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Abstract: Reactive oxygen species, generated as by-products of mitochondrial electron transport, can
induce damage to mitochondrial DNA (mtDNA) and proteins. Here, we investigated whether the
moderate accumulation of mtDNA damage in adult muscles resulted in accelerated aging-related
phenotypes in Drosophila. DNA polymerase γ (Polγ) is the sole mitochondrial DNA polymerase.
The muscle-specific silencing of the genes encoding the polymerase subunits resulted in the partial
accumulation of mtDNA with oxidative damage and a reduction in the mtDNA copy number.
This subsequently resulted in the production of abnormal mitochondria with reduced membrane
potential and, consequently, a partially reduced ATP quantity in the adult muscle. Immunostaining
indicated a moderate increase in autophagy and mitophagy in adults with RNA interference of
Polγ (PolγRNAi) muscle cells with abnormal mitochondria. In adult muscles showing continuous
silencing of Polγ, malformation of both myofibrils and mitochondria was frequently observed.
This was associated with the partially enhanced activation of pro-apoptotic caspases in the muscle.
Adults with muscle-specific PolγRNAi exhibited a shortened lifespan, accelerated age-dependent
impairment of locomotor activity, and disturbed circadian rhythms. Our findings in this Drosophila
model contribute to understanding how the accumulation of mtDNA damage results in impaired
mitochondrial activity and how this contributes to muscle aging.
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1. Introduction

Aging is characterized by multiple factors, including epigenetic changes, loss of pro-
teostasis, cellular senescence, stem cell depletion or hyperproliferation, genomic instability,
and mitochondrial dysfunction [1]. The progression of aging is closely related to oxidative
stress and the presence of free radicals—molecular species with unpaired electrons. The
free radical hypothesis was proposed as one major cause of aging progression five decades
ago [2]. Recently, researchers have focused on reactive oxygen species (ROS), which are
highly reactive molecules that contain free radicals. The ROS level is considered critical in
determining lifespan [3]. As approximately 90% of intracellular ROS are produced in the mi-
tochondria [4], how mitochondrial DNA (mtDNA) and proteins are damaged and how this
contributes to aging remain topics of interest. Muscle consumes much more ATP than other
tissues, and this ATP is supplied by the mitochondria. Thus, muscle cells possess many
more mitochondria than cells in other tissues. In aged animals, muscle cells contain more
mitochondria with reduced activity owing to accumulated oxidized mtDNA [5]. Therefore,
considering the hyperaccumulation of DNA mutations in mitochondria, which are the
main ROS production sites, the mitochondrial theory of aging has been proposed [2,6,7].
This theory suggests that ROS production in mitochondria increases with age, arising from
the age-dependent decline in mitochondrial respiratory activity and antioxidative enzymes
that remove ROS [8].
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Unlike genomic DNA in the nucleus, a mitochondrion contains multiple copies of
circular double-stranded DNA encoding genes for the major components of respiratory
chain complexes [9]. As mtDNA is more directly exposed to ROS generated in organelles,
it is more susceptible to damage from ROS than nuclear DNA [10,11]. Damage to mtDNA
impairs its translational capacity, resulting in an insufficient supply of mtDNA-encoded
proteins. This leads to the reduced efficiency of the respiratory chain, facilitating additional
ROS production, which leads to mitochondrial dysfunction [8,12]. In other words, the
increased levels of ROS generated during ATP synthesis result in a vicious cycle that causes
further damage to mtDNA [13]. The accumulation of mtDNA mutations in somatic tissues
accelerates with aging [14].

Drosophila Polγ is a heterodimer composed of the accessory subunit PolG2 and cat-
alytic subunit PolG1 [15]. This polymerase is the only DNA Pol responsible for mtDNA
replication and repair. A second polymerase, PrimPol, required for mtDNA damage, is not
conserved in Drosophila [16]. Base excision repair (BER), a DNA repair process, is involved
in the removal of oxidized bases, such as 8-oxo-deoxyguanine (8-oxodG), from mtDNA.
However, the involvement of mammalian Polβ in mitochondrial BER has not been verified
in Drosophila [17]. A mouse strain expressing a mutant mtDNA Polγ with compromised
proofreading exonuclease function causes mtDNA mutations to quickly accumulate with
aging [18]. Some studies have reported that these mice exhibit numerous phenotypes
mimicking aging [18,19]. In contrast, aging-related phenotypes, including many disorders
and traits that are otherwise not observed during normal aging, have also been noticed [20].
Other studies have shown that PolG-mutant mice harbor somatic point mutations at much
higher frequencies. Even in Drosophila, controversial results regarding mtDNA mutations
and age-related phenotypes have been reported [21,22].

Once damage occurs to biomolecules such as DNA and proteins in the mitochondria,
the damaged part of the organelle is separated by fission and removed by mitophagy [23].
This regulation is essential for maintaining organelle homeostasis [24]. Subsequently,
following the loss of mitochondria, new mitochondria are produced from existing mito-
chondria. To compensate for damaged mtDNA and oxidized proteins, mtDNA replication
and de novo protein synthesis in organelles are stimulated [25]. After the fission of damaged
mitochondria, the protein kinase PINK1 accumulates on the outer membrane of organelles.
Subsequently, PINK1 recruits a ubiquitin ligase, parkin, to the outer membrane and, subse-
quently, activates parkin by phosphorylation [26]. Activated parkin associates ubiquitin
with the outer membranes of damaged mitochondria. Adapter protein Ref(2)P binds to
poly-ubiquitin chains marked by parkin on the surface of mitochondria and interacts with
Atg8, which is composed of autophagosomes; thereafter, damaged mitochondria are taken
up by autophagosomes [27,28]. The autophagosomes fuses with lysosomes to decompose
damaged mitochondria [29]. PINK1-parkin-dependent mitophagy is essential for mito-
chondrial quality control [30]. In Drosophila, enhanced mitochondrial fission stimulates
mitophagy, contributing to the maintenance of mitochondrial function in indirect flight
muscles (IFMs) of aged adults [31]. However, how the interaction between mitophagy and
mitochondrial dynamics influences age-related phenomena in muscles remains unclear.

In this study, we investigated whether the RNA-mediated silencing of two Polγ
subunit genes in Drosophila adult muscles influences the aging-dependent phenotype.
After we confirmed the efficient silencing of Polγ subunit genes, we demonstrated that
oxidative DNA damage repair and mtDNA replication processes were moderately inhibited
in the mitochondria of the adult muscle harboring RNA interference of Polγ (PolγRNAi).
Consequently, the downregulation of DNA Polγ resulted in mitochondrial dysfunction.
Furthermore, we obtained evidence indicating that mitochondrial fission was stimulated
in Polγ-depleted muscles. Next, we investigated whether autophagy and apoptosis were
also stimulated in PolγRNAi muscle. Myofibril and mitochondrial malformations are
thought to be consequences of apoptosis, and we examined whether these occurred in
adult muscles along with the continuous downregulation of DNA Polγ using transmission
electron microscopy (TEM). From these results, we concluded that the muscle-specific
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reduction in Polγ expression in Drosophila adults moderately inhibited mtDNA replication
and repair and reduced mitochondrial activity. Mitochondrial fission and apoptosis were
enhanced in muscle cells. The lifespan of adults harboring muscle-specific PolγRNAi was
shortened. Furthermore, the age-dependent decline in locomotor activity accelerated with
aging in RNAi adults, and a perturbation of the circadian rhythm was also observed in
aged adults. Based on the genetic evidence obtained from this study using the Drosophila
model of accumulated mtDNA damage in IFM cells, we discuss whether the accumulation
of mtDNA damage results in the impairment of mitochondrial activity and how this leads
to muscle aging.

2. Materials and Methods
2.1. Fly Stocks and Culture

We used Canton S as normal control stock. To induce the ectopic expression of target
genes in specific tissues, the GAL4/UAS system was used [32]. To restrict the Gal4 activa-
tion in the adult stage, a temperature-sensitive mutant of the Gal80 gene, which encodes
an inhibitor of the Gal4 protein, was used. The mutant proteins were specifically inacti-
vated in the adult stage by transferring the flies at a non-permissive temperature, 28 ◦C.
P{tubP-GAL80ts}; P{GAL4-Mef2.R}R1 (#67063) (hereinafter referred to as Mef2ts-Gal4) was
used for the ectopic expression of muscle cell-specific genes located downstream of the UAS
sequences [33]. The following UAS-RNAi lines were used for RNAi-based gene silencing experi-
ments: P{GD17669}v49765 (#v49765) (UAS-PolG2RNAi1), P{y+t7.7 v+t1.8 = TRiP.HMS05747}attP40
(#67925) (UAS-PolG2RNAi2), P{y+t7.7 v+t1.8 = TRiP.JF01532}attP2 (#31081) (UAS-PolG1RNAi1),
and P{y+t7.7 v+t1.8 = TRiP.JF01563}attP2 (#31098) (UAS-PolG1RNAi2). These UAS-RNAi stocks,
except UAS-PolG2RNAi1 (from Vienna Drosophila Resource Center [Vienna, Austria]), were
obtained from the Bloomington Drosophila Stock Center (Bloomington, IN, USA).

To maintain the stocks and obtain adults for aging-related experiments, the following
standard cornmeal fly food was prepared: 40 g of dried yeast (Asahi Breweries, Ltd. Tokyo,
Japan), 40 g of cornmeal, 100 g of glucose, and 7.2 g of powdered agar (agarose) were
added to 1 L of distilled water and heated with stirring. After cooling below 75 ◦C, 5 mL
of 10% methyl parahydroxybenzoate in 70% ethanol and 5 mL of propionic acid (Fujifilm
Wako Pure Chemical Co., Osaka, Japan) were added as preservatives. The fly diet mixture
was dispensed into a plastic vial (diameter 22 mm, height 96 mm) (Chiyoda Science Co.,
Tokyo, Japan) and filled with a sponge plug for use. Fly stocks were maintained and genetic
crosses were performed at 25 ◦C. For silencing of the target genes in the adult stage using
the Gal4ts lines, individuals were reared at 19 ◦C until eclosion. Newly eclosed adults were
collected and transferred to the incubator at 28 ◦C.

For drug administration, the instant fly food prepared from 1 mL of water and 0.3 g of
Instant Medium (Formulas (4)–(24), Blue) (Carolina Biological Supply Company, Burlington,
IN, USA) was used. To cause oxidative stress, 10 mM paraquat (PQ) (1,1′-dimethyl-4,4′-
dipyridinium chloride) (Fujifilm Wako Pure Chemical Co. Osaka, Japan) was added to the
instant fly food.

2.2. Immunofluorescence

IFMs were prepared from the adult thoraxes dissected in relaxing buffer (0.1 M KCl,
20 mM Tris-HCl, pH = 7.2, 1 mM MgCl2, 1 mM EDTA) [34]. The specimens were fixed in
4% paraformaldehyde for 30 min. After washing with 0.1% PBST (1× PBS, 0.1% TritonX-
100) and subsequent blocking in 10% normal goat serum, the primary antibody diluted
with the blocking solution was added and incubated at 4 ◦C overnight. The following
primary antibodies were used: anti-Atg8 antibody (#ab109364, Abcam, Cambridge, UK)
(dilution 1/400), anti-Ref(2)P antibody (#ab178440, Abcam) (1/500), anti-ATP5A antibody
(#ab14748, Abcam) (1/400), and anti-Cleaved Drosophila Dcp-1 antibody (#9578, Cell
Signaling Technology, Inc., Danvers, MA, USA) (1/100).

After washing IFM samples with 0.1% PBST, Alexa fluorescence dye-conjugated sec-
ondary antibodies (Invitrogen, Waltham, MA, USA) were incubated with the samples
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for 2 h. For the visualization of F-actin, Alexa Fluor 488-conjugated phalloidin (#A12379,
Invitrogen) was added simultaneously. After washing with 0.1% PBST several times, the
specimens were embedded with VECTASHIELD Mounting Medium (Vector Laborato-
ries, Burlingame, CA, USA) and observed using a laser scanning confocal microscope
(FV10i, Olympus, Tokyo, Japan). Images were acquired at 512 × 512 pixel size. For image
processing, FV10-ASW 4.2 Viewer (Olympus) was used.

2.3. Quantification of 8-oxo-dG in Mitochondrial DNA

IFMs were fixed for 5 min with Carnoy’s solution (100% ethanol: acetic acid = 3:1) [35].
Fixed IFMs were incubated for 10 min in 2 N HCl to denature dsDNA. After repeated
washing, neutralization in Tris-HCl (pH 8.0), and blocking with 10% normal goat serum,
fixed specimens were incubated overnight at 4 ◦C with an anti-8-oxo-dG antibody (#4354-
MC-050, Trevigen Inc., Gaithersburg, MD, USA) (1/800). After repeated washing with 0.1%
PBST, the samples were incubated with Cy3-conjugated anti-mouse secondary antibody
(#115-165-062, Jackson ImmunoResearch Inc., West Grove, PA, USA) (1/400). To visualize
mitochondrial DNA, IFMs were treated with Quant-iT PicoGreen (#P7581, Invitrogen)
(1/200) for 2 h. The samples were mounted and observed as described above. To quantify
mitochondrial 8-oxo-dG foci, ImageJ (NIH, Bethesda, MD, USA) was used. To avoid
measuring 8-oxo-dG signals from nuclear DNA, we selected immunofluorescence-positive
foci with a size of 10 pixels or fewer for quantification.

ImageJ ver. 1.52a was used to quantify the distribution of relevant proteins visualized
by immunostaining. To quantify anti-Ref(2)P immunofluorescence foci in adult muscles,
the total fluorescence intensity of foci larger than 10 pixels was selected in each fluorescent
image (512 × 512 pixels) (IFM cross-section 4.0 × 10−2 mm2). Ten pixels of the fluorescent
aggregates were calculated as one unit, and the fractions below the decimal point were
discarded. The length of each mitochondrion was measured using ImageJ, and the average
value per confocal microscopic field (IFM cross-section 4.4 × 10−2 mm2) was calculated.
Anti-cDcp1 and anti-Atg8 immunostaining foci were quantified by measuring the total
area exhibiting the immunostaining signals per confocal microscopic field (4.4 × 10−2 mm2

of the IFM cross-section). Finally, mitophagy in adult muscle was quantified by selecting
the anti-Atg8 immunostaining foci that overlapped with anti-mitochondrial ATPase V
immunostaining signals in the IFM optical field.

2.4. Tetramethylrhodamine Ethyl Ester (TMRE) Staining

For the quantification of mitochondrial membrane potential in adult muscle, IFMs were
collected from adult thoraxes and dispensed in the relaxing buffer. They were incubated
with 100 nM TMRE (#T669, Invitrogen) for 20 min and fixed in 4% paraformaldehyde
for 40 min. The specimens were observed within 1 h after fixation using a laser scanning
confocal microscope (Fv10i, Olympus), and images of 512 × 512 pixels were acquired. To
quantify TMRE fluorescent intensity, ImageJ was used. Three points on each mitochondrion
were selected to calculate the average fluorescence intensity per confocal microscopic field.

2.5. Quantitative Reverse Transcription-Polymerase Chain Reaction (RT-PCR)

Total RNA was prepared from thoraxes and legs of 30 flies using TRIzol reagent
(#15596026, Invitrogen). After the extraction of the homogenates with CIAA (chloroform:
isoamyl alcohol = 24:1), nucleic acid contained in the aqueous phase was precipitated by
isopropanol. Traces of DNA were removed by DNase I (Rnase-Free DNase I, #D9905K,
Epicentre/Lucigen, Middleton, WI, USA) treatment for 30 min at 37 ◦C. Subsequently, phe-
nol/CIAA (phenol:chloroform:isoamyl alcohol = 25:24:1) was added to inactivate DNase.
The RNA contained in the solution was precipitated by adding isopropanol and collected
by centrifugation. Using RNA as a template, cDNA was synthesized using a PrimeScript
II 1st strand cDNA Synthesis Kit (#6210A, Takara Bio Inc., Shiga, Japan) with a random
primer. RNA extraction and cDNA synthesis were independently repeated three times
per genotype.
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qRT-PCR was performed using FastStart Essential DNA Green Master (#06402712001,
Roche Diagnostics, Mannheim, Germany). qPCR was performed as three independent re-
actions using LightCycler Nano (#06407773001, Roche Diagnostics). After the denaturation
of the template DNA at 95 ◦C for 10 min; 45 cycles of 95 ◦C for 10 s, 60 ◦C for 10 s, and
72 ◦C for 15 s were repeated. After the final elongation reaction at 72 ◦C for 30 s, melting
curve analysis was performed at temperatures of 60 to 95 ◦C at 0.1 ◦C/s. Quantitative
analysis was performed using the ∆∆Cq method and RP49 was used as a reference for
normalization [36]. The following primers were used:

RP49 F: TTCCTGGTGCACAACGTG
R: TCTCCTTGCGCTTCTTGG

PolG2 F: CTTCTACAACATGCAGCGTGAG
R: TAGCTCGTGCGGATATCGATG

PolG1 F: ACAATGTCGCTGCACATGTG
R: CCTTCTTGGATTTGAGCATGGC

COX III F: TGACCATTAACAGGAGCTATCGG
R: CCTTCTCGTGATACATCTCGTCA

2.6. Nucleic Acid Preparation for Quantitative PCR to Estimate mtDNA Copy Number

A nucleic acid solution containing genomic DNA was prepared from adult muscle.
Thoraxes and legs collected from adults in the relaxing buffer were homogenized in DNA
extract solution (100 mM Tris-HCl, pH = 8.0, 0.5% SDS, 50 mM NaCl, 100 mM EDTA).
The tissue homogenates were treated with Proteinase K (#164-14004, Fujifilm Wako Pure
Chemical Co.) at 55 ◦C for 1 h. After the extraction of the homogenates with Phenol/CIAA
(phenol:chloroform:isoamyl alcohol = 25:24:1) to denature proteins, the aqueous phase
containing nucleic acids was collected. The nucleic acids contained in the phase were
precipitated by adding ethanol. The precipitates containing genomic DNA were used for
quantitative PCR to estimate the ratio of mitochondrial DNA and nuclear DNA.

2.7. ATP Assay

Five adult thoraxes were homogenized in 1% PBST on ice. These extracts were imme-
diately frozen in liquid nitrogen and, subsequently, inactivated at 99 ◦C for 3 min. After
centrifugation at 6000× g for 10 min, the ATP levels were quantified in the supernatants
using the ATP Determination Kit (#A22066, Invitrogen). The fluorescence intensity was
measured using a luminometer (Lumat LB9507, Berthold Technologies, Bad Wildbad,
Germany). Based on the standard curve created, the ATP levels of the samples were deter-
mined. Protein concentration was measured using the SmartSpec Plus Spectrophotometer
(#1702525JEDU, Bio-Rad, Hercules, CA, USA).

2.8. Transmission Electron Microscope Observation of IFMs

Thoraxes collected from 36-d-old flies were placed in fixative solution (4% paraformalde-
hyde, 2% glutaraldehyde in 0.1 M cacodylate buffer, pH = 7.4). These thoraxes were
prepared for TEM, as described previously [37]. Briefly, the thoraxes were washed with
0.1 M cacodylate buffer and fixed with 2% osmium tetroxide in 0.1 M cacodylate buffer.
The specimens were dehydrated by consecutive incubation in 50% ethanol, 70% ethanol,
90% ethanol, and 100% ethanol. After the specimens were infiltrated with propylene oxide
and put into a 7:3 mixture of propylene oxide and resin (Quetol-812, Nisshin EM Co.,
Tokyo, Japan), they were transferred to new 100% resin and polymerized. The polymerized
resins were ultrathin sectioned at 70 nm using Ultracut-UCT (Leica, Vienna, Austria) and
mounted on copper grids. After staining with 2% uranyl acetate, the sections were washed
with distilled water and stained with lead stain solution (Sigma-Aldrich Co., Tokyo, Japan).
The grids were observed using a transmission electron microscope (JEM-1400Plus, JEOL
Ltd., Tokyo, Japan) at 100 kV acceleration voltage and photographed with a CCD camera
(EM-14830RUBY2, JEOL Ltd.).
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2.9. Survival Assay

Adult males were collected within 1 day after eclosion under CO2 anesthesia. Next, 10
to 20 flies in each trial (n > 103 flies in total) were reared at 28 ◦C in a plastic vial containing
instant fly food (see above). The number of dead flies was counted every 24 h. Adults were
subsequently transferred to new vials containing fresh food every 4 d. The survival rate
was calculated by the Kaplan-Meier method using GraphPad Prism 6 (GraphPad software
Co., San Diego, CA, USA).

2.10. Climbing Assay

The locomotor activity of adults was quantified using the climbing assay [38] as
described previously [36]. Ten to twenty adult males were collected in empty plastic vials
(22 mm in diameter, 96 mm in height; Chiyoda Science Co., Tokyo, Japan) and left for 10
min. Within 6 s of tapping the flies down to the bottom, the number of flies that climbed
the vial wall was counted. The average score for each vial was calculated by counting the
number of adults, with 10 points for adults above the 5 cm reference line, 5 points for adults
between the bottom and the reference line, and 0 points for adults remaining at the bottom.
Three trials were performed with an interval of at least 1 min, and the average value of the
three trials was calculated. The assays were performed every 5 d from the first day after
eclosion until the adult survival rate reached 50%.

2.11. Locomotor Assay

The daily locomotor activity of the adults was measured using a DAM2 Drosophila
Activity Monitor (TriKinetics Inc., Waltham, MA, USA), following a previously published
protocol [39]. A young male fly within 24 h of eclosion was reared in a measuring tube
(diameter 7 mm, length 65 mm). The tubes were set on a monitor at 28 ◦C to ensure
that infrared rays reached the center of the tube. Adults were transferred to new tubes
containing fresh food every 4 d. The number of adults that crossed an infrared light beam
for 30 min was counted using DAM System 308 software (TriKinetics Inc., Waltham, MA,
USA). Locomotion was measured from the first day to 36 d after eclosion. The light in the
incubator was on 09:00–21:00 and off 21:00–09:00.

2.12. Statistical Analysis

The significance of differences in the survival curves between the groups was analyzed
using the log-rank test. For the comparisons of the two groups, we used the Student’s
t-test. One-way ANOVA followed by Bonferroni post-hoc test was applied to assess the
differences in more than two groups. Two-way ANOVA followed by Tukey post-hoc
was performed to compare the mean differences between groups that were split into two
independent variables. Data were considered significant at p-values < 0.05. Statistical
analyses were performed using GraphPad Prism (Version 9, GraphPad Software, San
Diego, CA, USA).

3. Results
3.1. Adult Muscle-Specific Silencing of Polγ Subunit Genes Partially Inhibited Mitochondrial
DNA Replication and Repair of Oxidatively Damaged DNA in Drosophila Adult Muscle

To simulate aging-related mtDNA damage accumulation in adult muscle, we silenced
the mRNAs encoding the Polγ subunits PolG2 and PolG1 [40] in the muscle at the adult
stage using double-stranded RNA (dsRNA)-mediated RNAi. First, we investigated how the
mRNA levels of these two subunits changed as normal flies aged. We performed qRT-PCR
to quantify the levels of PolG2 and PolG1 mRNAs in control adults (Mef2ts > +) 5, 20, and
36 d after eclosion. The level of PolG2 mRNA in the thoraxes of control adults reared at
28 ◦C significantly declined with aging in 20- and 36-d-old adults (74% and 40% of the level
in 5-d-old adults, respectively; p < 0.01 and p < 0.0001, respectively; one-way ANOVA with
Bonferroni’s multiple comparisons test) (Figure 1A). In contrast, PolG1 mRNA remained at
a constant level, regardless of age (Figure 1D).
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Figure 1. Expression and double-stranded RNA-mediated silencing of mRNAs encoding Polγ
subunits in Drosophila adults with aging. (A–F) Relative mRNA levels of PolG2 (A–C) and PolG1
(D–F) in 5-, 20-, and 36-day-old-flies. (A,D) mRNA levels of two genes quantified by qRT-PCR. The
average levels in control flies at the same age (Mef2ts > +; the F1 progenies derived from a cross
between the Mef2ts-Gal4 stock and a standard wild stock, Canton S) are presented as 1.0. Note that the
mRNA levels of PolG2 mRNA decreased with age, whereas PolG1 mRNA levels remained constant.
(B,C,E,F) mRNA levels of flies with muscle-specific expression of double-stranded RNA against
PolG2 or PolG1 mRNA were quantified by qRT-PCR (Mef2ts > PolG2RNAi and Mef2ts > PolG1RNAi).
The average levels in control flies at the same age (Mef2ts > +) are presented as 1.0. Each mRNA level
was reduced to 34–75% of the controls. Error bar; s.e.m. ((A,D); n = 3 (triplicates), (B,C,E,F); n = 9
(three biological triplicates), ** p < 0.01, *** p < 0.001, **** p < 0.0001, n.s. not significant, one-way
ANOVA with Bonferroni’s multiple comparisons test).

We established an RNAi system that enabled the silencing of the DNA Polγ subunit
genes at the mRNA level, specifically in adult muscles. We crossed the Gal4ts line carrying
both Mef2-Gal4 and Gal80ts with the UAS-PolG2RNAi or UAS-PolG1RNAi stocks. Total RNA
was isolated from adult thoraxes to quantify the mRNA levels by qRT-PCR (n = 9). The
dsRNAs against PolG2 mRNA induced by UAS-PolG2RNAi1 and UAS-PolG2RNAi2 with
Mef2ts-Gal4 efficiently reduced mRNA levels to 66% and 34% of the control level in 5-d-old
adults, respectively (Figure 1B). The levels further declined to 49% of the control level in
20-d-old adults of both PolG2RNAi types (Figure 1C). Similarly, the dsRNAs against PolG1
mRNAs induced by UAS-PolG1RNAi1 and UAS-PolG1RNAi2 with Mef2ts-Gal4 (Mef2ts >
UAS-PolG1RNAi1 and Mef2ts > UAS-PolG1RNAi2) reduced the mRNA levels in 20-d-old
flies compared with 5-d-old flies (Figure 1E,F). We confirmed that the mRNA levels of DNA
Polγ subunits were reduced in the RNAi adult muscles.

To investigate whether oxidative DNA damage to mtDNA increased owing to the
downregulation of Polγ genes, we performed immunostaining of IFMs with an antibody
that recognized 8-oxodG (n > 20) (Figure 2A). Adult males with the muscle-specific si-
lencing of Polγ genes were fed 10 mM PQ to cause oxidative stress. Using anti-8-oxodG
immunostaining, several immunostaining foci were observed in the cytoplasm of IFM cells
harboring PolG2RNAi or PolG1RNAi (Figure 2Ab’–e’,g’–j’). The smaller 8-oxodG immunos-
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taining foci likely corresponded to oxidized mtDNA. The total pixel size in the IFMs of
flies fed PQ for 5 d after eclosion was comparable to that of control adults at the same age
(Mef2ts > +) (n = 20). The total pixel size in the areas of flies fed PQ for 10 d increased,
compared to that of control adults at the same age (Mef2ts > +) (n > 20). Although no
significant differences were observed between every RNAi type and the control in both age
groups (p > 0.05, one-way ANOVA with Bonferroni’s multiple comparisons test), there was
a trend toward an increase in 8-oxodG foci (Figure 2B). These observations suggested that
oxidative damage accumulated on the mtDNA in adults harboring PolγRNAi aged under
external oxidative conditions (Figure 2B).

5-day-old 10-day-old
n.s. n.s.n.s. n.s. n.s. n.s.n.s.n.s.
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Figure 2. Quantification of mitochondrial DNA (mtDNA) containing 8-oxo-deoxyguanine (8-oxodG)
in the indirect flight muscles (IFMs) of the PolG1RNAi or PolG2RNAi adults fed paraquat (PQ).
(A) Immunostaining of the IFMs collected from 5- and 10-day-old adults fed fly food supplemented
with 10 mM PQ revealed with an anti-8-oxodG antibody (red) and PicoGreen for DNA visualiza-
tion (green in a–j, white in a’–j’). Scale bar: 10 µm. PolG2RNAi flies (Mef2ts > PolG2RNAi1 and
Mef2ts > PolG2RNAi2), PolG1RNAi flies (Mef2ts > PolG1RNAi1 and Mef2ts > PolG1RNAi2), and con-
trol flies (Mef2ts > +) were examined. (B) Average number of 8-oxodG foci per confocal optical
field (4.0 × 10−2 mm2) in the muscles of 5- and 10-day-old adults harboring PolγRNAi (Mef2ts >
PolG2RNAi1 (n = 21 for 5-day-old, n = 30 for 10-day-old), Mef2ts > PolG2RNAi2 (n = 22, 21), Mef2ts >
PolG1RNAi2 (n = 26, 30), and Mef2ts > PolG1RNAi1 (n = 24, 25)) and controls (Mef2ts > +). (** p < 0.01,
n.s.; not significant. One-way ANOVA with Bonferroni’s multiple comparisons test).

A reduction in the mtDNA copy number is a characteristic feature of mitochondrial
dysfunction that becomes apparent with age [41]. We performed qPCR to investigate
whether mtDNA copy number in the thoraxes of adults harboring PolγRNAi decreased.
In control adults (Mef2ts > +), there were no changes in the relative amount of mtDNA
to nuclear DNA in the thoraxes between 5- and 36-d-old adults (n = 3, Student’s t-test)
(Figure S1A). However, in 36-d-old adults harboring PolγRNAi (Mef2ts > PolG2RNAi1), the
amount of mtDNA significantly decreased, compared with that in control adults of the same
age (Mef2ts > +) (n = 9) (p < 0.001, one-way ANOVA with Bonferroni’s multiple comparisons
test), but not in other PolγRNAi types (p > 0.05) (Figure S1B). These results suggest that both
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DNA repair and the replication of mtDNA were at least partially inhibited in the muscles
of aged adults harboring PolγRNAi, especially PolG2. Therefore, these observations suggest
that PolγRNAi results in the accumulation of abnormal mitochondria carrying damaged
mtDNA in the adult muscle.

3.2. Reduced mRNA Levels of Polγ Genes Resulted in Partially Reduced Mitochondrial Activity in
Adult Thoraxes Containing Flight Muscle as a Major Component

We examined whether the muscle-specific silencing of Polγ aggravated the age-related
loss of mitochondrial activity in adult muscle. To estimate mitochondrial activity, we
investigated mitochondrial membrane potential using TMRE as an indicator. We observed
TMRE-stained IFMs using confocal microscopy and obtained typical images (n ≥ 20)
(Figure 3A). The IFMs of 36-d-old control adults showed much lower fluorescence intensity
than those of 5-d-old control adults (Figure 3Aa,f). These observations confirmed that the
mitochondrial membrane potential visualized by TMRE was lost in the aged muscle. Thus,
we investigated whether PolγRNAi changed mitochondrial membrane potential under the
same conditions. In the IFM of 5-d-old adults harboring muscle-specific PolγRNAi (Mef2ts

> PolG2RNAi1, Mef2ts > PolG2RNAi2, and Mef2ts > PolG1RNAi1), the TMRE fluorescence in-
tensity was significantly lower than that in the controls in every case (Mef2ts > +) (p = 0.0168,
p = 0.0395, and p = 0.0134, respectively; one-way ANOVA with Bonferroni’s multiple com-
parisons test) (Figure 3B). All 36-d-old adults harboring PolγRNAi also exhibited slightly
lower TMRE fluorescence intensity than 36-d-old control adults (Mef2ts > +), although
there were no significant differences in the intensity between controls and PolγRNAi adults
(p > 0.05, one-way ANOVA with Bonferroni’s multiple comparisons test) (Figure 3B). These
observations suggested that Polγ silencing resulted in reduced mitochondrial membrane
potential in the muscles of young adults.

The maintenance of mitochondrial membrane potential is critical for ATP produc-
tion [42]. Thus, we investigated whether ATP production changed in adult thoraxes
harboring PolγRNAi. We performed a luciferase assay to quantify the relative ATP levels
in the adult thoraxes (n = 3). The average ATP levels in the muscle of 5- and 36-d-old
adults harboring PolγRNAi were slightly lower than those in control adults at the same age
(93% of the control in Mef2ts > PolG2RNAi1, 70% in Mef2ts > PolG2RNAi2, 102% in Mef2ts >
PolG1RNAi1, and 94% in Mef2ts > PolG1RNAi2, respectively) (Figure S2A) and (88% of the
control in Mef2ts > PolG2RNAi1, 92% in Mef2ts > PolG2RNAi2, 97% in Mef2ts > PolG1RNAi1,
and 86% in Mef2ts > PolG1RNAi2, respectively) (Figure S2B). Although the differences were
not significant between every type of polγRNAi adults and control adults (p > 0.05, one-way
ANOVA with Bonferroni’s multiple comparisons test), these results were not inconsistent
with the interpretation that muscle-specific Polγ silencing influenced mitochondrial activity
in adult muscle.

3.3. Enhancement of Mitochondrial Fission in the IFMs Harboring PolγRNAi

Mitochondria containing damaged mtDNA, abnormal proteins, or oxidized lipids are
efficiently removed by mitophagy to maintain homeostasis of the organelle [43]. Before
mitophagy occurs, a damaged part of the abnormal mitochondria is separated by mito-
chondrial fission. Thus, we next investigated whether mitochondrial fission was enhanced
in muscles harboring PolγRNAi containing dysfunctional mitochondria. We performed
immunostaining of IFMs with an anti-ATP5A antibody to visualize the entire mitochondria
(Figure 4A). The average length of mitochondria in the IFMs of 5-d old control flies was
2.83 µm (n = 20). However, the mitochondria in the 5-d-old adults harboring other types of
PolγRNAi were significantly shorter than those in the controls of the same age (p < 0.0001,
one-way ANOVA with Bonferroni’s multiple comparisons test) (Figure 4B). Consistently,
in PolG2RNAi (Mef2ts > PolG2RNAi2) and PolG1RNAi (Mef2ts > PolG1RNAi1 and Mef2ts >
PolG1RNAi2) adults, the average length of mitochondria in the IFMs of 36-d-old adults
harboring PolγRNAi was significantly shorter than that in control adults (p < 0.0001, one-
way ANOVA with Bonferroni’s multiple comparisons test) (Figure 4B). The length of
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mitochondria, however, could not be measured in 36-d-old Mef2ts > PolG2RNAi1 adults as
the myofibrils and mitochondria were severely damaged (Figure 4Ag’). In summary, we
concluded that mitochondria were shortened in the IFMs with silenced Polγ.
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Figure 4. Observation of mitochondria by confocal microscopy and quantification of the mitochon-
drial length in the adult IFMs harboring muscle-specific PolG1RNAi and PolG2RNAi. (A) Anti-ATP5A
immunostaining of the IFMs collected from 5- and 36-day-old adults to visualize entire mitochondria
of control adults (Mef2ts > +) and adults harboring muscle-specific PolG1RNAi (Mef2ts > PolG2RNAi1

and Mef2ts > PolG2RNAi2) and PolG1RNAi (Mef2ts > PolG1RNAi1 and Mef2ts > PolG1RNAi2). Anti-
ATP5A antibody staining (green in a–j, white in a’–j’) and Alexa488-phalloidin staining for F-actin
(red). Scale bar: 10 µm. (B) Quantification of muscular mitochondrial length in control adults (Mef2ts

> +) and adults harboring muscle-specific PolG2RNAi and PolG1RNAi (Mef2ts > PolG2RNAi1, Mef2ts

> PolG2RNAi2, Mef2ts > PolG1RNAi1, and Mef2ts > PolG1RNAi2). 20 adult thoraxes at 5-day and
36-day old were examined in every genotype. N.D.; 36-day-old Mef2ts > PolG2RNAi1 flies contained
mitochondria in which the mitochondrial membrane was too distorted to measure the length. (n = 20,
**** p < 0.0001, one-way ANOVA with Bonferroni’s multiple comparisons test). Error bar; s.e.m.

3.4. Stimulation of Autophagy in the IFMs Harboring PolγRNAi as the Flies Aged

Mitochondrial fission is usually regarded as the stage preceding mitophagy [44]. We
investigated whether autophagy occurred in the muscle and whether this took place in
the muscle of adults harboring PolγRNAi. To quantify mitophagy, we counted anti-Atg8
immunostaining foci overlapping with a mitochondrial marker (anti-ATP5A immunos-
taining signal) (Figure 5A–C). First, we quantified Atg8 foci, an indicator of autophagy in
Polγ-depleted muscle. Compared with that in controls (Mef2ts > +, n = 22), the Atg8 signal
did not increase (n ≥ 20) in the IFMs of 5- or 20-d-old adults harboring PolγRNAi (Mef2ts >
PolG2RNAi1, Mef2ts > PolG2RNAi2, Mef2ts > PolG1RNAi1, and Mef2ts > PolG1RNAi2). These
differences were not significant for any of the four RNAi types (p > 0.05, one-way ANOVA
with Bonferroni’s multiple comparisons test) (Figure 5B). With age, however, more Atg8
foci appeared in the IFMs of 36-d-old adults harboring PolγRNAi (Mef2ts > PolG2RNAi1,
Mef2ts > PolG2RNAi2, Mef2ts > PolG1RNAi1, and Mef2ts > PolG1RNAi2) than in the controls
(Mef2ts > +, n = 22). The differences were significant between every type of polγRNAi adults
and control adults (p < 0.05, one-way ANOVA with Bonferroni’s multiple comparisons test)
(Figure 5B).
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harboring PolγRNAi. (A) Immunostaining of IFMs from 5-, 20-, and 36-day-old control adults or
5-, 20-, and 36-day-old adults harboring PolγRNAi with anti-Atg8 (green in a–o, white in a’–o’) and
anti-ATP5A antibodies to visualize mitochondria (magenta). Scale bar: 10 µm. (B) Quantification of
the Atg8 foci in the IFM cells of 5-, 20- and 30-day-old control flies (Mef2ts > + (n = 22 for 5-day-old,
20-day-old, and 36-day old)) and flies harboring muscle-specific Pol G2RNAi and PolG1RNAi (Mef2ts

> PolG2RNAi1 (n = 21, 22, 25), Mef2ts > PolG2RNAi2 (n = 22, 22, 25), Mef2ts > PolG1RNAi1 (n = 22, 22,
23), and Mef2ts > PolG1RNAi2 (n = 22, 22, 21). (C) Quantification of the Atg8 foci co-localized with
mitochondria in the IFMs of 5-, 20-, and 36-day-old control flies (Mef2ts > + n = 22 for 5-day-old and 20-
day-old, n = 23 for 36-day old)) and flies harboring PolG2RNAi and PolG1RNAi (Mef2ts > PolG2RNAi1

(n = 21, 23, 26), Mef2ts > PolG2RNAi2 (n = 23 for all three age groups), Mef2ts > PolG1RNAi1 (n = 23,
23, 24), and Mef2ts > PolG1RNAi2 (n = 23 for all three age groups). (* p < 0.05, ** p < 0.01, *** p < 0.001,
n.s.; not significant, one-way ANOVA with Bonferroni’s multiple comparisons test). Error bars; s.e.m.

We also quantified the pixel size of Atg8 foci that co-localized with the mitochondria in
the IFMs of 5-d-old adult muscle harboring PolγRNAi (n ≥ 20) (Figure 5C). No significant
differences in pixel size between 5- and 20-d-old adults harboring PolγRNAi and controls
were observed (n = 22, one-way ANOVA with Bonferroni’s multiple comparisons test)
(Figure 5C). In contrast, the mitophagy signal appeared in 36-d-old adults harboring
PolγRNAi (n = 20) more on average than it did in the control at the same age (Mef2ts >
+, n = 22) (Figure 5C). However, the significant differences were observed only between
Mef2ts > polG1RNAi1 adults and control adults, but not in other RNAi types (p > 0.001,
one-way ANOVA with Bonferroni’s multiple comparisons test)(Figure 5C).

To ascertain these results, we performed immunostaining with another antibody that
recognized the autophagy adapter protein, Ref(2)P (Figure S3A). This adaptor protein is
decomposed together with target proteins by autophagy [27]. The Ref(2)P signal did not sig-
nificantly differ between 5-d-old adult muscles harboring PolγRNAi (Mef2ts > PolG2RNAi1,
Mef2ts > PolG2RNAi2, and Mef2ts > PolG1RNAi1) and controls (Mef2ts > +) (n ≥ 20) (p > 0.05,
one-way ANOVA with Bonferroni’s multiple comparisons test). Conversely, in the IFMs
from 36-d-old adults harboring PolγRNAi (Mef2ts > PolG2RNAi1, Mef2ts > PolG2RNAi2,
Mef2ts > PolG1RNAi1, and Mef2ts > PolG1RNAi2) (n ≥ 20), the amount of anti-Ref(2)P foci
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significantly decreased compared with that in control adults of the same age (Mef2ts > +,
n = 21) (p < 0.0001, one-way ANOVA with Bonferroni’s multiple comparisons test) (Figure
S3B). These results were consistent with the conclusion that autophagy in the IFMs was
stimulated and the targets were soon removed. In summary, these results suggest that both
autophagy and mitophagy were partially enhanced to eliminate damaged proteins and
abnormal mitochondria with reduced activity in adult muscles.

3.5. Continuous Silencing of the Polγ Genes in the Adult Muscle Resulted in Enhanced Apoptosis
and Malformation of Muscle Mitochondria and Myofibrils

Suppressed mitochondrial membrane potential is associated with the induction of
apoptosis [45]. We investigated whether the effector caspase Dcp1 was activated in the
adult muscle, accumulating mtDNA damage (Figure 6A,B). We performed anti-cDcp1
immunostaining of IFMs to detect the activated form of Dcp1 (cDcp1). In young 5-d-
old adults harboring PolγRNAi, the immunostaining signal did not increase significantly
compared with that in the control (Mef2ts > +) (Figure 6). In contrast, more anti-cDcp1
foci were detected in IFMs harboring PolγRNAi in 20-d-old adults (Mef2ts > PolG2RNAi1,
Mef2ts > PolG2RNAi2, Mef2ts > PolG1RNAi1, and Mef2ts > PolG1RNAi2) than in controls
(Mef2ts > +) at the same age (Figure 6B). Differences in the amount of cDcp1 were significant
only in 20-d-old Mef2ts > PolG2RNAi2 adults (p < 0.01, one-way ANOVA with Bonferroni’s
multiple comparisons test) but not in other RNAi types (p > 0.05) (Figure 6B). Consistently,
in 36-d-old adults harboring PolγRNAi, more cDcp1 foci were observed than in controls
(Mef2ts > +); however, significant differences were not observed in the amount of cDcp1
in every PolγRNAi type (p > 0.05) (Figure 6B). These results suggest that apoptosis was
enhanced in adult muscles through the accumulation of damaged mitochondria owing to
PolγRNAi.

We examined whether morphological abnormalities in myofibrils and mitochondria
were observed in the adult muscle harboring PolγRNAi. For this purpose, we carefully
observed the IFM of aged adults harboring PolγRNAi under a transmission electron micro-
scope (n = 5) (Figure 7A–F). In 36-d-old control adult IFMs (Mef2ts > +), no morphological
abnormalities were detected in the myofibrils among the 35 electron micrograph fields,
except for dense spots that appeared in many mitochondria. These spots were also ob-
served in normal-looking mitochondria, although they appeared less frequently in some
myofibrils in the control muscle. In contrast, we frequently observed abnormally distorted
Z-lines in the myofibrils (29 out of 69 micrographs) of 36-d-old adults (Mef2ts > PolG2RNAi1

and Mef2ts > PolG1RNAi1) (Figure 7C–E). Additionally, abnormal mitochondria harboring
disintegrated cristae (arrow in Figure 7C,D) and those lacking cristae (yellow arrow in
Figure 7C) were observed in every IFM examined (33 out of 33 micrographs) in Mef2ts

> PolG2RNAi1 adults. Mitochondria less stained by uranyl acetate appeared abnormally
swollen and were also observed in the muscle of aged flies harboring PolγRNAi (Figure 7E).

3.6. Downregulation of the Polγ Genes in the Muscle Shortened Adult Lifespan and Accelerated
Age-Dependent Impairment of Locomotion

As we showed that the silencing of Polγ subunit mRNAs resulted in reduced mito-
chondrial activity in the adult muscle, we performed a lifespan assay in adults harboring
muscle-specific PolG2RNAi or PolG1RNAi (Figure 8A,B). The RNAi flies exhibited a signifi-
cantly shorter lifespan (n > 100) (Mef2ts > PolG2RNAi1, p = 0.0008; Mef2ts > PolG2RNAi2,
Mef2ts > PolG1RNAi1, and Mef2ts > PolG1RNAi2, p < 0.0001; log-rank test) than control
flies (Mef2ts > ) (Figure 8A). The median survival time in all flies harboring PolγRNAi
was shorter than that in controls; it was 43 d after eclosion in the controls, 41 d in Mef2ts

> PolG2RNAi1, 39 d in Mef2ts > PolG2RNAi2, 37 d in Mef2ts > PolG1RNAi1, and 35 d in
Mef2ts > PolG1RNAi2. We also investigated the viability of adults under PQ feeding condi-
tions (Figure 8B). Consistent with the shortening of the adult lifespan, the flies harboring
muscle-specific depletion of PolG2 showed a significantly shorter lifespan under 10 mM
PQ (p < 0.001, log-rank test). Therefore, it is consistent with the shortening of the adult
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lifespan that the downregulation of PolG2 subunits in adult muscle resulted in a shorter
lifespan under PQ-induced oxidative stress.
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To examine whether adults harboring muscle-specific PolγRNAi would show a loss
of locomotor activity, we measured the climbing activity every 5 d from 0 to 35 d after
eclosion, until the survival rate reached 50%. The climbing activity of the controls (Mef2ts

> +) decreased with age (n ≥ 100) (Figure 9). Consistent with the shortened lifespan and
higher sensitivity to oxidative stress, the locomotor activities of adults harboring PolG2RNAi
(Mef2ts > PolG2RNAi1 and Mef2ts > PolG2RNAi2) and PolG1RNAi (Mef2ts > PolG1RNAi1 and
Mef2ts > PolG1RNAi2) declined even more notably, compared to the control (Mef2ts > +).
There were significant differences between every type of PolgRNAi adults except Mef2ts

> PolG2RNAi2 and control adults (p < 0.0001, two-way ANOVA with Tukey’s multiple
comparisons test). There were also significant differences between the time (p < 0.0001,
two-way ANOVA), and in the group-time interaction (p < 0.0001, two-way ANOVA).
In summary, the age-dependent decline in locomotion activity became more severe as
Polγ-depleted adults aged.
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Finally, we examined whether PolγRNAi influenced circadian rhythm (Figure S4A). We
used adults harboring PolG1RNAi (Mef2ts > PolG1RNAi1 and Mef2ts > PolG1RNAi2), which
exhibited a significantly shorter lifespan. The locomotion efficiency of PolG1-depleted
adults was measured for 24 h (in a 12/12-h light/dark cycle) until the survival rate reached
50% (n ≥ 20). Here, 5-, 15-, and 35-d-old adults were compared in terms of the highest
levels of daily activity. In control adults (Mef2ts > +), the highest level gradually decreased
with aging (Figure S4A). In contrast, the extent of the decline was more remarkable in
5-d-old adults of the same age harboring Mef2ts > PolG1RNAi1 (68% of the activity of control
adults (Mef2ts > +)) and Mef2ts > PolG1RNAi2 (84% of the activity of control adults (Mef2ts

> +)). A similar trend was observed for the 15- (55% and 64% of the activity of controls)
and 35-d-old (68% and 84% of the activity of controls) adults (Figure S4B,C). The locomotor
activity of 35-d-old adults harboring PolG1RNAi increased during the daytime (between
11:00–19:00 h), whereas the control flies and younger RNAi flies were less active during this
period. In summary, these results indicate that muscle-specific silencing of Polγ accelerated
the age-dependent decline in locomotor activity. Polγ silencing resulted in a disturbance of
the regular circadian rhythm of aged adults, who carried fewer active mitochondria with
accumulated mtDNA damage.
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Figure 8. Lifespan curves of adults harboring muscle-specific PolG1RNAi and PolG2RNAi and
survival curves of adults fed PQ. (A,B) Lifespan curves of control adults (Mef2ts > +) and PolγRNAi
adults (Mef2ts > PolG2RNAi1, Mef2ts > PolG2RNAi2, Mef2ts > PolG1RNAi1, and Mef2ts > PolG1RNAi2)
fed on the instant fly food (A) or the food supplemented with 10 mM PQ (B). The flies collected within
1 day after eclosion were used for (A) (n = 103 control adults, n = 114 Mef2ts > PolG2RNAi1 adults,
n = 102 Mef2ts > PolG2RNAi2, n = 109 Mef2ts > PolG1RNAi1, and n = 104 Mef2ts > PolG1RNAi2) and
used for (B) (n = 177 control adults, n = 143 Mef2ts > PolG2RNAi1 adults, n = 147 Mef2ts > PolG2RNAi2,
n = 156 Mef2ts > PolG1RNAi1, and n = 163 Mef2ts > PolG1RNAi2). More than 5 trials with the total
number of adults described were performed in every assay type. The survival rate of the flies was
examined every 24 h (*** p < 0.001, **** p < 0.0001, log-rank test).
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quantify the locomotion activity of adults harboring muscle-specific silencing of mRNAs encoding
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seven to ten repeated assays). The points on the y-axis show the mean climbing scores representing the
locomotor activity of flies. PolγRNAi adults showed significantly lower activity than controls (Mef2ts

> +) (two-way ANOVA with Tukey’s multiple comparisons test). There were significant differences
in the genotypes (p < 0.0001); p < 0.0001 for a comparison between PolG2RNAi1 and control, between
PolG1RNAi1 and control, between PolG1RNAi2 and control. p = 0.4085 (not significant) between
PolG2RNAi2 and control. There were also significant differences in the time (p < 0.0001), and in the
genotype-time interaction (p < 0.0001).

4. Discussion
4.1. Accumulation of Mitochondrial DNA Damage and Promotion of Mitochondrial Dysfunction
in Polγ-Silenced Adult Muscle

We showed that the muscle-specific silencing of the subunits of DNA Polγ, the sole
DNA polymerase in mitochondria, resulted in the partial accumulation of oxidative damage
in mtDNA and a reduction in its copy number. This resulted in the production of abnormal
mitochondria with reduced membrane potential required for ATP production in the adult
muscle. However, the severity of mitochondrial damage in adult muscles harboring
PolG2RNAi or PolG1RNAi was not always correlated with mRNA levels. For example, there
were no significant differences in silencing efficiency between PolG2RNAi and PolG1RNAi at
20 d of age. Nevertheless, mtDNA repair in 10-d-old adults fed PQ and mtDNA replication
in 36-d-old adults were rather more severely inhibited in adults harboring PolG2RNAi than
in those harboring PolG1RNAi. PolG1 is broken down by the protease LONP1, and PolG2
protects the catalytic subunit from this degradation. PolG2 knockdown has been shown to
reduce PolG1 protein levels in mice [46]. The amount of Polγ holoenzyme depends on the
PolG2 mRNA levels if there is no regulatory mechanism during the translational process.
We demonstrated that PolG2 mRNA levels decreased with aging, whereas PolG1 mRNA
remained at a constant level during normal aging. Considering that the amount of Polγ is
determined by the amount of PolG2 in mice [46], the amount of Drosophila Polγ complex
decreases with aging. As the PolG2 mRNA for Polγ accessory subunits progressively
declines during normal aging, the amount of Polγ holoenzyme decreases accordingly. The
amount of the Polγ complex may depend mainly on the PolG2 mRNA levels during the
normal aging process. Considering this together with the aspect of the protection of PolG1
from proteases by PolG2, we propose that downregulation of the Polγ complex will be more
accelerated in adults harboring PolG2RNAi than in those harboring PolG1RNAi. Hence,
there was a trend toward appearance of more severe phenotypes in PolG2 RNAi than that
in PolG1RNAi.

mtDNA damage was higher in the IFMs harboring Mef2ts > PolG2RNAi and Mef2ts

> PolG1RNAi than in controls. Aberrations in mtDNA are frequently detected in tissues
that produce ROS at higher levels, followed by mtDNA damage [47]. Mutations in mtDNA
increase with age in the skeletal muscle of aged people [48], which may result from the
age-related decline in the mtDNA repair and replication functions [49]. Mutations in
the mitochondrial genome are associated with a range of human diseases and have been
implicated as a driving force behind the aging process [50]. A wide range of mtDNA
sequencing results have revealed that mtDNA mutations accumulate in the liver of mice
expressing a proofreading-deficient mtDNA polymerase. The mutator mice had 10-fold
higher levels of point mutations, but not large deletions, accumulated more with age than
normal siblings [51]. Premature aging occurs in mtDNA mutator mice. Consistently, we
also observed that mtDNA damage results in the production of abnormal mitochondria
with reduced membrane potential required for ATP production in the adult muscle. In
addition to the stimulation of mitochondrial fission, autophagy, were significantly increased
in the muscle with the mtDNA mutator. There was a trend toward increase in apoptosis in
the muscle. Eventually, malformation of both myofibrils and mitochondria, reminiscent
of sarcopenia in humans, was frequently observed in the muscle. Our data are consistent
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with previous data from mice carrying the mtDNA mutator [46]. However, no increase in
point mutations or deletions was observed in control mice during normal aging. These
results are inconsistent with the hypothesis that the accumulation of mtDNA mutations
contributes to aging [51]. Another study on aged human brains did not find significant
changes in mtDNA related to oxidative damage [12]. In contrast, we demonstrated that the
expression of the PolG2 subunit decreases as flies age, and that of PolG1 may also decrease
in association with the age-dependent decline of PolG2. It is necessary to investigate
this further by determining the mtDNA sequences of the flies harboring PolγRNAi and
test the hypothesis that mtDNA damage progressively accumulates in the adult muscle
of polγRNAi or normal flies. Establishing whether mtDNA damage contributes to the
progression of aging-related phenotypes and addressing whether un-repaired mtDNA
accumulates owing to ROS production in mitochondria with reduced activity are crucial.

4.2. Acceleration of Mitochondrial Fission, Followed by Mitophagy in Adult Muscle Carrying
Abnormal Mitochondria with Accumulating DNA Damage

Here, we found that the silencing of Polγ subunits facilitated mtDNA damage accumu-
lation, and the production of abnormal mitochondria showing reduced activity increased
in the adult muscle. Consequently, mitochondrial fission was significantly enhanced. Mi-
tophagy was partially enhanced in the muscle of aged mef2ts > PolγRNAi flies. These results
imply that mitochondrial fission was promoted and, thereafter, mitophagy was stimulated
in the muscle harboring PolγRNAi. Consistent with this idea, several in vitro studies have
reported that dysfunctional mitochondria generated under increased ROS production are
selectively eliminated by mitophagy [52,53]. Another study showed that inhibiting mito-
chondrial fission reduces mitophagy induction, supporting this idea. Mitochondrial fission
usually occurs before mitophagy [54] and is enhanced in mammalian muscle cells with
excessive ROS accumulation [45,55]. In other words, the fission of damaged mitochondria
under excessive ROS is stimulated; subsequently, only the resultant smaller mitochondria
with damaged cellular components are removed by mitophagy. Mitophagy and autophagy
play indispensable roles in maintaining cell homeostasis and overexpression of factors in-
volved in either process resulted in a prolonged lifespan of many model organisms [56–59].
However, there is conflicting evidence that excessive autophagy enhances cell death in
Drosophila and C. elegans [60,61]. Therefore, it is important to further examine whether ex-
cessive autophagy affects muscle activity and locomotor activity with aging; the Drosophila
system used here provides a good tool to address this issue.

4.3. Age-Dependent Impairment of Mitochondrial Activity, and Aging-Related Phenotypes and
Behavior in the Adult Muscle

Oxidative DNA damage of mitochondria is considered the major cause of apoptosis
and sarcopenia observed in advanced muscle aging in mammals [62–65]. Here, we found
that the age-dependent decline in locomotor activity was accelerated in flies harboring
PolγRNAi. We suspected that locomotor impairment in these flies was related to muscle
dysfunction in aged flies. As Drosophila is a small model organism, it is difficult to quantify
or estimate the amount or loss of muscle mass during aging [66]. Therefore, instead
of quantifying muscle mass, we observed myofibrils by TEM and examined whether
there were any structural abnormalities that suggested the loss of cellular components
in muscle cells. We observed abnormal myofibrils, such as distorted Z-lines, in the aged
adults harboring PolγRNAi. A previous study of muscle dystrophy models in Drosophila
showed similar Z-line abnormalities in aged flies homozygous for mutations in the tw
gene encoding mannosyltransferase and that apoptosis is enhanced simultaneously [67].
Therefore, we hypothesized that damaged myofibrils in Polγ-silenced adults are generated
in association with apoptosis. Especially in PolG2RNAi2 adults, the apoptosis signal
detected by anti-cDcp1 immunostaining showed an increase from the early adult stage.
Additionally, remarkable damage to the myofibrils and inner and outer mitochondrial
membranes was observed in the muscle cells of Polγ-silenced adults. These phenotypes
supported the idea that apoptosis is continuously stimulated from the early adult stage,
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and this enhanced apoptosis eventually leads to non-negligible abnormalities in myofibril
and mitochondrial structures in adult muscles. In mammalian cells undergoing sarcopenia,
apoptosis and muscle atrophy are enhanced after mitochondrial fission [68–70]. Therefore,
the accumulation of damaged mitochondria owing to Polγ-downregulation in adult muscle
may stimulate mitochondrial fission, resulting in the induction of apoptosis in muscle cells.

Next, we discuss how ROS and oxidative DNA damage in mtDNA ultimately af-
fect lifespan. These adults exhibited a shortened lifespan and accelerated age-dependent
impairment of locomotor activity. Most ROS are generated during oxidative phosphoryla-
tion in the mitochondrial electron transport chain [4]. Although moderate levels of ROS
have been reported to prolong lifespan [71], higher ROS production levels are thought
to cause mtDNA mutations, membrane potential loss, mitochondrial dysfunction, and
cell death. Ultimately, they accelerate the progression of aging [72]. We also obtained
evidence suggesting that the mitochondrial membrane potential was reduced and, con-
sequently, ATP production deteriorated in adult muscle harboring PolγRNAi. Apoptosis
is promoted and, eventually, the adult lifespan is shortened. This finding is consistent
with a previously proposed model that mutations accumulated in mitochondrial DNA
during the aging process may be causally related to the decreased physiological responses
of senescent organisms [72]. Eventually, the muscle phenotype may have led to an age-
dependent decline in locomotor activity. In addition to locomotor activity, it is important to
investigate whether other aging-related phenotypes are accelerated in adults that harbor
muscle-specific PolγRNAi. Such processes include proteostasis impairment, which leads
to ubiquitinated protein aggregate formation. We propose to explore these aspects in our
future studies.

We observed that muscle-specific PolG2RNAi disturbed the circadian rhythm. Sim-
ilar symptoms are sometimes observed in elderly people with sarcopenia in their mus-
cles [73,74]. However, it is still necessary to more carefully examine the relationship be-
tween muscle-aging phenotypes originating from mitochondrial dysfunction and disturbed
circadian rhythms, although one study has described that circadian rhythm disruption
influences sarcopenia through skeletal muscle dysfunction and vascular disorders during
aging [74]. It would be interesting to perform studies in future to clarify the relationship
between myokines secreted from muscle and circadian clock regulators [75,76]. The ev-
idence derived from this study is consistent with the hypothesis that the dysfunction of
organelles originating from the accumulation of mtDNA damage can contribute to the
aging of Drosophila muscle.
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