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Abstract
Given the costliness of HIV drug therapy research, it is important not only to maxi-
mize true positive rate (TPR) by identifying which genetic markers are related to drug 
resistance, but also to minimize false discovery rate (FDR) by reducing the number of 
incorrect markers unrelated to drug resistance. In this study, we propose a multiple test-
ing procedure that unifies key concepts in computational statistics, namely Model-free 
Knockoffs, Bayesian variable selection, and the local false discovery rate. We develop 
an algorithm that utilizes the augmented data-Knockoff matrix and implement Bayesian 
Lasso. We then identify signals using test statistics based on Markov Chain Monte Carlo 
outputs and local false discovery rate. We test our proposed methods against non-bayes-
ian methods such as Benjamini–Hochberg (BHq) and Lasso regression in terms TPR 
and FDR. Using numerical studies, we show the proposed method yields lower FDR 
compared to BHq and Lasso for certain cases, such as for low and equi-dimensional 
cases. We also discuss an application to an HIV-1 data set, which aims to be applied 
analyzing genetic markers linked to drug resistant HIV in the Philippines in future work.

Keywords Bayesian variable selection · Model-free Knockoffs · False discovery 
control · Drug resistant HIV-1

1 Introduction

Through the continued development of modern computing technology, it has become 
easier to store, synthesize, and extract insights from large-scale data. A major focus 
of these developments is on variable selection, which deals with identifying a 
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subset of characteristics, features, or covariates that are important in describing a 
certain observed phenomenon. For instance, regression has been a go-to technique 
in many fields to determine significant features from a diverse set of variables. 
Several methods have been developed over the years for specialized purposes such 
as high dimensional and sparse data, among which are Bayesian statistical methods 
(Guan and Stephens 2011; Sindhu et al. 2017, 2019). The main objective of these 
techniques is to increase the accuracy of variable selection using a novel Bayesian 
technique, eventually gaining more insights about the outcome of interest.

This development is particularly evident in genomics, which is the field 
of study concerned with the structure, function, evolution, and mapping of 
genomes—the genetic material that describes an organism (McKusick and Rud-
dle 1987). Advancements in the discovery of genetic markers for various appli-
cations such as studying genetic variabilities, species identification, and medical 
applications have flourished over the past decade. Moreover, the detection of sig-
nificant single-nuceotide polymorphisms (SNPs), which are genetic variations in 
DNA, have paved the way for specialized drug delivery through detecting genetic 
markers that point to drug resistance (Metzner 2016). Recently, it is typical to 
observe thousands or millions of covariates in genome-wide association studies 
(GWAS). In the typical GWAS, a large number of genetic markers such as SNPs 
are measured from thousands of individuals where the primary goal is to identify 
which parts of the genome harbor markers that affect some physical characteris-
tics, such as drug resistance (Guan and Stephens 2011).

One particular important application of genomics is the study of the global 
Human Immunodeficiency Virus (HIV) pandemic. Researchers agree that under-
standing the virus’ genetic sequence is key in developing both vaccines and treat-
ments for those affected. Yet, one problem that arises in developing treatments 
is HIV drug resistance, which happens when false positive genetic markers are 
incorrectly detected as significant contributors to drug resistance. This is espe-
cially risky due to possible complications and side effects from taking the wrong 
HIV drug. For example, if identified genomic traits in individuals falsely lead 
to determining resistance to a certain drug, then a wrong drug may be adminis-
tered, leading to various side effects. Also, given the wrong drug, patients may 
have to take larger doses to compensate for the resistance (Jaymalin 2018). Mean-
while, undetected drug resistance may lead to an increase in viral load in the 
hosts body, severely weakening the immune system, potentially leading to full 
blown Acquired Immunodeficiency Syndrome (AIDS) (Nasir et al. 2017; Kuritz-
kes 2011; National Institutes of Health 2020).

The study is motivated by the growing HIV problem in the Philippines. It is 
one of the few countries in the world where the HIV infection rate is accelerating 
(World Health Organization 2018), while also experiencing rising Drug resistant 
HIV. Unfortunately, testing for drug resistance is not part of the routine due to 
unavailability of testing kits or expenses involved (Jaymalin 2018). With the 
understanding that the country has limited access to both testing and a wide range 
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of anti-retroviral drugs, the University of the Philippines National Institutes of 
Health (UP NIH) is working on developing a cheap and accessible diagnostic 
kit for HIV drug resistance testing (Macan 2019). The authors aim to develop 
a methodology for the analysis of genetic markers linked to drug resistant HIV 
in the Philippines, once the diagnostic kit is made publicly available and mass 
testing allows for the collection of data.

All-in-all, this study aims to propose a method to detect true signals from nulls 
while ensuring false discovery control. We bridge the concepts in computational sta-
tistics, namely false discovery control (Efron et al. 2001) and Bayesian Lasso Regres-
sion (Park and Casella 2008) with the new concept called “Knockoffs” introduced by 
Barber and Candès (2015). We use both numerically simulated data and a real-world 
HIV-1 dataset in demonstrating the proposed method’s potential for detecting genetic 
markers with false discovery control as compared to existing methodologies.

2  Review of related literature

2.1  False discovery rate and Knockoffs

Multiple testing procedures have been increasingly important in the era of big data. 
In order to weave through large datasets and find tiny nuggets of gold that are signif-
icant variables, innovations in multiple testing procedures have been introduced 
since the 1990s (Westfall and Young 1993; Efron et  al. 2001; Dudoit et  al. 2003; 
Efron 2008). This is especially important in fields like genomics where minimizing 
false discoveries in gene and mutation detection allows for more accurate drug 
delivery, specialized treatments, among other important discoveries. The primary 
objective is to test p pairs of null and alternative hypotheses (Efron et  al. 2001), 
H01

,H02
,… ,H0p

 , in which we generally have a decision rule based on a pre-defined 
test statistic that will decide whether each p is null or non-null. Our goal is to 
minimize the false discovery proportion Q, where Q =

V

V+S
=

V

1∨R
 and V and S are 

the number of false and true discoveries, respectively, among the rejected null 
hypotheses.

Benjamini and Hochberg (1995) proposed the concept of False Discovery Rate 
(FDR), which is defined as the expected value of the proportion of false rejections 
among rejected hypotheses FDR ∶= E

(
V

1∨R

)
 where R is the number of discoveries 

or the number of variables tagged as significant. Furthermore, they also proposed a 
distribution-free, linear step-up method that controls the FDR.

While Benjamini and Hochberg (1995)’s method has since been the standard for 
false discovery control, the landmark framework by Barber and Candès implemented 
a key innovation in false discovery control by introducing the idea of constructing 
a “fake” or knockoff design matrix �̃ that mimics the correlation structure of � , 
it becomes possible to create test statistics, say Zj , for the corresponding �j such 
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that the differences between the original Zj and its knockoff Z̃j are large for non-null 
cases, and small for null cases (Barber and Candès 2015). They were able to prove 
theoretically that the procedure controls FDR using a data-dependent threshold. 
By ensuring FDR is not too high, discoveries are reliably true and replicable. 
Implementing the knockoffs framework can generally be summarized in three steps: 

1. Construct knockoffs �̃ from the original design matrix �
2. Compute knockoff statistics
3. Find the knockoff threshold

Our proposed method primarily focuses on creating new test statistics for controlled 
variable selection. To compute test statistics, 2p Zj ’s are computed based on the 
augmented data matrix [�, �̃] : ( Z1, Z2,… , Zp, Z̃1, Z̃2,… , Z̃p ), and then compute 
each Wj based on each pair of Zj and Z̃j . A large positive value of Wj means the 
original parameter j enters the model before its knockoff (index j + p ). The crux to 
the knockoff method’s guaranteed FDR control is through the choosing of a data-
dependent threshold. We select Wj such that it is larger than t and positive ( Wj ≥ t ), 
where t is the threshold Barber and Candès (2015).

While the Benjamini-Hochberg procedure is phrased in terms of the classical 
p-value, for the case of large-scale testing where thousands of these p-values are 
measured at once, it is important that outcomes are judged on their own terms and 
not with respect to the hypothetical possibility of more extreme results (Efron 2012). 
Thus, Efron et al. (2001) introduced local false discovery rates (lfdr), prompted by a 
Bayesian idea and implemented using empirical Bayes methods for large-scale test-
ing. Local false discovery rate measures confidence in each effect being non-zero 
among a large number of imprecise measurements in large scale multiple testing 
Korthauer et al. (2019). Efron et al. (2001) defined local false discovery rate as:

where �0 is the proportion of nulls, �1 is the proportion of non-nulls, f0 is the null 
density, and f1 is the non-null density. The null distribution f0 is assumed known 
while �0 can be estimated. Consequently, we can either estimate the mixture distri-
bution f or estimate f1 and then plug in to �0f0 + �1f1 in order to determine f (Efron 
2012). The interpretation of the local FDR value is analogous to the frequentist’s 
p-value wherein local FDR values less than a specified level of significance provide 
stronger evidence against the null hypothesis.

2.2  Bayesian Lasso

Regression methods are ubiquitous in statistics for its ability to relate a dependent vari-
able � to a design matrix of independent variables � . While there are many types of 
regression methods available from simple linear, to non-linear regression, and even 
nonparametric methods, Bayesian methods have gained ground in recent years due 

(1)� = P(null|z) = �0f0(z)

�0f0(z) + �1f1(z)
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to increased access to computational facilities (O’Hara and Sillanpää 2009; Bijak and 
Bryant 2016; Robert and Casella 2011). In conjunction with the knockoffs framework, 
to be discussed in the next sect.  2.1, it is fitting to implement more straightforward 
Bayesian regression methods. It is advantageous to use these methods because they 
are easy to understand and utilize for most end-users rather than sophisticated adaptive 
approaches.

Park and Casella (2008) suggested that based from the form of Tibshirani (1996), 
Lasso may be interpreted as a Bayesian posterior mode estimate when the parameters �j 
have independent and identical double exponential (Laplace) priors. They formulated a 
hierarchical specification of the prior distribution for � = (�, �2, �2, �2,�) as follows:

Since � may be integrated out, the joint density (marginal only over � ) is 
proportional to

(2)� ∣ �2, �2 ∼ Np(0, �
2��)

(3)�� = diag(�2
1
, �2

2
,… , �2

p
)

(4)𝜎2 ∼ Inverse Gamma(A,B) A,B > 0

(5)�2
j
∣ �2 ∼

p∏
j=1

�2

2
exp

{
−
�2�2

j

2

}
, j = 1, 2,… , p

(6)𝜆2 ∼ Gamma(C,D)C,D > 0

(7)

p(�, 𝜎2
, �2, 𝜆 ∣ �̃,�) ∝

(
𝜎2
)− n−1

2

& exp

{
−

1

2𝜎2
(�̃ − ��)⊤(�̃ − ��)

}

×
(
𝜎2
)− p

2

p∏
j=1

(
𝜏2
j

)−
1

2

exp

{
−

1

2𝜎2

p∑
j=1

𝛽2
j

𝜏2
j

}

×
(
𝜎2
)−A−1

exp

{
−
B

𝜎2

}

× 𝜆2p exp

{
−
𝜆2

2

p∑
j=1

𝜏2
j

}

× (𝜆2)C−1 exp
{
−D𝜆2

}
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where (7) depends on � only through �̃ . It is then more simple to form a Gibbs 
sampler for � , �2 , �2 , and �2 based on this density because the conjugacy of the 
other parameters remains unaffected (Park and Casella 2008).

3  Methodology

As mentioned previously, the primary objective of GWAS is to identify the relevant 
genetic markers. Statistically, this translates to identifying the nonzero regression 
coefficients of �j, j = 1, 2,… , p . In order to test our p pairs of null and alternative 
hypotheses,

we propose a multiple testing procedure based on the Bayesian Lasso and the 
Knockoffs framework. In conjunction with Bayesian regression methods, local 
false discovery rate is used in order to detect signals from noise and control FDR 
appropriately.

Existing literature on the knockoffs framework implementing Bayesian methods 
is currently scarce (Gimenez et  al. 2018; Candès et  al. 2018). This paper aims to 
show it is feasible to apply computationally-intensive Bayesian methods in creating 
knockoff statistics for accurate inference. By carefully applying techniques previ-
ously done by Barber and Candès (2015) and Efron et  al. (2001), in conjunction 
with Bayesian techniques also allows for incorporating appropriate prior informa-
tion on the data through the choice of prior distribution. Our application of local 
false discovery (Efron et al. 2001) also allows for easily interpretable measures of 
importance, previously not possible with penalized regression approaches like 
Lasso. Most importantly, benchmarking from Barber and Candès (2015)’s challenge 
to understand and choose statistics that yield high power with FDR control, we aim 
to show that the proposed feature importance statistics obtain the desired FDR con-
trol and display comparable performance in statistical power more commonly used 
frequentist methods.

In order to detect which hypotheses are non-nulls from nulls, we calculate the 
posterior probability that �j = 0 given the observed data � , � and the knockoffs �̃ , 
j = 1, 2,… , p . We utilize Efron et al. (2001)’s local false discovery rate �j to com-
pute this probability.

However, the local FDR formulation consists of unknown quantities �0, f0 and f1 , 
which must be estimated accordingly. We assume that �1 follows a Beta distribution. 
Using the draws of �1 generated from the Gibbs sampler, we can arrive at an esti-
mate min

(
1, �̂1

)
 , where �̂0 + �̂1 = 1 . Secondly, we assume that f0 and f1 follow the 

normal distribution. Using the draws of �j and �2 generated from the Gibbs sampler, 
we can estimate the unknown parameters of the null and the non-null distribution, 
respectively.

We specify that the null distribution is centered at zero while there is a location-
shift in the non-null distribution from zero. This follows from Efron (2007)’s “zero 

H0j ∶ �j = 0 and H1j ∶ �j ≠ 0, for 1 ≤ j ≤ p,



1 3

Bayesian variable selection using Knockoffs with applications…

assumption” where observations around the central peak of the distribution consists mainly 
of null cases. Also, both null and non-null distribution have the same variance �2.

3.1  Algorithm for Bayesian Lasso with Knockoffs

Following the discussion of Bayesian Lasso in Sect. 2.2, we draw �2 from the Inverse 
Gamma distribution. We use the conditional posterior of � where we use the augmented 
data vector ◦� , the augmented parameter vector 

◦

� , and hyperparameters A and B to get

Meanwhile, we draw the augmented parameter 
◦

�

(t)

 from the Multivariate Normal 
distribution as mentioned. The augmented data vector ◦� , augmented tuning parame-
ter vector ◦� , and the current iterate of �2 are used to specify the parameters of MVN 
as shown below:

To update �2(t)
j

 in step 6, we use the previous iterate of � and the current iterates of 
�j , and � to get

Finally, to update �2(t) in step 7, we use the current iterates of � , as well as the hyper-
parameters C and D to get

To detect non-null covariates using the Gibbs sampler iterates from Bayesian 
regression models, we use the concept of local false discovery rate introduced in 
Sect. 2.1. For each iteration t, we compute �(t)

j
:

(8)ABlasso =
n + 2p − 1

2
+ A

(9)
Bt,Blasso =

‖‖‖�̃ −
◦

�
◦

�

(t−1)‖‖‖
2

+
◦

�

⊤(t−1)[
�−1

◦

�

](t−1) ◦
�

(t−1)

2
+ B

(10)�Blasso = �−1
◦

�

⊤

�̃

(11)�Blasso = �2(t)�−1

(12)� =
◦

�

⊤ ◦

� +
[
�−1

◦

�

](t−1)

(13)�Blasso =

√
�2(t−1)�2(t)

�
2(t)

j

, �Blasso = �2(t−1)

(14)CBlasso = 2p + C, DBlasso =

2p∑
j=1

�
2(t)

j

2
+ D
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where

After computing the local false discovery rate �j , we use it to compute for � , defined 
below. We will use for computing the test statistics, and it also provides a connection 
between �1 and �.

Moreover, in the general case when we truly do not know the number of non-null 
covariates, then a computational procedure based on local false discovery rate is 
used to estimate it. Suppose

The full conditional posterior of �(t)

1
 given 

p∑
j=1

�
(t−1)

j
 is

 The steps of the algorithm are outlined below:

(15)�
(t)

j
=

�
(t)

0
f0j(�

(t)

j
)

�
(t)

0
f0j(�

(t)

j
) + �

(t)

1
f1j (�

(t)

j
)

(16)f0j (�
(t)

j
) =

1√
2��2(t)

exp

⎧
⎪⎨⎪⎩
−
(�

(t)

j
)2

2�2(t)

⎫
⎪⎬⎪⎭

(17)f1j(�
(t)

j
) =

1√
2��2(t)

exp

⎧
⎪⎨⎪⎩
−
(�

(t)

j
− �j)

2

2�2(t)

⎫
⎪⎬⎪⎭

(18)�j =
1

T

T∑
t=1

�
(t)

j

(19)�j =

{
1, �j ≤ �

0, otherwise

(20)𝜋1 ∼ Beta(a, b), a, b > 0

(21)Beta

(
a +

p∑
j=1

�
(t−1)

j
, b + p −

p∑
j=1

�
(t−1)

j

)



1 3

Bayesian variable selection using Knockoffs with applications…

3.2  Proposed test statistics

In this section, we present two distinct test statistics and two thresholds for the deci-
sion rule. These statistics-threshold combinations yield 4 different decision rules for 
choosing whether to reject the null hypothesis or not, which for simplicity we refer to 
as test statistics. We denote these decision rules as T�  , where � ∈ {1a, 1b, 2a, 2b} . 
The summary is provided in Table 1 in the Annex.

After drawing T samples and burning-in U iterates, we are left with V draws. The 
proposed test statistics are based on the posterior means of the remaining V iterates. 
The decision rule utilizes tk which is the knockoff threshold defined by Barber and 
Candès (2015). Similarly, we will also use tk+ which is the knockoff threshold that 
guarantees the modified FDR control.

In the results section, the posterior means used for the proposed decision rules 
presented in Table 1 are computed from a Gibbs sampler with 5000 iterations and a 
burn-in of 1000 iterations.

3.3  Numerical simulation study

To gather insights on the performance of our proposed models, numerical simula-
tion studies are performed. We investigate the settings required among the data gen-
eration procedure first and then proceed to the proposed methods. As an overview, 
the following settings are used: 
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1. Number of observations n: 50, 100, 200
2. Number of parameters p: 50, 100, 200
3. Signal noise � : 1, 2.5, 3.5
4. Decision rules: T1a, T1b, T2a, T2b
5. Prior specifications for �2 : Exponential Distribution Shaped Prior (EXP), Right-

Skewed Prior (RSK), Normal-Distribution Shaped Prior (NOR)

To ensure that we cover the settings on number of observations n and number of 
parameters p, we consider nine n × p combinations. The choice of the number of 
observations and parameters intentionally reflects the original knockoffs literature. 
Barber and Candès (2015) discussed two cases ( n ≥ 2p and p ≤ n < 2p ). In this 
paper, we simulate on n ≥ 2p and a subset of p ≤ n < 2p , which is n = p . We also 
explore a high-dimensional case not explored in the original 2015 study: p ≥ 2n.

The choice for amplitude reflects the maximal noise level where it is possible, but 
not trivial, to distinguish signal from noise (Barber and Candès 2015). They chose 
the maximal signal amplitude � = 3.5 as it is approximately the expected value of 
max
1≤j≤p

|�⊤
j
z| , where z ∼ N(0, 1).

4  Results and discussions

4.1  Numerical simulations

As discussed in Sect. 3.3, we consider several combinations of settings of (1) num-
ber of observations ‘n’, (2) number of parameters ‘p’, (3) signal noise ‘ � ’, (4) deci-
sion rules ‘ T�  ’, and (5) 3 proposed prior specifications. Thus, there is a total of 324 
scenarios for the proposed methods as a result of 9 n × p combinations, 3 priors, 4 
decision rules, and 3 values for the signal noise �.

The False Discovery Rate (FDR) and True Positive Rate (TPR) using the above 
proposed methods will then be compared to FDR and TPR obtained using existing 
non-Bayesian methods (Frequentist), namely the (1) Benjamini Hochberg procedure 
(BHq in Figure 1), and (2) Lasso regression. Lasso regression was applied to the 
Knockoffs framework using both the original Knockoff and modified threshold. The 
resulting statistics using Lasso regression with Knockoffs are referred to as LCDK 
and LCDK+, respectively. We average FDR and TPR over 1000 trials.

In this study, we compare BHq, LCDK, and LCDK+ methods to each of the 
method-prior combinations given a nominal FDR target level of q = 10%.

The summary tables in the Annex (Tables 2, 3, 4) displays the FDR and TPR of 
the ‘best’ decision rule T for each of prior setting, number of observations n, number 
of parameters p, and signal noise � . The ‘best’ decision rule for each row (method-
prior combination) in each table is chosen such that it has the highest TPR, while 
maintaining FDR under target level 10%.

To illustrate, Table 2 summarizes the results for n ≥ 2p , in which the first row 
shows the results when n = 100 , p = 50 , � = 1 , using an exponential-distribution 
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shaped (EXP) prior. The ‘best’ decision rule, or the decision rule that has the highest 
TPR while maintaining FDR control, is T2b , with FDR 0.01 and TPR 0.019.

DFDR and DTPR represents the difference between the FDR and TPR, respectively, 
of the ‘best’ decision rule of that proposed Bayesian setting, and the FDR and TPR 
for the ‘best’ non-Bayesian method among BHq, LCDK, and LCDK+. For exam-
ple, for the first setting (first row) in Table 2, the best frequentist method is BHq 
with TPR 1 and FDR 0.087. Since the ‘best’ proposed decision rule is T2b with 
TPR 0.019 and FDR 0.01, then our proposed decision rule T2b bests BHq’s FDR 
by 0.77 (eg. DFDR = −0.077 = 0.10 − 0.087 ), and lags behind TPR by 0.981 (eg. 
DTPR = −0.981 = 0.019 − 1).

For these results, a negative DFDR means our proposed method for that setting is 
superior to the ‘best’ frequentist method in terms of minimizing FDR. Conversely, 
a positive DTPR means our proposed method is better than the ‘best’ frequentist 
method in selecting signals. Thus, for optimality, we want DFDR to be negative and 
DTPR to be positive.

For brevity, only the tables for � = 1, 2.5, and 3.5 is featured in this section. Each 
of � = 1, 2.5, and 3.5 represent the settings when nulls and signals are heavily-
mixed, moderately-mixed, and well-separated respectively.

Table 2 summarizes the simulation study results for the first case when n ≥ 2p . 
We are able to detect signals consistently for cases where � = 2.5 or 3.5. TPR is only 
less than 5% worse than BHq, but improves on FDR by more than 7%. For the case 
where signals are heavily-mixed ( � = 1 ), the method had difficulties in detecting sig-
nals for the low parameter case p = 50 , while for n = 200 , p = 100 , we were able to 
detect a respectable 59% of signals. For this case, results for all 3 prior specification 
were quite similar.

Table 3 summarizes the simulation study results for the second case when n = p . 
We are able to detect signals consistently for cases where � = 2.5 or 3.5. TPR is 
similarly effective as Lasso with the modified knockoffs threshold, but with 1 to 8% 
improvement in FDR. Similar to the previous case where n ≥ 2p , for the case where 
signals are heavily-mixed ( � = 1 ), the method had difficulties in detecting signals 
for the low parameter case p = 50 . When p ≥ 100 , we were able to detect a respect-
able 96 to 100% of signals. For this case, results for all 3 prior specification were 
quite consistent.

Table 4 summarizes the simulation study results for the final case when p ≥ 2n . 
For this highest dimensional case ( n = 50 , p = 200 ), we were not able to success-
fully detect signals using both Lasso and the proposed method. For the other two 
subcases ( n = 50 , p = 100 and n = 100 , p = 200 ), we were able to detect at 76 to 
98% of signals using our proposed method. The EXP and RSK prior specifications 
were superior in both subcases to the NOR prior. When � = 2.5 , our proposed meth-
ods were 4 to 9% inferior to Lasso in terms of TPR, but reduced FDR by 5 to 6%. 
For the well-separated signal case ( � = 3.5 ), our proposed method was either tied 
with Lasso or 1 to 4% superior in terms of TPR, while redicung FDR by 2 to 7%.
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4.2  Results on HIV‑1 data

In order to apply the proposed procedures and test whether FDR control and suf-
ficient TPR is achieved, we will use a publicly available data set: the Human Immu-
nodeficiency Virus Type 1 (HIV-1) drug resistance database (Rhee et al. 2005). We 
limit the analysis the analysis of drug resistance measurements on genotype infor-
mation related to non-nucleoside reverse transcriptase inhibitor (NNRTI) drug class, 
which has three generic drugs classified under it, namely Delavirdine (DLV), Efa-
virenz (EFV), and Nevirapine (NVP).

To validate the results, we compare the selected markers p with existing treat-
ment-selected mutation panels (TSM) from Rhee et al. (2005). While this is a previ-
ously conducted and vetted study, ground truth or an oracle to which determines the 
true nulls and non-nulls are not available. Nevertheless, using this previous study is 
a good approximation to determine the effectiveness of our method. We aim to see 
replicability, which means we wish to see how many of the markers identified by our 
methods also appear in the TSM panel.

For each prior specification, we will be comparing each of the proposed test sta-
tistics to BHq and Lasso Coefficient Difference (using both the original and modi-
fied thresholds), similar to the numerical study in the previous section. Instead of 
using FDR and TPR, we assess these results based on the number of selections that 
appear in the TSM lists, representing True Positives, and the number of selections 
hose that don’t appear in TSM lists, representing False Discoveries. The figures and 
tables show the number of selections averaged over 1000 trials.1

Figure 1 shows the agreement between the TSM lists and our proposed method 
for the 3 priors × 3 generic drug combinations. In each chart, we see the decision 
rules (Table 1) in the X-axis, and the # of selected markers in the Y-axis. The blue 
bars represent the markers that are confirmed TSM lists (True Positives), while the 
red bars represent those that are not in the TSM lists (False Discoveries).

We see in Figure 1 the non-Bayesian methods, BHq and Lasso, select a lot more 
markers that do no agree with the TSM list (in red). Our proposed methods are able 
to more conservatively select the markers previously confirmed by the TSM lists 
(True Positives in blue), while reducing potential false discoveries (in red). The 
results are especially outstanding for the drug Nevirapine (NVP) since a similar 
number of markers were selected compared to the frequentist methods, while choos-
ing less markers not in the TSM lists. Thus, for Nevirapine, our proposed method 
and test statistics were able to more accurately replicate the selections of Rhee et al. 
(2005)’s study while minimizing the selection of possible false discoveries. In prac-
tice, our method is more viable for researchers who aim ensure the selected genetic 
markers for drug resistance have minimal false discoveries. This is important since 
out of the 3 drugs, Nevirapine is typically the cheapest and most accessible.

1 In certain subfigures, some test statistics have values of 0 with standard deviation 0. This represents the 
cases where a significant number of the 1000 trials failed due to the knockoffs threshold choosing t=+∞ , 
thus selecting 0 markers.



1 3

Bayesian variable selection using Knockoffs with applications…

While the number of TSM-validated selections vary per drug and test statistic, 
overall, the proposed methods show promise in selecting positions that correspond 
to real effects, as verified by the TSM list. Researchers are always looking for ways 
to minimize false discoveries given the costs related to proceeding experiments 
for each genetic marker. We have demonstrated our proposed methods can help 
researchers achieve this, while maintaining competitive TPR.

5  Conclusions and recommendations

Motivated by the growing HIV epidemic in the Philippines, our proposed meth-
ods show potential in being used by genomic researchers to find significant genetic 
marker, while minimizing the number of false discoveries in HIV data. Our numeri-
cal studies show that the proposed methods not only had competitive TPR compared 
to BHq and Lasso, but had less FDR in most of the cases discussed. This contrib-
utes to computational statistics by demonstrating that unifying Bayesian Lasso with 
Model-free Knockoff unlocks the potential for achieving high TPR, while reducing 
FDR for low and equi-dimensional cases.

We are also able to demonstrate this through the HIV-1 data set, where we were 
able to select many of Rhee et al. (2005)’s identified genetic markers, while mini-
mizing selecting those outside their study. While this work only focused on a small 
genomic dataset due to the number of replicates needed and the large computational 
power needed by the Bayesian methods, we believe this was able to demonstrate its 
potential for application to larger datasets that are similar in design and structure. A 
small reduction in FDR may seem insignificant in a scale of this study, but in future, 
larger scale studies, a 1–2% FDR reduction means hundreds of hours and millions of 
dollars saved on manpower. For example, in a 20,000 SNP dataset with 2000 selec-
tions, a 1% reduction in FDR means 20 less positions that need time and resources 
for further experimentation and research.

These findings not only aim to contribute to more accurate and cost-effective HIV 
drug resistance research in the Philippines, but more so lives saved as it aims to 
help patients receive proper treatment and prevent unnecessary costs, risks, and bur-
dens associated with taking the wrong drug. Given that we were able to show this 
method’s potential in identifying significant genetic markers towards detecting drug 
resistance, perhaps one day it can be used to detect drug resistance towards other 
fast-mutating viruses, such as COVID-19.

Annex

See Tables 1, 2, 3, 4   and Figure 1
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Table 1  Test statistics using 
iterates of Gibbs samples

T� Test statistic Reject H
0j if .

T
1a

𝛿j − 𝛿j =
1

V

�
T∑

t=U+1

𝛿
(t)

j
−

T∑
t=U+1

𝛿
(t)

j

�
𝛿j − 𝛿j ≥ tk.

T
1b 𝛿j − 𝛿j ≥ tk+.

T
2a

�j − �̃j =
1

V

�
T∑

t=U+1

�
(t)

j
−

T∑
t=U+1

�̃
(t)

j

�
�j − �̃j ≥ tk.

T
2b �j − �̃j ≥ tk+.

Table 2  Comparison of results for proposed methods when n ≥ p

� Prior Best T� FDR TPR DTPR DFDR

 n=100, p=50
1 EXP T

2b 0.01 (0.073) 0.019 (0.137) − 0.981, BHq − 0.077
RSK T

2b 0.009 (0.069) 0.017 (0.129) − 0.983, BHq − 0.079
NOR T

2b 0.008 (0.065) 0.014 (0.116) − 0.986, BHq − 0.08
2.5 EXP T

1a 0 (0) 0.939 (0.116) − 0.061, BHq − 0.088
RSK T

1a 0 (0) 0.939 (0.115) − 0.061, BHq − 0.088
NOR T

1a 0 (0) 0.939 (0.116) − 0.061, BHq − 0.088
3.5 EXP T

1a 0 (0) 0.939 (0.12) − 0.061, BHq − 0.088
RSK T

1a 0 (0) 0.938 (0.12) − 0.062, BHq − 0.088
NOR T

1a 0 (0) 0.938 (0.121) − 0.062, BHq − 0.088
  n=200, p=50
1 EXP T

2b 0.013 (0.083) 0.024 (0.153) − 0.976, BHq − 0.075
RSK T

2b 0.013 (0.084) 0.024 (0.152) − 0.976, BHq − 0.074
NOR T

2b 0.013 (0.083) 0.024 (0.153) − 0.976, BHq − 0.074
2.5 EXP T

1a 0 (0) 0.996 (0.029) − 0.004, BHq − 0.087
RSK T

1a 0 (0) 0.996 (0.029) − 0.004, BHq − 0.087
NOR T

1a 0 (0) 0.995 (0.031) − 0.005, BHq − 0.087
3.5 EXP T

1a 0 (0) 0.997 (0.027) − 0.003, BHq − 0.087
RSK T

1a 0 (0) 0.997 (0.026) − 0.003, BHq − 0.087
NOR T

1a 0 (0) 0.997 (0.026) − 0.003, BHq − 0.087
 n=200, p=100

1 EXP T
2b 0.045 (0.083) 0.588 (0.489) − 0.412, BHq − 0.048

RSK T
2b 0.046 (0.084) 0.593 (0.487) − 0.407, BHq − 0.047

NOR T
2b 0.045 (0.084) 0.585 (0.49) − 0.415, BHq − 0.048

2.5 EXP T
1a 0 (0) 0.946 (0.081) − 0.054, BHq − 0.092

RSK T
1a 0 (0) 0.946 (0.081) − 0.054, BHq − 0.092

NOR T
1a 0 (0) 0.946 (0.081) − 0.054, BHq − 0.092

3.5 EXP T
1a 0 (0) 0.947 (0.081) − 0.053, BHq − 0.092

RSK T
1a 0 (0) 0.947 (0.081) − 0.053, BHq − 0.092

NOR T
1a 0 (0) 0.946 (0.082) − 0.054, BHq − 0.092
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Table 4  Comparison of Results for Proposed Methods when p ≥ 2n

� Prior Best T� FDR TPR DTPR DFDR

 n=50, p=100
1 EXP T

2b 0.035 (0.105) 0.1 (0.268) −0.179, LCDK+ −0.015
RSK T

2b 0.035 (0.105) 0.1 (0.269) − 0.179, LCDK+ − 0.015
NOR T

2b 0.034 (0.104) 0.096 (0.264) − 0.183, LCDK+ − 0.016
2.5 EXP T

1a 0.03 (0.077) 0.817 (0.228) −  0.037, LCDK+ − 0.05
RSK T

1a 0.029 (0.072) 0.816 (0.228) − 0.037, LCDK+ − 0.051
NOR T

1a 0.021 (0.067) 0.761 (0.245) − 0.093, LCDK+ − 0.059
3.5 EXP T

1a 0.064 (0.094) 0.936 (0.166) 0.042, LCDK+ − 0.016
RSK T

1a 0.063 (0.094) 0.936 (0.167) 0.042, LCDK+ − 0.018
NOR T

1a 0.049 (0.086) 0.928 (0.175) 0.035, LCDK+ − 0.031
 n=50, p=200

1 EXP T
2b 0.015 (0.084) 0.013 (0.068) 0.008, LCDK+ 0.009

RSK T
2b 0.015 (0.082) 0.012 (0.067) 0.008, LCDK+ 0.008

NOR T
2b 0.016 (0.086) 0.013 (0.068) 0.009, LCDK+ 0.01

2.5 EXP T
1b 0.017 (0.084) 0.016 (0.075) 0.006, LCDK+ 0.009

RSK T
1b 0.017 (0.081) 0.016 (0.075) 0.006, LCDK+ 0.008

NOR T
2b 0.016 (0.082) 0.016 (0.076) 0.006, LCDK+ 0.008

3.5 EXP T
1b 0.018 (0.087) 0.017 (0.079) 0.006, LCDK+ 0.008

RSK T
1b 0.018 (0.087) 0.017 (0.08) 0.006, LCDK+ 0.008

NOR T
1b 0.017 (0.085) 0.017 (0.081) 0.007, LCDK+ 0.007

 n=100, p=200
1 EXP T

2b 0.077 (0.101) 0.455 (0.343) − 0.338, LCDK+ − 0.005
RSK T

2b 0.077 (0.1) 0.456 (0.344) − 0.337, LCDK+ − 0.005
NOR T

2b 0.077 (0.1) 0.447 (0.343) − 0.345, LCDK+ − 0.005
2.5 EXP T

1a 0.019 (0.043) 0.953 (0.116) − 0.026, LCDK+ − 0.068
RSK T

1a 0.018 (0.043) 0.952 (0.116) − 0.026, LCDK+ − 0.068
NOR T

1a 0.014 (0.037) 0.942 (0.125) − 0.036, LCDK+ − 0.072
3.5 EXP T

2
0.037 (0.060) 0.982 (0.094) 0, LCDK+ − 0.039

RSK T
1a 0.036 (0.059) 0.982 (0.093) 0, LCDK+ − 0.040

NOR T
1a 0.031 (0.058) 0.982 (0.095) 0, LCDK+ − 0.054
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(a) Exponential-shaped Prior
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(c) Normal-shaped Prior for
DLV

(d) Exponential-shaped Prior
for EFV
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EFV

(f) Normal-shaped Prior for
EFV
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Fig. 1  Results for HIV Data
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