylogenetic analysis of teleost GTHβ subunits indicated 

that the tongue sole FSHβ showed the highest identities to teleost FSHβ, and that tongue sole LHβ was 

more similar to teleost LHβ, which provided further structural evidence for the identities of the tongue 

sole deduced peptides as FSHβ and LHβ. However, phylogenetic analysis showed that neither tongue 

sole FSHβ nor LHβ clustered with their respective counterparts from Pleuronectiformes fish, suggesting 
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that the primary structure of the GTHβ subunits of this group of teleosts may be highly divergent. One 

possible explanation for the molecular phylogenic relationships of GTHβ subunits may be that four 

Pleuronectiformes species come from a different family and genus. Nevertheless, the primary structure 

of tongue sole LHβ appears to be more conserved than that of FSHβ as has been previously found for 

other teleosts [40–44]. This fact may indicate a more rapid diversification of fish FSHβ which might be 

associated with slightly different physiological roles of this hormone among teleosts [40]. The identity 

of tongue sole CGα was mostly related to those of Pleuronectiformes and Perciformes. The phylogenetic 

tree of fish CGα showed tongue sole CGα and their respective counterparts from other Pleuronectiformes 

(i.e., Japanese fiounder and Atlantic halibut) did not form a single cluster, also indicating that the primary 

structure of CGα of this group of teleosts may be highly divergent. 

In multiple spawning fish, the function of GTHs remains largely unknown, despite numerous studies 

in different species. Currently, there are few methods available for analyzing the function of GTHs in 

non-salmonids and little understanding of how they regulate gametogenesis in multiple spawning fish. 

Thus, the gene expression analyses of GTH subunits mRNA have predominantly been used to 

characterize the GTHs function in non-salmonids [16]. In the present study, the highest transcript levels 

of GTH subunits were found as expected in the pituitary. Additionally, three GTH subunits mRNA were 

also detected in the brain, ovary, kidney and liver. However, transcript levels in those tissues were very 

low. Extrapituitary expression of GTH subunits has been previously demonstrated. In gilthead seabream, 

the mRNA expressions of FSHβ and LHβ were detected in the oocyte by in situ hybridization [19].  

In zebrafish (Danio rerio), three GTH subunits were also found in various tissues, such as brain, kidney, 

liver, testis and ovary by RT-PCR [44]. In Atlantic cod (Gadus morhua), three GTH subunits mRNA 

were detected in ovary by qRT-PCR [45]. In cichlid (Cichlasoma dimerus), the distribution of FSHβ and 

LHβ in the preoptic and hypothalamic areas was found by immunohistochemistry [46]. Based on these 

data, it was believed that the extrapituitary expression of GTHs may be a common phenomenon which 

was further supported by our results. Some studies were performed to elucidate the physiological 

implications of extrahypophyseal gonadotropin production [47]. Despite study about the function of 

GTHs in the brain of fish being scarce, information available from mammals and teleost suggested they 

may be related to brain development and reproductive behaviors [46,48]. 

In teleosts, ovarian folliculogenesis is a complex process integrating both systemic endocrine 

hormones and intraovarian factors. The regulation of oocytes at different developmental stages of 

multiple spawner might be supported by differential intrafollicular behavior. In situ hybridization 

revealed that GTHs transcripts located the cytoplasm of oogonia, previtellogenic and vitellogenic 

oocytes in the ovary of pejerrey (Odontesthes bonariensis). The GTHs could play a role as intraovarian 

factor during germ cell maturation [49]. Moreover, previous study showed that the GnRH-III mRNA of 

tongue sole was expressed in brain and gonad by qRT-PCR analysis [30]. Therefore, this implied for the 

ovary of tongue sole a local GnRH-GtH axis may also exist. Taking together these considerations, the 

functions of GTHs in ovary of tongue sole were accordance with a previous report, in which the GTHs 

in the gonads of fish were presumed to serve as autocrine/paracrine factors participating in intraovarian 

communication [19,20]. 

The synthesis and secretion of GTHs are regulated by positive and negative factors that act at the 

levels of brain, pituitary and gonad. Also, the temporal differences of FSHβ, LHβ and CGα transcripts 

were to our knowledge first detected in the brain-pituitary-ovary axis at different ovarian stages of tongue 
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sole. The FSHβ transcription in the pituitary gradually increased from stage II to stage IV, which changed 

in association with an increase of GSI values and plasma levels of FSH. On the other hand, the transcript 

levels of FSHβ in the ovary continuously existed from stage II to stage V. These results were consistent 

with findings reported for other fish, in which FSH takes part in vitellogenesis [50,51]. Moreover, the 

circulating levels of plasma FSH in rainbow trout were elevated during vitellogenesis [52]. These 

reports, together with present data, suggested that this elevation of FSHβ transcript levels stimulated the 

onset of vitellogenesis in tongue sole, whereas the relative low transcript levels of FSHβ in both stage V 

and stage VI may be associated with the ongoing vitellogenesis that runs in parallel with final oocyte 

maturation and ovulation. 

In this study, the LHβ transcription in the pituitary and ovary followed the variation of GSI very 

closely and significantly increased during late vitellogenesis and oocyte maturation compared to early 

vitellogenesis. A previous study showed an increase in the LHβ transcript levels around maturation and 

spawning in Japanese eel [53]. Furthermore, LH inducing the final maturation of oocytes, as well as  

the development of the maturational competence of oocytes has already been described in red  

seabream [54]. On the other hand, it has been suggested that LH may be involved in regulating 

vitellogenesis in chub mackerel (Scomber japonicus) which is a multiple spawning fish, because LHβ 

mRNA levels were high from late vitellogenesis to ovulation [16]. In tongue sole, the high transcript 

levels of LHβ during late vitellogenesis may indicate a role for LH not only in oocyte maturation but 

also in vitellogenesis in the late phase of ovarian development. Moreover, the present results showed 

that the pituitary LHβ mRNA expression patterns were correlated with circulating LH variation during 

oogenesis in this species. It has already been reported that in the striped bass (Morone saxatilis),  

plasma levels of LH were low during vitellogenic growth and that a plasma LH surge occurs during final 

oocyte maturation and ovulation [55], a circulating pattern similar to that found in the present work. 

Furthermore, histological analysis of the gonads reflected the fact that the ovary of tongue sole contains 

clutches of oocytes at several stages of development, and therefore there is need for the action of both 

FSH and LH for continuous ovarian maturation and ovulation throughout the spawning season. Similar 

expression patterns of pituitary FSHβ and LHβ genes are found in goldfish (Carassius auratus), blue 

gourami (Trichogaster trichopterus) and three-spined stickleback (Gasterosteus aculeatus), which are 

also multiple spawners with oocytes showing asynchronous development [11,12,15,56]. In Senegalese 

sole, the levels of FSHβ and LHβ transcripts in the pituitary of males increased during winter and spring, 

at the time when testicular germ cell development and spermatozoa production were stimulated [57]. 

These results suggested that FSH and LH may regulate spermatogenesis of Senegalese sole, which was 

similarly to that described for other teleosts with synchronous germ cell development. So our finding 

that both FSHβ and LHβ are expressed at the different gonadal stages is in accordance with the multiple 

spawner nature of tongue sole. 

The changes of CGα transcription in pituitary were similar to those for LHβ during the reproductive 

cycle, peaking at the stage of oocyte maturation. The increase in the transcript levels of CGα may be the 

result of a rise in β-subunits transcription at the different ovarian stages of tongue sole. Therefore, such 

parallelism may indicate that these genes share similar regulatory elements, which is not surprising given 

the common ancestral origin of three subunits [58]. In addition, the brain GTHs genes were expressed  

at the different ovarian stages, although the transcript levels gradually decreased along with ovarian 

development in this flatfish. Recently, immunoreactive neurons in the preoptic area of cichlid were found 
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to send projections through different brain areas and neurohypophysis. An individual pituitary in vitro 

culture system further revealed that the both pituitary gonadotropins were regulated by brain-derived 

gonadotropins [46]. Thus, such regulatory axes may contribute to or finely tune neuroendocrinology of 

reproduction in tongue sole. However, research in this direction has yet to be conducted. 

Since the late 1980s, GTHs have been isolated and characterized in fish, and GTHs homologous 

immunoassays have been developed for limited species with synchronous ovarian development [59–64]. 

The GTHs immunoassay for multiple spawning fish have only been developed for Nile tilapia and 

mummichog (Fundulus heteroclitus) [17,65]. However, tilapia is a tropical species without a distinct 

reproductive cycle. In fact, the spawning season variations in plasma GTHs levels of mummichog were 

first reported in multiple-spawning fish. In tongue sole, the FSH and LH have not yet been purified, thus 

it is not possible at the moment to develop a specific immunoassay to determine the plasma levels of the 

important hormones during oogenesis. Currently, the plasma circulating levels of FSH and LH have been 

examined by the heterogenous antibody. When compared with the well-known rainbow trout pattern, 

the remarkable difference is in the FSH profiles, especially the high level in the maturation phase. In 

rainbow trout, plasma FSH levels significantly increased at the onset of vitellogenesis, were maintained 

during vitellogenesis and then decreased prior to maturation, while plasma LH levels peaked at 

maturation–ovulation [52,66]. The present results indicated an active synthesis and secretion of FSH 

during the spawning season. Evidently, the high FSH levels would be necessary for the successive 

spawning, resulting from the successive production and development of gametes. In tongue sole,  

the high levels of LH were observed during the maturation phase, and the levels in the ovulation of  

the spawning period slightly decreased. Thus, LH is the important hormone that is responsible for the 

final maturation of oocytes in tongue sole. However the relatively high levels of LH during the 

vitellogenic phase concomitant with the surge of FSH suggested that in tongue sole, LH may play a role 

not only during final oocyte maturation, but also during vitellogenesis. 

It must be noted that plasma peptide hormone levels are controlled not only by the transcription,  

but affected thereafter by translation, processing and accumulation, exocytosis, blood clearance, etc. 

Alteration in the level of GTHs gene expression is not necessarily a reliable yardstick for the plasma 

level of the hormones [6]. Taken together, these results indicated the importance of FSH and LH for 

various reproductive events in this flatfish. Nonetheless, the precise information as to the physiological 

role of FSH and LH remains to be determined. So it would unsettle us to have to infer their specific roles 

in oocyte growth, in stimulating the synthesis of various steroids, and in stimulating the acquirement of 

the oocyte maturational competence, oocyte maturation and ovulation. 

3. Experimental Section 

3.1. Experimental Fish and Sample Collection 

The adult female tongue soles (body weight, 1266.3–2271.0 g; body length, 53.0–66.0 cm) were 

reared in a fish farm of Rizhao, Shandong China. Before the start of experimental sampling, they were 

reared in natural sea water under controlled conditions (10–25 °C; ≥5 mg/L O2; 7.8–8.4 pH). At the 

various gonadal developmental stages, female fish (n = 4) were decapitated after anesthesia and a record 

made of weight and length. The gonads were excised and measured, and then the gonadosomatic index 
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(GSI = [Gonad weight/(Body weight − Viscera weight)] × 100) was calculated. The midsection of each 

ovary from an individual was taken and fixed in Bouin’s solution for hematoxylin and eosin (H&E) 

staining in order to identify the developmental stages of the ovary. The brains were removed following 

anesthetization, snap-frozen in liquid nitrogen, and stored at −80 °C until total RNA extraction.  

The pituitaries were carefully detached from the brains tissue, snap-frozen in liquid nitrogen and stored 

at −80 °C before proceeding to RNA extraction. Ovaries were dissected and one portion was snap-frozen 

in liquid nitrogen. Similarly, different tissues and organs of female tongue sole were removed, 

immediately frozen in liquid nitrogen and finally stored at −80 °C, until later use for total RNA 

extraction. The treatment of fish adhered to the guidelines of animal experiments set by the Yellow Sea 

Fisheries Research Institute. 

3.2. Histological Analysis 

Fixed ovary segments were dehydrated in a 70%–100% ethanol series, cleaned in xylene, embedded 

in paraffin wax, and 5 μm sections were performed by microtome (LEICA-RM2235, Wetzlar, Germany) 

and stained with haematoxylin (Sigma-Aldrich, St. Louis, MO, USA), counter stained with eosin 

(Sigma-Aldrich), and then photographed by light microscope (LEICA DM500, Wetzlar, Germany). Five 

phases of ovarian development were identified accord to the method applied to the Senegalese sole [67]: 

Previtellogenesis (stage II), vitellogenesis (stage III), late vitellogenesis (stage IV), maturation (stage V), 

after ovulation (stage VI). 

3.3. Total RNA Extraction and Reverse Transcription (RT) 

Samples stored at −80 °C were immediately transferred to cold RNAiso reagent (Takara, Dalian, 

China) to preserve RNA quality. Total RNA was extracted following the manufacturer’s protocols.  

The quality of RNA was measured at A260 nm/A280 nm (Nanodrop, Thermo Scientific, Wilmington, 

DE, USA). Only RNAs with A260 nm/A280 nm ratios of 1.6–2.0 were used. RNA concentration of each 

sample was determined, and an agarose gel was applied to check RNA integrity. Then, the first-strand 

cDNA for isolation of three GTH subunits cDNA fragments was synthesized with 1 μg total RNA  

of pituitary gland by using PrimeScript 1st Strand cDNA Synthesis Kit (Takara, Dalian, China) in a  

10 μL reaction. 

3.4. Isolation and PCR Amplification of FSHβ, LHβ and CGα cDNA Fragments 

In order to clone GTH subunits fragment of the tongue sole, three pairs of degenerate primers  

(FSHβ F/R for FSHβ, LHβ F/R for LHβ and CGα F/R for CGα) , listed in Table 1, were designed. PCR 

reaction was carried out in a final volume of 25 μL containing 1 μL of cDNA from pituitary tissue,  

2.5 μL of 10× PCR buffer, 2 μL of a 2.5 mM dNTP mix, 0.5 μL of each primer, 0.2 μL of Taq polymerase 

(Takara, Dalian, China). Thermal cycling comprised 94 °C for 5 min followed by 30 cycles 94 °C for 

30 s, annealing at 60.8 °C (FSHβ), 58.2 °C (LHβ) and 55.1 °C (CGα) for 30 s, and an extension 

temperature of 72 °C for 30 s, followed by a final extension of 72 °C for 10 min. All PCRs were 

performed in a thermal cycler (Bio-Rad S1000, Hercules, CA, USA). The PCR products were separated 

through 2% agarose gel and purified using the E.Z.N.A Gel Extraction Kit (Omega Bio-Tek, Winooski, 
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VT, USA) and then cloned into the pEASY-T1 Cloning Vector (TransGene Biotech, Beijing, China),  

and three clones of each gene were sequenced using the ABI3730XL sequencer (ABI, Foster City,  

CA, USA). 

Table 1. The primer sequences used in the present study. 

Name Sequence (5'→3') Usage Size (bp)

FSHβF AGCAGAGGATGMAGCTGGT 
Degenerate primer 241 

FSHβR TGGCCACAGGGTAGGTSAC 

FSHβGSP1 GCCACAGGGTAGGTCACTTCCTCTGGAC 5' RACE primer 321 

FSHβNGSP1 GGTCCAGTCTCCGTTGCACGTCTTCTGC Nested 5' RACE primer 268 

FSHβGSP2 GTGCTGGCGATGGTTTGTCCTGGGAAGG 3' RACE primer 409 

FSHβF1 TGATGGGTGTCCAGAGGAAG 
qRT-PCR primer 95 

FSHβR1 CAACAAACCGTCCACAGTCC 

LHβF CCATYTGCAGCGGYCAC 
Degenerate primer 162 

LHβR GCAGCTCAMAGCCACMGG 

LHβGSP1 GCTCAAAGCCACAGGGTACGTGATGGTG 5' RACE primer 399 

LHβGSP2 AAGATGCCGTCGTTTCAGTCACCCTTCA 3' RACE primer 353 

LHβF1 AGACGGTGTCTCTGGAGAAAGAAG 
qRT-PCR primer 105 

LHβR1 ACGGCACCTTGATGTTTGGT 

CGαF TAGYTGATTCTTACCCCARCAT 
Degenerate primer 270 

CGαR TGCAGTGRCAGTCTGTGTGGTT 

CGαGSP1 CACCACAATACCAGCCACCACTACCTCA 5' RACE primer 340 

CGαNGSP1 GCACGTCGCCTCTGAAGTGATGTTCTTT Nested 5' RACE primer 292 

CGαGSP2 GTCTACCAGTGCCAGGGCTGCTGCTTCT 3' RACE primer 441 

CGαF1 TTCCCCACTCCTCTAACGACA 
qRT-PCR primer 116 

CGαR1 ACCACAATACCAGCCACCACTAC 

18S F GGTCTGTGATGCCCTTAGATGTC 
Internal control 113 

18S R AGTGGGGTTCAGCGGGTTAC 

3.5. Rapid Amplification of cDNA 3' and 5' Ends (3' and 5' RACE) 

SMART™ RACE cDNA Amplification Kit (Clontech, Mountain View, CA, USA) was used for 5' 

and 3' ends RACE-PCR. To isolate 3' ends of FSHβ, LHβ and CGα sequences, three gene specific 

antisenses, FSHβGSP2 (for FSHβ), LHβGSP2 (for LHβ), CGαGSP2 (for CGα), were designed and used 

in 3'-RACE cDNA amplification system. The 5' end of cDNAs was amplified by two rounds of PCR. 

Primers FSHβNGSP1 (for FSHβ), LHβNGSP1 (for LHβ) and CGαNGSP1 (for CGα), were prepared  

for touchdown PCR as described by manufacturer’s instructions. Both 5' and 3' RACE PCRs were 

performed in 50 μL using Clontech Advantage 2 Polymerase Mix according to the manufacturer’s 

protocol. The PCR products which had the corresponding predicted length were excised, purified and 

cloned into vector, then sequenced as described above. The list of primers used is presented in Table 1. 

BLASTN searches were used to verify gene identity and determine similarities with other vertebrates. 
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3.6. Sequence Analysis and Phylogenetic Analysis 

Deduced amino acid sequences of the FSHβ, LHβ and CGα cDNAs were analyzed in silico with the 

SignalP 3.0. and NetNGlyc 1.0 programs (http://www.cbs.dtu.dk/services/NetNGlyc), to predict signal 

peptide sequences and putative N-linked glycosylation sites, respectively. Multiple protein sequence 

alignment was performed using the CLUSTAL_X program. MEGA 4.0 software package was used 

to construct and analyze phylogenetic tree using the Neighbor-Joining method with 1000 bootstrap 

trials. Protein sequences used for analysis and their GenBank Accession Nos. are as follows: 

Cynoglossus semilaevis (AFC90009, AFF59207, AFD04550), Solea senegalensis (ABW81403, 

ABW81404, ABW81405), Hippoglossus hippoglossus (CAD10501, CAD10502, CAD10503), 

Paralichthys olivaceus (AAK58601, BAB47388, AAK58600), Dicentrarchus labrax (AAN40506, 

AAN40507, AAK49431), Epinephelus coioides (AAO31971, AAM28896, AAN18038 ), Channa maculate 

(AAS01610, AAS01609), Trichogaster trichopterus (Q9PW99), Morone saxatilis (Q91120, 

AAB66489), Pagrus major (BAB18563, BAB18564, BAB18562), Oreochromis mossambicus 

(AAK83079), Oreochromis niloticus (AAP49576, AAP49577), Acanthopagrus schlegelii (ABQ96863), 

Takifugu niphobles (BAJ12081), Monopterus albus (AAN77069), Odontesthes bonariensis (AAP85606, 

AAP85607, ABD36561), Fundulus heteroclitus (P30971, P47744), Danio rerio (NP_991187, 

AAV31153, AAR84285), Carassius auratus (Q98848, Q98849, AAV65764), Cyprinus carpio 

(O13050, P01235), Ictalurus punctatus (Q9DG81, Q9DG80, AAD18004), Clarias gariepinus (P53543, 

P53542), Silurus meridionalis (AAY42268), Oncorhynchus mykiss (BAB17686, BAB17687, 

BAB17685), Oncorhynchus masou (P48252, P48253), Brachymystax lenok (AAR99810, AAR99811), 

Coregonus autumnalis (P48250), Plecoglossus altivelis (AAM92269, AAM92270), Oncorhynchus keta 

(P10256), Anguilla Anguilla (AAN73407, P27767, P27794), Anguilla japonica (Q9YGK3, BAD14302),  

Conger myriaster (BAB97390, BAB97391), Acipenser baerii (CAB93504, CAB93502, CAC43060), 

Acipenser gueldenstaedtii (AAS92716), Gasterosteus aculeatus (CAD59185), Gadus morhua (ABD62882), 

Sebastes schlegelii (AAU14140), Rana japonica (BAD16757), Mauremys reevesii (BAB92948), 

Coturnix japonica (BAC01164), Homo sapiens (NP_001018090, NP_000885, NP_000726). 

3.7. Quantitative Real-Time PCR 

To examine the FSHβ, LHβ and CGα transcript levels at the different tissues of the sexual maturation 

tongue sole, quantitative real-time PCR (qRT-PCR) was conducted on a Mastercycler ep relplex 

(Eppendorf, Hamburg, Germany). Further, the qRT-PCR was used to study the changes of GTH subunits 

mRNA transcript levels in the whole brain, pituitaries, and ovaries at the different ovarian stages. The 

qRT-PCR was performed using the primers FSHβF1/R1 for FSHβ, the primers LHβF1/R1 for LHβ, and 

the primers CGαF1/R1 for CGα (Table 1). 18s rRNA was used for normalization of the expression levels. 

Total RNA extraction and quality measure were processed as described in Section 3.3. RNA samples 

were reverse transcribed using PrimeScript RT reagent Kit With gDNA Eraser (Perfect Real time) 

(Takara, Dalian, China) following the manufacturer’s instructions. The gDNA Erase in this Kit can 

eliminate genomic DNA contamination. Amplifications were carried out in a final volume of 20 μL, 

containing 10 μL SYBR Premix Ex Taq (2×) (Takara, Dalian, China), 0.8 μL of each forward and reverse 

primer, 1 μL cDNA and 7.6 μL PCR-grade water. The reaction carried out without using the template 
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was used as blank control. The PCR amplification procedure was initial denaturation at 95 °C for 30 s, 

40 cycles of 95 °C for 5 s and 60 °C for 20 s, followed by disassociation curve analysis to determine 

target specificity. For normalization of cDNA loading, all samples were run in parallel using the 

housekeeping gene as loading standard for tissues and brain-pituitary-ovary at the different ovarian 

stages, respectively. To estimate efficiencies, a standard curve was generated for each primer pair based 

on known quantities of cDNA (10-fold serial dilutions corresponding to cDNA transcribed from 100 to 

0.01 ng of total RNA). All calibration curves exhibited correlation coefficiencies and were in the range 

0.91–0.98. Relative mRNA expression was determined using the 2−ΔΔCt method [68]. Agarose gel 

electrophoresis of the PCR products was performed to confirm the presence of single amplicons of the 

correct predicted base-pair sizes. 

3.8. Radioimmunoassay 

The tongue soles were anesthetized with 3-aminobenzoic acid ethyl ester (MS222, Sigma, St. Louis, 

MO, USA). The blood was collected from the caudal vasculature by heparinized disposable syringes. 

Blood samples were put in ice-cold heparinised tubes and held on ice before centrifugation at 12,000× g for 

10 min at 4 °C. The plasma was aliquoted into 1.5-mL plastic microfuge tubes and stored at −40 °C until 

analysis. Serum levels of FSH and LH were measured using commercial kits from Diagnostic Products 

Corporation (Tianjin Nine Tripods Medical & Bioengineering Co., Ltd., Tianjin, China). Hormone levels 

were determined by radioimmunoassay (RIA) according to the manufacturer’s instructions [69,70]. The 

assay detection limits were 1.0 mIU·mL−1 for FSH and 0.9 mIU·mL−1 for LH, respectively. The inter- 

and intra-assay coefficients of variation for FSH and LH were 5.4%–5.5% and 7.5%–8.7%, respectively.  

The cross-reactivities of antibody for FSH to TSH, LH, HCG and PRL were 3.0% × 10−3, 1.1% × 10−2, 

1.6% × 10−2 and 1.4% × 10−3, respectively. The cross-reactivities of antibody for LH to TSH, FSH, HCG 

and PRL were 2.0% × 10−3, 2.7% × 10−2, 5.3% × 10−1 and 1.3% × 10−3, respectively. 

3.9. Statistical Analysis 

Statistical analyses were performed with SPSS 13.0 software (SPSS Inc., Chicago, IL, USA).  

All assays were performed in triplicate. All data were expressed as mean ± SE and analyzed by one-way 

ANOVA followed by Duncan’s multiple comparison tests. Statistical significance was considered as  

p value of <0.05. 

4. Conclusions 

In summary, three cDNAs encoding the CGα, FSHβ and LHβ subunits were first isolated and 

characterized in half-smooth tongue sole. The qRT-PCR and RIA analysis first suggested that GTH 

subunits played an important role through the brain-pituitary-ovary axis endocrine system in this flatfish. 

In addition, the recombinant GTHs, in combination with pharmacological studies of the tongue sole 

GTH receptors and their precise cellular localization, in the future, will hopefully help to understand the 

specific physiological function of GTH subunits to enable the design of novel methods to overcome 

reproductive dysfunctions of the cultured female tongue sole. 
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