
fmicb-12-615711 January 13, 2022 Time: 13:34 # 1

ORIGINAL RESEARCH
published: 05 February 2021

doi: 10.3389/fmicb.2021.615711

Edited by:
Isabel Moreno Indias,

University of Málaga, Spain

Reviewed by:
Simon Roux,

Joint Genome Institute, Lawrence
Berkeley National Laboratory,

United States
Felipe Hernandes Coutinho,

Miguel Hernández University of Elche,
Spain

*Correspondence:
Hongwei Zhou

hzhou@smu.edu.cn;
biodegradation@gmail.com

Specialty section:
This article was submitted to

Evolutionary and Genomic
Microbiology,

a section of the journal
Frontiers in Microbiology

Received: 09 October 2020
Accepted: 04 January 2021

Published: 05 February 2021

Citation:
Fang Z and Zhou H (2021)
VirionFinder: Identification

of Complete and Partial Prokaryote
Virus Virion Protein From Virome Data
Using the Sequence and Biochemical

Properties of Amino Acids.
Front. Microbiol. 12:615711.

doi: 10.3389/fmicb.2021.615711

VirionFinder: Identification of
Complete and Partial Prokaryote
Virus Virion Protein From Virome
Data Using the Sequence and
Biochemical Properties of Amino
Acids
Zhencheng Fang1,2 and Hongwei Zhou1,3*

1 Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University,
Guangzhou, China, 2 Center for Quantitative Biology, Peking University, Beijing, China, 3 State Key Laboratory of Organ
Failure Research, Southern Medical University, Guangzhou, China

Viruses are some of the most abundant biological entities on Earth, and prokaryote
virus are the dominant members of the viral community. Because of the diversity of
prokaryote virus, functional annotation cannot be performed on a large number of genes
from newly discovered prokaryote virus by searching the current database; therefore, the
development of an alignment-free algorithm for functional annotation of prokaryote virus
proteins is important to understand the viral community. The identification of prokaryote
virus virion proteins (PVVPs) is a critical step for many viral analyses, such as species
classification, phylogenetic analysis and the exploration of how prokaryote virus interact
with their hosts. Although a series of PVVP prediction tools have been developed, the
performance of these tools is still not satisfactory. Moreover, viral metagenomic data
contains fragmented sequences, leading to the existence of some incomplete genes.
Therefore, a tool that can identify partial PVVPs is also needed. In this work, we present
a novel algorithm, called VirionFinder, to identify the complete and partial PVVPs from
non-prokaryote virus virion proteins (non-PVVPs). VirionFinder uses the sequence and
biochemical properties of 20 amino acids as the mathematical model to encode the
protein sequences and uses a deep learning technique to identify whether a given
protein is a PVVP. Compared with the state-of-the-art tools using artificial benchmark
datasets, the results show that under the same specificity (Sp), the sensitivity (Sn) of
VirionFinder is approximately 10–34% much higher than the Sn of these tools on both
complete and partial proteins. When evaluating related tools using real virome data, the
recognition rate of PVVP-like sequences of VirionFinder is also much higher than that of
the other tools. We expect that VirionFinder will be a powerful tool for identifying novel
virion proteins from both complete prokaryote virus genomes and viral metagenomic
data. VirionFinder is freely available at https://github.com/zhenchengfang/VirionFinder.
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INTRODUCTION

Prokaryote virus are some of the most dominant biological
entities in the viral community. Recently, a large number
of experimental methods that enrich viral particles in the
microbial community or computational methods that identify
viral sequences in metagenomic data have been developed
(Hayes et al., 2017; Khan Mirzaei et al., 2020; Martínez et al.,
2020; Saak et al., 2020), leading to the discovery of a large
number of novel prokaryote virus. The functional annotation
of prokaryote virus genes is essential for understanding the
composition and function of prokaryote virus in the microbial
community. One of the most important tasks of functional
annotation of prokaryote virus genes is the identification of
prokaryote virus virion proteins (PVVPs) from non-prokaryote
virus virion proteins (non-PVVPs). The PVVPs, which are
also called structural proteins, are essential materials of the
infectious viral particles, including shell proteins, envelope
proteins, and viral particle enzymes (Feng et al., 2013). The
identification of PVVPs plays an important role in understanding
the interaction between a prokaryote virus and its host and
can further help in developing antibacterial drugs (Lekunberri
et al., 2017). Additionally, PVVPs are important for virus
classification (Galiez et al., 2016), and it has been suggested
that specific PVVPs can further serve as phylogenetic marker
genes similar to 16S rDNA in bacteria (Seguritan et al., 2012)
and therefore are important genes for viral phylogenetic analysis
in the microbial community. Another important application
of PVVPs is to identify prophages in bacterial chromosomes
since the PVVP-enriched regions in bacterial chromosomes
have a higher potential to be prophages (Roux et al., 2015).
Although a series of experimental methods have been developed
to identify PVVPs, such as protein array analysis, sodium
dodecyl sulfate-polyacrylamide gel electrophoresis and mass
spectrometry (Charoenkwan et al., 2020a), a fast and low-cost
computational method is needed to accommodate the massive
increase in sequencing data.

Computational methods based on similarity searches against
known databases for PVVP identification are intuitive strategies,
but such methods may not work well for viral metagenomic
data. Because of its non-cultivable nature, the viral community
contains a large number of novel prokaryote virus. It has been
shown that many sequences in virome data are not present in the
current database (Hayes et al., 2017). In addition, a large number
of genes annotated on the prokaryote virus genomes of current
database are predicted by related bioinformatics tools, such as
GeneMark (Besemer and Borodovsky, 2005), and their function
has not been subjected to experimental verification, indicating
that the current knowledge of viral gene function is quite
limited. Alignment-free algorithms, such as machine learning-
based methods, bypass employing similarity search strategies
and can identify novel PVVPs by universal features extracted
from known data. Therefore, Alignment-free algorithms for
PVVP identification may be better suited for virome studies.
Recently, many alignment-free algorithms for such tasks have
been developed, including iVIREONS (Seguritan et al., 2012),
the algorithm developed by Feng et al. (2013), PVPred (Ding

et al., 2014), the algorithm developed by Zhang et al. (2015), PVP-
SVM (Manavalan et al., 2018), PhagePred (Pan et al., 2018), the
algorithm developed by Tan et al. (2018), the algorithm developed
by Ru et al. (2019), Pred-BVP-Unb (Arif et al., 2020), PVPred-
SCM (Charoenkwan et al., 2020a) and Meta-iPVP (Charoenkwan
et al., 2020b). To the best of our knowledge, among these
algorithms, iVIREONS, PVPred, PVP-SVM, PVPred-SCM, and
Meta-iPVP are currently available via web servers, while the
other algorithms have not been released either via web servers
(or the server was out of order) or one-click software packages.
The biological support of these tools is that the amino acid
composition between virion proteins and non-virion proteins is
different. For example, it has been shown that the virion proteins
contain more amino acids whose molecular weight is low (Ding
et al., 2014). Based on this phenomenon, these tools constructed
specific feature sets, such as the frequency of each amino acid
on the protein, to characterize a given protein, and employed
a shallow statistical model to distinguish the PVVP and non-
PVVP according to the input feature sets. For example, the tool
iVIREONS used the amino acid frequency as the feature sets
and employed a shallow artificial neural network to classify the
PVVP and non-PVVP (Seguritan et al., 2012); the tool PVPred
used the g-gap dipeptide compositions as the feature sets and
employed a support vector machine to classify the PVVP and
non-PVVP (Ding et al., 2014); the tool PVP-SVM used the
composition of amino acid, dipeptide and atom as well as the
chain-transition-distribution and physicochemical properties as
feature sets, and employed a support vector machine to classify
the PVVP and non-PVVP (Manavalan et al., 2018); the tool
PVPred-SCM used dipeptide composition as feature sets and
employed a scoring card method to classify the PVVP and non-
PVVP (Charoenkwan et al., 2020a); and the tool Meta-iPVP
used the information of discriminative probabilistic features and
employed a support vector machine to classify the PVVP and
non-PVVP (Charoenkwan et al., 2020b). The performance of
such methods relied heavily on the selected features (Ding et al.,
2014). Since such features are constructed by the researcher
empirically, the performance of these tools will be affected if
inappropriate features are selected. In contrast, deep learning
technique bypasses the process of artificial feature selection, and
uses deep neural networks to extract useful features from the
raw data automatically and therefore, deep learning may be more
powerful in many bioinformatics tasks (Min et al., 2017). Thus,
employing deep learning technique on the PVVP identification
task may further improve the performance of the existing tools.
Recently, a deep learning based method to identify specific
virion proteins, namely capsid and tail, has been proposed (Abid
and Zhang, 2018). Moreover, the existing tools are primarily
designed for complete proteins while sequence assemblies of
viral sequencing reads in metagenomic data are more difficult
than chromosome-derived reads (Sutton et al., 2019; Martínez
et al., 2020), indicating that virome data may contain fragmented
sequences with some partial genes. Therefore, tools that can
perform PVVP identification from partial genes are also needed.

In this work, we present VirionFinder. VirionFinder takes a
sequence file containing all proteins from a single prokaryotic
viral genome or viral metagenomic data in which viral sequences
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are collected using experimental or computational method as
input, and outputs a tabular file containing the judgment for
each protein. Based on deep learning, VirionFinder can identify
complete and partial PVVPs from virome data using the sequence
and biochemical properties of amino acids. Evaluations showed
that VirionFinder outperformed all the currently available tools.

MATERIALS AND METHODS

Dataset Construction
To create a benchmark dataset, we downloaded all the
prokaryotic viruses from the RefSeq viral database (1downloaded
in November 28, 2019). In addition to phage proteins, our
dataset also contained proteins from archaeal viruses, which
were also members of prokaryotic viruses. Dividing the data into
training and testing sets according to the genome release day is a
commonly used method to test an algorithm’s ability to handle
novel data (Zhou and Xu, 2010; Ren et al., 2017; Fang et al.,
2019, 2020). To evaluate whether VirionFinder can identify a
PVVP from a novel prokaryote virus, which is important for
virology studies, we used the genomes released before 2018 to
construct the training set, while the remaining genomes were
used to construct the test set. According to the description from
Seguritan et al. (2012), genes labeled one of the following key
words “capsid,” “tape measure,” “portal,” “tail,” “fiber,” “baseplate,”
“connector,” “neck,” and “collar” were extracted in the form of
amino acid sequences to construct the PVVP set, while the
remaining genes were used to construct the non-PVVP set. Genes
labeled “hypothetical protein,” “unnamed,” “probable,” “putative,”
or “similar to” were removed from the dataset as suggested
by Seguritan et al. (2012). The accession lists of the PVVPs
and non-PVVPs of the training and test sets are provided in
Supplementary Data Sheet 2.

Mathematical Model of Amino Acid
Sequences
Each protein sequence is represented by a “one-hot” matrix and
a biochemical property matrix. We use a “one-hot” vector to
represent a certain amino acid and use a “one-hot” matrix to
represent a protein sequence. In the “one-hot” vector, each of the
20 amino acids is represented by a 20-dimensional vector with
19 bits are “0” and a certain bit is “1” (shown in Supplementary
Table 1). In this way, a protein sequence of length L can be
represented by a “one-hot” matrix with length L and width 20.
It has been shown that deep learning techniques have a strong
ability to extract complex features and specific motifs using
sequence “one-hot” encoding (Jones et al., 2017), and this “one-
hot” matrix will serve as the input of the deep neural network
described below.

It has been shown that the biochemical properties of
frequently occurring amino acids that make up PVVPs and non-
PVVPs are significantly different. The study of Charoenkwan
et al. (2020a) showed that there are 20 biochemical properties of
amino acids in the AAindex database (Kawashima et al., 2008)

1ftp://ftp.ncbi.nlm.nih.gov/refseq/release/viral/

that have a strong correlation with amino acids that make up
PVVPs and non-PVVPs. The indexes of these 20 biochemical
properties in the AAindex database are FUKS010107,
FUKS010111, JACR890101, PRAM820102, QIAN880126,
SNEP660102, KOEP990101, QIAN880124, RADA880105,
WOLR790101, HUTJ700102, HUTJ700103, ZIMJ680103,
FAUJ880104, LEVM760105, FAUJ880111, CHAM830104,
LEVM760102, GEIM800101, and EISD860102. A detailed
description of these 20 biochemical properties is provided
in Supplementary Tables 2, 3 of the paper by Charoenkwan
et al. (2020a). In addition to these 20 biochemical properties,
Seguritan et al. (2012) suggested that the isoelectric point
of amino acids (corresponding AAindex: ZIMJ680104) is an
important property for classifying PVVPs and non-PVVPs.
Moreover, Ding et al. (2014) found that amino acids that
make up PVVPs are often small, and therefore, the molecular
weight property (corresponding AAindex: FASG760101) may
also be an important property for PVVP identification. In the
biochemical property matrix, an amino acid is represented
by a 22-dimensional vector in which each bit represents a
corresponding AAindex value as mentioned above. Similar to
the “one-hot” matrix, a protein sequence of length L can be
represented by a biochemical property matrix with length L and
width 22. Each AAindex value is normalized between 0 and 1 in
the biochemical property matrix.

Design of the Deep Learning Neural
Network
We designed a convolutional neural network with a “one-hot”
path and a biochemical property path to extract the complex
features from the input protein sequence and to further identify
whether the given protein is a PVVP. The structure of the
neural network is shown in Figure 1. In both the “one-hot”
and biochemical property paths, we used a one-dimensional
convolution operation to detect the sequence features from the
“one-hot” matrix and the biochemical property matrix. The
length of the convolution kernels is set to 8, the number of kernels
of each path is set to 500, and we used the rectified linear unit
(ReLU) function as the activation function to perform nonlinear
transformations. After the convolution operation, 500 feature
maps are generated for each of the “one-hot” matrix and the
biochemical property matrix. We then used a one-dimensional
global max pooling operation to handle each feature map, and
then a 500-dimensional feature vector was generated for each of
the “one-hot” matrix and the biochemical property matrix. The
two 500-dimensional feature vectors are connected into a 1000-
dimensional feature vector. After a batch normalization layer
and a fully connected layer with the ReLU activation function,
the sigmoid layer calculates a score between 0 and 1 reflecting
the likelihood that the given protein is a PVVP. To prevent
overfitting, in the training process, there is a dropout layer
between the batch normalization layer and the fully connected
layer, and a dropout layer between the fully connected layer and
the sigmoid layer.

Unlike the existing tools, considering that there may be some
incomplete genes in virome data, VirionFinder was trained using
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FIGURE 1 | Structure of VirionFinder. VirionFinder contains a “one-hot” path and a biochemical property path to extract complex features from the “one-hot” matrix
and biochemical property matrix, respectively. For a given protein sequence, VirionFinder calculates a likelihood score reflecting whether the protein is a PVVP.

protein fragments rather than complete proteins, which helps
VirionFinder extract the local features, specific motifs and local
conserved functional domains more effectively than previous
methods. Specifically, we randomly extracted protein fragments
between 30 and 40 aa in the training set and test set, respectively.
Finally, 200,000 fragments of both PVVPs and non-PVVPs were
generated for the training set, respectively, while 5,000 fragments
of both PVVPs and non-PVVPs were generated for the test set,
respectively. In the training process, we used the Adam optimizer
for the neural network, and the number of iteration epochs
was set to 80. For the 10-fold cross validation performed on
the training set fragments, VirionFinder achieved an average of
area under the receiver operating characteristic curve (AUC) of
91.46% (±0.15%). For the amino acid fragments in the test set, we
found that the neural network could achieve an AUC of 88.96%.
Furthermore, we tried to remove the biochemical property path
and “one-hot” path, respectively, and retrained VirionFinder. We
found that these two single-path neural networks could achieve
slightly lower AUCs of 87.60 and 85.46%, respectively, indicating
that the neural network with both “one-hot” and biochemical
property paths may be able to extract useful information from the
input data more comprehensively than the neural networks with
only one of these paths.

In the prediction process, for amino acid fragments longer
than 40 aa, VirionFinder uses a scan window with a length of
40 aa to move across the protein sequence without overlapping,
and a weighted average score is calculated for the whole
sequence. For example, given a 90-aa sequence, VirionFinder will

calculate three scores for the subsequences of 1–40, 41–80, and
81–90 aa. A weighted average score for these 3 scores will be
calculated, and the weights for each score are 40/90, 40/90, and
10/90, respectively.

RESULTS

Performance Comparison Against the
Benchmark Dataset
We first compared VirionFinder with the currently available
tools, namely, iVIREONS, PVPred, PVP-SVM, PVPred-SCM,
and Meta-iPVP. To evaluate each tool on both complete
and partial genes more comprehensively, we performed
the evaluation over four groups of test data with different
sequence completeness levels. Group A contains all the
complete proteins in the test set. In Group B, each protein
in the test set was randomly cut to a subsequence of 75% of
the full length. Similarly, Group C contained sequences of
50% of the full length, while Group D contained sequences
of 25% of the full length. The evaluation criteria are the
sensitivity and specificity, which are given by Sn = TP/(TP+FN)
and Sp = TN/(TN+FP), respectively. For VirionFinder, the
higher the score of a given protein, the more likely it is a
PVVP. In general, a value of 0.5 can serve as the default
threshold. To make our comparison more convincing, in
the evaluation process, we let VirionFinder achieve the same
Sp as the comparison tools by adjusting the threshold, and
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under the same Sp, we compared the Sn of VirionFinder
(denoted by SnV) with the Sn of the corresponding comparison
tool (denoted by SnC). The results are shown in Table 1.
In all cases, VirionFinder performed much better than
the other tools. Among the comparison tools, Meta-iPVP,
which is the newest tool released recently, and iVIREONS
are the two best-performing tools, but VirionFinder not
only achieves a higher performance but is also stabler for
incomplete genes. We found that in the full-length sequences,
under the same Sp, the Sn of VirionFinder is 12.62 and
13.59% higher than that of Meta-iPVP and iVIREONS,
respectively, while in the 25% full length sequences, the Sn
of VirionFinder is 16.18 and 17.15% higher than the Sn of
these tools, indicating that the advantage of VirionFinder is
more obvious in incomplete genes. Therefore, we conclude
that VirionFinder can be used as a PVVP annotation tool
not only for isolated complete prokaryote virus genomes
but also for viral metagenomic data, in which some genes
may be incomplete.

Evaluation Using Real Virome Data
We also evaluated VirionFinder and related tools using real viral
metagenomic data. It is worth noting that real metagenomic
data are hard to use as a benchmark dataset because real data
contain a large number of sequences from unknown species
that are not present in the current database, and therefore,
such an evaluation must be qualitative. We collected lung
virome data (Young et al., 2015) from the National Center
for Biotechnology Information (NCBI) Sequence Read Archive
(accession: SRR5224158.1). We performed the quality control

and assembly processes using SPAdes (Bankevich et al., 2012)
pipeline by the command “spades.py –meta –1 file1.fastq –
2 file2.fastq –o out_folder.” The assembled contigs contain
24,230 sequences with a maximum length of 32,273 bp, an
average length of 140.83 bp, and the minimum length of
55 bp, indicating that a large number of short reads are poorly
assembled. We then used the MetaProdigal (Hyatt et al., 2012)
to perform gene prediction. Among the predicted genes, only
7.02% were complete genes. To collect the potential PVVPs,
we used position-specific iterated basic local alignment search
tool BLAST (PSI-BLAST) to search all the predicted proteins
in the PVVPs from the RefSeq viral database. PSI-BLAST was
used here because such a homology search strategy is more
sensitive for novel genes with low similarity to sequences
in the current database. All potential PVVPs with e-values
less than 1e-5 were collected. Among these potential PVVPs,
VirionFinder identified 76.47% of them as PVVPs (using
a default value of 0.5 as the threshold), while iVIREONS,
PVPred, PVP-SVM, PVPred-SCM, and Meta-iPVP identified
52.94%, 17.65, 17.65, 52.94, and 70.59%, respectively (shown
in Figure 2), indicating that VirionFinder can identify the
highest proportion of PVVP-like sequences as PVVPs. Such
results are also consistent with the quantitative comparison
against the benchmark dataset in which VirionFinder is the
best-performing tool, while the Meta-iPVP tool outperforms the
other comparison tools. Additionally, we found that the PVPred
and PVP-SVM tools can identify only a few potential PVVPs
(<20%), indicating that these tools may not be able to adapt
to the situation of virome data, in which a large number of
genes are incomplete.

TABLE 1 | Performance comparison between VirionFinder and related tools.

Group Tool Sp (%) SnC (%) SnV (%) SnV-SnC (%)

Group A VirionFinder vs. iVIREONS 71.37 78.32 91.91 13.59

Full length VirionFinder vs. PVPred 90.07 44.01 71.52 27.51

VirionFinder vs. PVP-SVM 84.31 48.22 82.20 33.98

VirionFinder vs. PVPred-SCM 79.74 58.90 87.06 28.16

VirionFinder vs. Meta-iPVP 66.67 81.88 94.50 12.62

Group B VirionFinder vs. iVIREONS 73.20 74.76 88.67 13.92

75% of the full length VirionFinder vs. PVPred 88.76 44.34 70.23 25.89

VirionFinder vs. PVP-SVM 83.53 47.90 79.61 31.72

VirionFinder vs. PVPred-SCM 75.95 59.22 86.41 27.18

VirionFinder vs. Meta-iPVP 56.99 85.11 95.47 10.36

Group C VirionFinder vs. iVIREONS 71.63 73.79 85.76 11.97

50% of the full length VirionFinder vs. PVPred 85.88 50.49 66.99 16.50

VirionFinder vs. PVP-SVM 82.22 46.93 73.79 26.86

VirionFinder vs. PVPred-SCM 73.20 59.87 84.79 24.92

VirionFinder vs. Meta-iPVP 56.21 81.55 95.47 13.92

Group D VirionFinder vs. iVIREONS 72.29 59.87 77.02 17.15

25% of the full length VirionFinder vs. PVPred 78.82 44.01 63.43 19.42

VirionFinder vs. PVP-SVM 78.04 47.25 63.43 16.18

VirionFinder vs. PVPred-SCM 67.45 56.63 84.79 28.16

VirionFinder vs. Meta-iPVP 47.32 79.61 95.79 16.18

We let VirionFinder achieve the same Sp as the comparison tools by adjusting the threshold, and under the same Sp, we compared the Sn of VirionFinder (denoted by
SnV) with the Sn of the corresponding comparison tool (denoted by SnC). The column of SnV-SnC presents the advantage of VirionFinder with the comparison tools.
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FIGURE 2 | Identification of potential PVVPs by VirionFinder and related tools.

Virion proteins are sometimes encoded next to each other
on the genome. We analyzed the longest contig from the
virome data. This contig contained 32,273 base pairs and 34
genes. The only gene which was identified as PVVP using
PSI-BLAST was the 31st gene from the 5’ end, which showed
homology with the portal protein. We found that VirionFinder
could continuously identify the 30th–33rd genes as PVVP.
Correspondingly, iVIREONS and Meta-iPVP could continuously
identify the 31st–32nd genes as PVVP; PVPred could not
identify the 31st gene as PVVP but identify the 30th gene as
PVVP; PVP-SVM continuously identify the 29th–34th genes as
non-PVVP and PVPred-SCM continuously identify the 20th–
32nd genes as non-PVVP. This showed that VirionFinder had
the ability to identify more potential novel PVVPs around
the known PVVPs.

We further observed the distribution of VirionFinder
scores on all proteins. We found that the distribution showed
obvious bimodal distribution (shown in Supplementary
Figure 1). The bimodal distribution showed that VirionFinder
judged most proteins as non-PVVPs with the scores very
close to 0 and judged a small fraction of proteins as
PVVPs with the scores very close to 1. This observation
suggests that the rate of false-positive of VirionFinder
is not insanely high and that VirionFinder is able to
efficiently identify the subset of predicted CDS with a
composition consistent with a PVVP, including likely a
number of novel PVVPs.

We further collected 22 virome samples of healthy human gut
from Norman et al. (2015). The accession list of the samples is
provided in Supplementary Table 2. We assembled the short
reads and performed gene prediction as we mentioned above,
and a total of 278,150 genes were predicted. We used PSI-BLAST
to find all PVVP-like sequences as we mentioned above. We
found that VirionFinder can identify 83.37% of the PVVP-like

sequences as PVVPs, indicating that VirionFinder can achieve
robust performance in large scale viral metagenomic data.

It is worth noting that in the lung virome, only 17 out of 7,267
proteins were identified as PVVP with PSI-BLAST, and in the 22
samples of virome data from healthy human gut, only 8,563 out of
278,150 proteins were identified as PVVP with PST-BLAST. This
relatively low frequency of PVVP detected suggests that there are
some novel PVVPs not currently annotated in real virome data,
and alignment-free tools like VirionFinder are needed to identify
the most likely PVVPs from these large set of “hypothetical
proteins.” The related files, including the genes predicted by
MetaProdigal, PSI-BLAST output files and VirionFinder result
files, are stored in the VirionFinder GitHub website under the
“virome” folder.

DISCUSSION AND CONCLUSION

In this work, we present VirionFinder to identify PVVPs using
the sequence and biochemical properties of amino acids based
on a deep learning technique. VirionFinder takes a complete or
partial prokaryote virus protein as input and judges whether the
given protein is a PVVP. Tests show that VirionFinder achieves a
much better performance than the state-of-the-art tools.

Like other PVVP prediction tools, VirionFinder is designed
primarily for prokaryotic viruses, which are dominant in the
viral community. The protein sequences in the training set
of VirionFinder are also derived from prokaryotic viruses.
It is worth noting that the viral community also contains
eukaryotic viruses, which are not included in our training set.
To allow VirionFinder to better adapt to the real situation of
the viral community, we will consider retraining VirionFinder
regularly with eukaryotic viruses included in the future. On
the other hand, many eukaryotic viruses, such as SARS-
CoV-2, are RNA viruses that may not occur frequently in
traditional metagenomic DNA sequencing data, and we therefore
consider that the existence of eukaryotic viruses may not
seriously affect the usage of VirionFinder. We will also consider
developing another version of VirionFinder to handle RNA virus
sequencing data.

Bacterial host contamination is another issue that need to
be pay attention to when using VirionFinder. The training
set of VirionFinder did not contain bacterial proteins and
therefore, the existing of host contamination may lead to
the false positive prediction of VirionFinder. We randomly
collected 10,000 bacterial proteins from RefSeq database to
test how VirionFinder judge these host proteins and we found
that the scores of VirionFinder among these 10,000 bacterial
proteins seemed to obey the normal distribution with the mean
around 0.5 (shown in Supplementary Figure 2), indicating that
VirionFinder cannot judge whether the host protein belongs
to PVVP or non-PVVP. Therefore, we recommend that user
can use related bioinformatics tools to filter out the sequences
from host contamination as the preprocessing process before
using VirionFinder. Some of the related tools which can
distinguish viral sequences and bacterial sequences are listed in
the review of Martínez et al. (2020).

Frontiers in Microbiology | www.frontiersin.org 6 February 2021 | Volume 12 | Article 615711

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-615711 January 13, 2022 Time: 13:34 # 7

Fang and Zhou VirionFinder

In conclusion, VirionFinder achieves the highest performance
on both the benchmark dataset and real virome data.
It is expected that VirionFinder will be a powerful tool
for virome studies.
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