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1  |  BACKGROUND

Colorectal cancer (CRC) is a malignant tumor of the digestive tract 
that poses a serious threat to human health.1 According to the Global 

Cancer Epidemic Statistics (GLOBOCAN 2020), 1.93 million new 
CRC cases and 0.94 million CRC- related deaths worldwide in 2020 
places this disease in third and second place, respectively, among all 
malignant tumor types.2,3 CRC patients have an approximately 50% 
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Abstract
Background: Metastasis is the main cause of death of colorectal tumors, in our study 
a prognosis model was built by analyzing the differentially expressed genes between 
metastatic and non- metastatic colorectal cancer (CRC). We used this feature to pre-
dict CRC patient prognosis and explore the causes of colorectal tumor metastasis by 
characterizing the immune status alteration.
Methods: CRC patient data were obtained from TCGA and GEO databases. We con-
structed a risk prognostic model by using Cox regression and the least absolute shrink-
age and selection operator (LASSO) based on CRC metastasis- related genes. We also 
obtained a nomogram to predict the prognosis of CRC patients. Finally, we explored 
the underlying mechanism of these metastasis- related genes and CRC prognosis using 
immune infiltration analysis and experimental verification.
Results: According to our prognostic model, in TCGA, the area under the curve (AUC) 
values of the training and test sets were 0.72 and 0.76, respectively, and 0.68 for the 
GEO external data set. This suggested that the treatment and prognosis of patients 
could be effectively determined. At the same time, we found that the B and T cells in 
both tissues and peripheral blood of high MR- risk score patients were mostly in im-
mune static or inactivated states compared with those of low MR- risk score patients.
Conclusions: MR- risk score has a direct correlation with CRC patient prognosis. It is 
useful for predicting the prognosis and patient immune status for these patients.

K E Y W O R D S
GEO, immune infiltration, lasso regression analysis, prognostic signature, TCGA

www.wileyonlinelibrary.com/journal/jcla
mailto:﻿
mailto:﻿
http://creativecommons.org/licenses/by-nc/4.0/
mailto:guo.wei@zs-hospital.sh.cn
mailto:wang.beili1@zs-hospital.sh.cn


2 of 14  |     LI et al.

chance	of	survival	within	5 years,	and	more	patients	have	metastasis	
or lost the opportunity of surgery at the time of diagnosis. Because 
the early symptoms are often not obvious, CRC patients' 5- year 
survival rate decreased to 12%. Furthermore, 30%– 50% of patients 
have recurrence and metastasis after treatment, which seriously af-
fects their prognosis and quality of life.4,5

Metastasis is the leading cause of death in CRC patients. Liver 
and lung metastases are common in these individuals, but the 
specific molecular mechanisms controlling this remain unclear.6,7 
Currently, the rapid development of immunotherapy and targeted 
therapy can improve the survival time of CRC patients to some ex-
tent.8- 10 Yet, a curative effect for patients with metastasis is not 
apparent.11,12 Therefore, early indications of CRC metastasis and 
finding reliable markers to develop new prognosis prediction models 
are essential for understanding disease progression and effectively 
adjusting treatment strategies.

Colorectal tumor metastasis has been widely discussed and 
studied from a bioinformatics perspective. In similar articles on 
colorectal tumor metastasis, models were often constructed by 
comparing differentially expressed genes in metastatic colorectal 
tumor tissues and adjacent tissues.13,14 Others also studied CRC 
metastasis mechanisms by using the widely recognized metastasis 
genes as gene sets.15 However, because of this selective screen-
ing, specific artificial selection bias may be present in the model. In 
our study, we generated a prognosis model by directly comparing 
and analyzing the differential genes between metastatic and non- 
metastatic CRC tumors, focusing on the internal change process 
and gene expression characteristics of metastatic tumors relative 
to non- metastatic tumors. We also explored the causes of metas-
tasis through immunological analysis. Our results may provide new 
insights into the role of CRC metastasis- related genes in the tumor 
immune microenvironment and offer a theoretical basis for predict-
ing CRC prognosis.

2  |  MATERIAL S AND METHODS

2.1  |  Data collection and data processing

The mRNA expression data of CRC tumor group in this study were 
downloaded from TCGA- COAD dataset (The Cancer Genome Atlas- 
colorectal adenocarcinoma). The tumor group samples were divided 
into two groups according to the occurrence of metastasis (64 cases 
of colorectal metastasis samples and 338 non- metastatic samples 
were finally included in the analysis), and the metastasis prognosis 
model was constructed by comparing the differences between the 
two groups. In addition, the validation data set GSE38832 (with 122 
COAD patients)16 was downloaded from the NCBI Gene Expression 
Omnibus (GEO) public database. The complete clinical profile and 
survival information of these two data sets were downloaded at the 
same time.

2.2  |  Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) 
functional enrichment analysis

The “Limma” R package was used to integrate and standardize differ-
entially expressed genes (DEGs). DEGs were functionally annotated 
by using clusterProfiler (R3.6) to comprehensively perform GO and 
KEGG analyses. GO and KEGG enriched pathways with both p-  and 
q- Values less than 0.05 were considered significant categories.

2.3  |  Prognostic model construction and validation

In the TCGA cohort, the DEGs related to tumor metastasis were se-
lected by comparing genes in the tumor group with and without me-
tastases. Firstly, the DEGs were preliminarily screened by univariate 
COX regression analysis (p < 0.05).	Secondly,	 least	absolute	shrink-
age and selection operator (LASSO) regression analysis was used to 
create the CRC prognostic risk score model (p < 0.01).	Finally,	mul-
tivariate Cox regression analysis was used to construct risk model. 
The risk score was calculated by using the following formula: MR- risk 
score = sum (expression of each gene * corresponding coefficient).

After calculating the risk score of all samples, all subjects were 
divided into high- risk and low- risk groups according to the median 
risk score. To confirm the value of the model in predicting patients' 
overall survival (OS) between the two risk groups, patients were 
assessed by Kaplan– Meier (KM) survival curves and compared by 
log- rank tests. We also used receiver operating characteristic (ROC) 
curves to study the efficacy of the model prediction. Finally, we 
used univariate and multivariate analyses to explore whether the 
MR- risk score model is an independent prognostic factor for COAD 
patients.

2.4  |  Establishment of the nomogram

The nomogram was constructed by using data from the TCGA co-
hort with R package “rms” including age, gender, tumor stage, and 
risk score. The validity and prognostic value of the nomogram were 
evaluated by using calibration curves and ROC curve analysis.

2.5  |  Immunocyte infiltration analysis

The RNA sequencing (RNA- seq) data of TCGA - COAD patients in 
the high- risk and low- risk groups were calculated by CIBERSORT 
(http://ciber sort.stanf ord.edu/) [17] to obtain the relative existence 
ratios of 22 immunoinfiltrating cell types. Spearman algorithm was 
used to analyze the correlations between gene expression and the 
proportion of immune cell infiltration. Statistical significance was set 
at p < 0.05.

http://cibersort.stanford.edu/
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2.6  |  Tissue and blood samples

All samples were obtained from Zhongshan Hospital Fudan 
University. Fresh tissues and blood samples were acquired from 
three non- metastatic and three metastatic CRC patients. All CRC 
clinicopathological diagnosis information were collected from pa-
thology diagnosis reports. This study was approved by the research 
ethics committee of Zhongshan Hospital Fudan University, and the 
participants provided informed consent for using their samples in 
this study.

2.7  |  Detection of MR- genes by qPCR

Total RNA was isolated from colorectal tumor tissues and adjacent 
normal tissues from three non- metastatic and three metastatic CRC 
patients using TRizol reagent (Invitrogen). RNA samples were reverse 
transcribed into cDNA by using GoScript™ Reverse Transcription Mix 
(Promega A2800). PCR primers used here are listed in supplemental 
information Table 3. RNA was analyzed using regular reverse tran-
scription PCR (RT- PCR) with GoTaq® qPCR Master Mix (Promega 
A6002). All experimental procedures were performed according to 
the manufacturer's instructions (Table 3: RT- PCR primer sequences).

2.8  |  Analysis of lymphocyte subpopulations

To examine changes in the immune status of patients with meta-
static CRC relative to patients with non- metastatic CRC, T- cell and 
B- cell lymphocyte subpopulations were randomly assessed in three 
non- metastatic primary and three metastatic CRC patients. Various 
fluorescein- labeled monoclonal antibodies were added to each 
patient's peripheral blood to bind the corresponding antigens on 
leukocytes.

Each patient's peripheral blood was stained with fluorescent- 
labeled antibodies against the these cell surface markers: CD19+/
CD27+/IgD-  (Switched Memory B Cells), CD19+/CD27+/IgD+ 
(Marginal Zone B Cells), CD19+/CD27- /IgD+ (Naïve B Cells), CD3+/
CD8+/CD27+/CD45RA-  (Central memory CD8+ T Cells), CD3+/
CD8+/CD27+/CD45RA+ (Naïve CD8+ T Cells), CD3+/CD8+/
CD27- /CD45RA+ (Effector memory CD45RA re- expressing CD8+ 
T Cells), CD3+/CD8+/CD27- /CD45RA-  (Effector memory CD8+ T 
Cells), CD3+/CD4+/CD27+/CD45RA-  (Central memory CD4+ T 
Cells), CD3+/CD4+/CD27+/CD45RA+ (Naïve CD4+ T Cells), CD3+/
CD4+/CD27- /CD45RA+ (Effector memory CD45RA re- expressing 
CD4+ T Cells), and CD3+/CD4+/CD27- /CD45RA-  (Effector mem-
ory CD4+ T Cells). Storage events were gated on populations of in-
terest (Supplemental Fig.S1).

The stained peripheral blood was hemolyzed with erythrocyte 
lysate (ABSIN abs9101) for 10 min at room temperature, washed 
with PBS, and then analyzed by flow cytometry. Flow cytometry 
data were collected on FACSAria II (Becton Dickinson) or Navios 

instrument (Beckman Coulter). Statistical analysis was performed 
using FlowJo v10 software (FlowJo, LLC http://www.flowjo.com/
solut ions/flowj o/).

2.9  |  Flowchart

A flowchart outlining the study screening process is shown in 
Figure 1.

3  |  RESULTS

3.1  |  TCGA analysis revealed metastasis- related 
DEGs in CRC

We downloaded raw mRNA expression data (FPKM) in COAD from 
the TCGA database and obtained the metastasis status through 
the clinical indicator (M = 1: metastasis; M = 0: no metastasis). 
Differential expression analysis was performed between CRC pa-
tients with or without metastasis using the “Limma” package. The re-
sults suggest that a total of 552 DEGs were screened by differential 
gene expression value (Figure 2A). GO enrichment analyses showed 
that these DEGs are enriched in immune related pathways such as 
antigen processing presentation (antigen processing presentation), 
tumor necrosis factor response (response to tumor necrosis factor), 
and MHC protein complex binding (MHC protein complex binding) 
(Figure 2B). For KEGG enrichment, there are Antigen processing and 
presentation (antigen processing and presentation), Primary immu-
nodeficiency (primary immune deficiency), and TNF signaling path-
ways. The results suggest that there may be a large difference in 
immune function between metastatic and non- metastatic colorectal 
tumors. Furthermore, many genes are also enriched in metabolic- 
related pathways (Figure 2C).

3.2  |  Construction of a prognosis model for 
metastatic CRC patients

To explore the key DEGs related to CRC metastasis, the relevant data 
of TCGA- COAD patients were integrated in this study. Cox regression 
and the least absolute shrinkage and selection operator (LASSO) were 
used to screen feature genes related to CRC metastasis (Figure 3A– C). 
The results suggest that 26 prognostic genes were screened by Cox 
univariate regression: GAL, UCHL1, TRIP10, SERPINE1, SNAI1, BCL10, 
GSR, PHF2, DNAJB2, LRRC8A, CST6, JAG2, ASAH1, C4orf19, MOGS, 
GDI1, SNCG, ASRGL1, LEPROTL1, FDFT1, CNOT7, TSC22D3, TNK2, 
RNASET2, CPT2, and PGM2 (Figure 3A). After screening of charac-
teristic variables by Lasso regression, 14 selected metastasis- related 
genes were obtained (Figure 3B,C). By using multivariate Cox regres-
sion analysis the regression model were constructed and the MR- risk 
score for each sample was obtained for subsequent analysis (MR- Risk 

http://www.flowjo.com/solutions/flowjo/
http://www.flowjo.com/solutions/flowjo/
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F I G U R E  1 Workflow	of	the	study.

F I G U R E  2 The	Cancer	Genome	Atlas	(TCGA)	analysis	revealed	metastasis-	related	differentially	expressed	genes	(DEGs)	in	colorectal	
cancer (CRC). (A) Heat map of DEGs in TCGA analysis. unMe: CRC group without metastasis; Meta: CRC group with metastasis. (B) Gene 
ontology (GO) pathway analysis results showed that GO- related biological functions (BF), cellular components (CC), and molecular functions 
(MF) were the most abundant. (C) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that biological pathways 
were the most abundant.
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Score =	 ASRGL1 × (−0.200486209) + GSR × (−0.107200303) + ASAH1 
× (−0.086956773) + BCL10 × (−0.065018786) + SNAI1 × 0.001969402 
+ TRIP10 × 0.02686487 + TSC22D3 × 0.063610852 + LRRC8A × 0.072
751154 + PHF2 × 0.075148411 + SERPINE1 × 0.077260841 + RNASE
T2 × 0.110933675 + DNAJB2 × 0.13931055 + UCHL1 × 0.205894794 
+ GAL × 0.209549353)	 (Figure 3D). The COX coefficient is shown in 
Table 1, and the Gene official full name is shown in Table 4.

3.3  |  KM survival and time- varying ROC analyses 
were performed for the risk values of the training and 
test data sets

To confirm model efficacy, survival analysis was performed in the 
training cohort using the Kaplan– Meier method. In the TCGA- COAD 
dataset, patients were divided into high- risk and low- risk groups 

F I G U R E  3 Construction	of	the	prognosis	model	for	metastatic	colorectal	cancer	(CRC)	patients.	(A)	Cox	univariate	regression	analysis	
of metastasis- associated differentially expressed genes (DEGs) in CRC; (P < 0.01).	(B)	Lasso	regression	analysis	using	the	maximum	criterion	
of 10- fold cross validation. (C) The Lasso coefficient spectrum of DEGs was screened; Lasso, minimum absolute contraction, and selection 
operators. (D) The model coefficient diagram shows the hazard ratio (HR) values and correlation coefficients of 14 constituent genes in the 
prognostic model.

gene Coef hr low.ci upp.ci

ASRGL1 −0.20049 0.559465 0.370334 0.845184

GSR −0.1072 0.602317 0.445522 0.814294

ASAH1 −0.08696 0.650391 0.487754 0.867258

BCL10 −0.06502 0.586685 0.433268 0.794424

SNAI1 0.001969 1.424898 1.179443 1.721434

TRIP10 0.026865 1.548546 1.243982 1.927677

TSC22D3 0.063611 1.253047 1.06009 1.481127

LRRC8A 0.072751 1.298438 1.099505 1.533362

PHF2 0.075148 1.418221 1.140282 1.763906

SERPINE1 0.077261 1.222669 1.100739 1.358106

RNASET2 0.110934 1.268938 1.062059 1.516116

DNAJB2 0.139311 1.42694 1.141169 1.784273

UCHL1 0.205895 1.380657 1.195374 1.594658

GAL 0.209549 1.525341 1.270088 1.831894

TA B L E  1 COX	coefficient
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based on the median MR- risk score in the training (Figure 4A) and 
test sets (Figure 4D). The data show that the low- risk group has a 
significantly higher OS than the high- risk group (Figure 4B/E). The 
ROC curve analysis shows that the C- index of the training and test 
sets are 0.72 and 0.76, respectively (Figure 4C/F), suggesting that 
the model has good verification efficiency.

The basic characteristics of the training and test sets are listed 
in Table 2.

3.4  |  External validation of the performance of the 
MR- risk score model in the GEO dataset

To ensure the stability of the prediction model, the RNA- Seq data 
(GSE38832) of COAD patients with processed survival data were 
retrieved from the GEO database. From this model, COAD patient 
clinical classifications were predicted. In the GSE38832 dataset, pa-
tients were divided into high- risk and low- risk groups based on the 
median MR- risk score (Figure 5A,B). The KM method was used to 
evaluate survival differences between the two groups. The results 
show that the high- risk group in the GEO external validation set had 
a significantly lower OS than the low- risk group (Figure 5C). To verify 
the accuracy of this model, we used the external data set to ana-
lyze the ROC curve of the model. The results suggest that the model 

had a strong predictive effect for patient prognosis (GSE38832 C- 
index = 0.68) (Figure 5D). Finally we also find that 14 genes were 
highly consistent between the GSE38832 (Figure 5E) and TCGA- 
COAD datasets (Figure 5F).

3.5  |  Fourteen metastasis- related prognostic 
features associated with OS in CRC patients

To demonstrate the application value of this prediction model in 
clinical practice, we first used univariate and multivariate Cox risk 
regression models to evaluate the impact of MR- risk score on pa-
tient survival rates (Figure 6A,B). The results show that MR- risk 
score was an independent prognostic factor in COAD patients. 
Clinically, the progression and malignant degree of tumors are 
often categorized by staging classification to determine the ap-
propriate surgical and drug treatment method. According to this, 
we divided each patient's MR- risk score value from the prediction 
model into the commonly used staging classification groups. The 
results of each clinical index group are displayed in a box diagram 
(Figure 6C), which shows the distribution of MR- risk score value 
in stage, T, M, N, and other clinical parameters (p < 0.05)	by	 the	
rank- sum test (Kruskal test). The MR- risk score obtained with 
our modeling analysis has good applicability for sample grouping. 

F I G U R E  4 Kaplan–	Meier	(KM)	survival	and	time-	varying	receiver	operating	characteristic	(ROC)	curve	analyses	were	performed	based	
on the risk values of the training and test data sets. Patients were divided into high- risk and low- risk groups based on the median MR- risk 
score in the training (A) and test sets (D). KM curves and time- dependent ROC analyses for overall survival (OS) prediction based on the risk 
score in the training (B, C) and test sets (E, F), respectively. High, high- Risk score; Low, low Risk score.



    |  7 of 14LI et al.

Additionally, increasing MR- risk score values indicate that the clin-
ical tumor staging classification tends to deteriorate with a higher 
possibility of tumor metastasis. We then classified the samples 
into high- risk and low- risk groups based on the median of MR- risk 
score. The regression analysis results are shown as a line chart 
(Figure 6D). To determine whether the prediction probability of 

the model is close to the empirical probability, we generated a 
calibration plot by using the predicted five- year and seven- year 
OS rates of CRC (Figure 6E). We also calculated the proportion of 
cancer metastasis in the high-  and low- risk score subgroups, with 
the results suggesting that the high- risk patients have a higher 
probability of metastasis (Figure 6F).

TCGA testing TCGA training p

n 80 318

futime (mean (SD)) 780.88 (890.88) 710.01 (685.21) 0.439

fustat = 1 (%) 12 (15.0) 58 (18.2) 0.606

age (mean (SD)) 68.90 (11.89) 66.74 (12.58) 0.166

gender = MALE (%) 35 (43.8) 176 (55.3) 0.083

stage (%)

Stage I 12 (15.0) 61 (19.2) 0.433

Stage II 3 (3.8) 23 (7.2)

Stage IIA 29 (36.2) 95 (29.9)

Stage IIB 1 (1.2) 8 (2.5)

Stage IIC 0 (0.0) 1 (0.3)

Stage III 1 (1.2) 13 (4.1)

Stage IIIA 1 (1.2) 5 (1.6)

Stage IIIB 9 (11.2) 42 (13.2)

Stage IIIC 11 (13.8) 18 (5.7)

Stage IV 10 (12.5) 35 (11.0)

Stage IVA 2 (2.5) 13 (4.1)

Stage IVB 0 (0.0) 2 (0.6)

unknow 1 (1.2) 2 (0.6)

T (%)

T1 2 (2.5) 7 (2.2) 0.367

T2 11 (13.8) 61 (19.2)

T3 62 (77.5) 209 (65.7)

T4 3 (3.8) 24 (7.5)

T4a 2 (2.5) 11 (3.5)

T4b 0 (0.0) 6 (1.9)

M (%)

M0 68 (85.0) 268 (84.3) 0.723

M1 11 (13.8) 39 (12.3)

M1a 1 (1.2) 8 (2.5)

M1b 0 (0.0) 3 (0.9)

N (%)

N0 46 (57.5) 198 (62.3) 0.143

N1 13 (16.2) 50 (15.7)

N1a 2 (2.5) 10 (3.1)

N1b 0 (0.0) 11 (3.5)

N1c 0 (0.0) 2 (0.6)

N2 18 (22.5) 36 (11.3)

N2a 0 (0.0) 5 (1.6)

N2b 1 (1.2) 6 (1.9)

TA B L E  2 The	Characteristics	of	
Patients in the Training and Test Sets.
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3.6  |  The immune infiltration performance of the 
model in the high- risk and low- risk groups

The tumor microenvironment is generally composed of a variety of 
complex components, such as fibroblasts, immune cells, extracel-
lular matrix, and a variety of growth factors that can promote cell 
growth. The microenvironment also contains cancer cells them-
selves, as well as related inflammatory factors that can promote 
tumorigenesis. The makeup of the tumor microenvironment has 
a significant influence on patient prognosis and clinical treatment 
decisions. Studying the association between the MR- Risk score 
and tumor immunoinvasion can further optimize the mechanistic 
effect of MR- Risk score on CRC prediction. The results show that 
the MR- risk score was positively correlated with M0 macrophages, 
Tregs, and naïve B cells, while negatively correlated with CD4 
memory resting T cells, eosinophils, neutrophils, and follicular 
helper T cells (Figure 7A– C). The correlation coefficient scatter 
plot of gamma delta T cells was not shown because the cell infiltra-
tion rate is too low to show a linear correlation between the two 

MR- risk score groups. To evaluate the possible sensitivity of the 
MR- risk score for immunotherapy, we examined the correlation 
between MR- risk score and immune checkpoint expression levels 
in tumor tissues (Figure 7D). Interestingly, we found a negative 
correlation between MR- risk score and gene expression for most 
immune checkpoints in cancer tissues. This suggests that when 
a patient has a higher risk value, fewer immune checkpoint mol-
ecules are expressed on the patient's tumor cells. Therefore, for 
patients with tumor metastasis, the use of novel immune check-
point inhibitors may not have a significant survival benefit.

3.7  |  Validation of metastasis- related gene 
expression and immune status in clinical samples

Next, we clinically selected three metastatic and three non- metastatic 
CRC patients to detect 14 metastasis- related genes in cancer tissues 
and adjacent tissue samples. For each gene expression value in the 
tumor tissue of each patient, the expression value of the patient's 

ASRGL1 Gene ID: 80150 F CCATCTCCAAGGATCGGAAGG

R GACGACAGCTCCCTCTACG

GSR Gene ID: 2936 F CACTTGCGTGAATGTTGGATG

R TGGGATCACTCGTGAAGGCT

ASAH1 Gene ID: 427 F AGATGTCATGTGGATAGGGTTCC

R GGGGCCAATATCTTGGTCTTG

BCL10 Gene ID: 8915 F GTGAAGAAGGACGCCTTAGAAA

R TCAACAAGGGTGTCCAGACCT

SNAI1 Gene ID: 6615 F TCGGAAGCCTAACTACAGCGA

R AGATGAGCATTGGCAGCGAG

TRIP10 Gene ID: 9322 F GAAAGAACGCACCGAAGTGGA

R TGGAGAATCTGTACGAAGGACTG

TSC22D3 Gene ID: 1831 F AACACCGAAATGTATCAGACCC

R TGTCCAGCTTAACGGAAACCA

LRRC8A Gene ID: 56262 F CCTGCCTTGTAAGTGGGTCAC

R CACAGCGTCCACGTAGTTGTA

PHF2 Gene ID: 5253 F CTCCCCTACGACGTTACCC

R CAGTGGTATATGTCGATGTCGG

SERPINE1 Gene ID: 5054 F ACCGCAACGTGGTTTTCTCA

R TTGAATCCCATAGCTGCTTGAAT

RNASET2 Gene ID: 8635 F GCGAGAAAATTCAAAACGACTGT

R CCTTCACTTTTATCGGGCCATAG

DNAJB2 Gene ID: 3300 F ATGGCATCCTACTACGAGATCC

R GAGAGCCTTGCGCCGATAC

UCHL1 Gene ID: 7345 F AATGTCGGGTAGATGACAAGGT

R GGCATTCGTCCATCAAGTTCATA

GAL Gene ID: 51083 F CCGGCCAAGGAAAAACGAG

R GAGGCCATTCTTGTCGCTGA

GAPDH Gene ID: 2597 F GGAGCGAGATCCCTCCAAAAT

R GGCTGTTGTCATACTTCTCATGG

TA B L E  3 RT-	PCR	primer	sequences
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adjacent tissue was used as a reference. The results show that genes 
positively correlated with risk values in the formula were significantly 
expressed in patients with metastatic CRC compared with those 
without metastasis (Figure 8A). To verify any changes in the immune 
microenvironment of metastatic CRC patients compared with non- 
metastatic CRC patients, we evaluated the changes of immune status 
in B and T cells using peripheral blood lymphocyte fine classifica-
tion in the patients above (Figure 8B). Proportion of T cell and B cell 
subsets were assessed by flow cytometry (Supplemental Table.S1). 
The results show a similar trend to the previous analysis of immune 
infiltration. In the peripheral blood of metastatic CRC patients with 
high- risk scores, compared with non- metastatic CRC patients, the 
functions of B and T cells were significantly weakened. This mani-
fested in an increased number of naïve immune cells (Naïve B cells 
and	Naïve	CD4 + T	cells)	without	killing	and	memory	functions.

4  |  DISCUSSION

Globally, CRC is one of the most common types of cancer, with 
1.9 million new cases and 0.9 million deaths in 2020.18 At present, 

metastasis remains the leading cause of death in CRC patients. 
Current diagnostic imaging tools, such as enhanced computed to-
mography (CT), positron emission tomography (PET), and magnetic 
resonance imaging (MRI) scans, can detect metastatic CRC lesions.19 
However, these methods have limited value because they cannot ef-
fectively identify early metastatic lesions. Considering these clinical 
challenges, it is necessary to develop metastasis- specific molecular 
markers and prediction models that can help predict the prognosis 
of CRC metastasis.

Our study constructed an innovative prognostic gene risk model 
based on 14 CRC metastasis- related genes by analyzing the DEGs 
between metastatic CRC and non- metastatic CRC cases and using 
Lasso regression. This conclusion was verified internally using the 
TCGA- COAD and GEO external datasets. After analyzing the ROC 
curve, the model is clearly superior to other clinical factors for pre-
dicting the survival rates of CRC patients.

Through GO and KEGG enrichment analyses of signaling path-
ways,20,21 we found that DEGs associated with metastatic CRC 
affect tumor immune- related Antigen processing and presenta-
tion (antigen processing and presentation), MHC protein complex 
binding (MHC protein complex binding), Primary immunodeficiency 

TA B L E  4 Gene	information

Gene Official Full Name URL

GAL galanin and GMAP prepropeptide https://www.ncbi.nlm.nih.gov/gene/51083

UCHL1 ubiquitin C- terminal hydrolase L1 https://www.ncbi.nlm.nih.gov/gene/7345

TRIP10 thyroid hormone receptor interactor 10 https://www.ncbi.nlm.nih.gov/gene/9322

SERPINE1 serpin family E member 1 https://www.ncbi.nlm.nih.gov/gene/5054

SNAI1 snail family transcriptional repressor 1 https://www.ncbi.nlm.nih.gov/gene/6615

BCL10 BCL10 immune signaling adaptor https://www.ncbi.nlm.nih.gov/gene/8915

GSR glutathione- disulfide reductase https://www.ncbi.nlm.nih.gov/gene/2936

PHF2 PHD finger protein 2 https://www.ncbi.nlm.nih.gov/gene/5253

DNAJB2 DnaJ heat shock protein family (Hsp40) member B2 https://www.ncbi.nlm.nih.gov/gene/3300

LRRC8A leucine rich repeat containing 8 VRAC subunit A https://www.ncbi.nlm.nih.gov/gene/56262

CST6 cystatin E/M https://www.ncbi.nlm.nih.gov/gene/1474

JAG2 jagged canonical Notch ligand 2 https://www.ncbi.nlm.nih.gov/gene/3714

ASAH1 N- acylsphingosine amidohydrolase 1 https://www.ncbi.nlm.nih.gov/gene/427

C4orf19 chromosome 4 open reading frame 19 https://www.ncbi.nlm.nih.gov/gene/55286

MOGS mannosyl- oligosaccharide glucosidase https://www.ncbi.nlm.nih.gov/gene/7841

GDI1 GDP dissociation inhibitor 1 https://www.ncbi.nlm.nih.gov/gene/2664

SNCG synuclein gamma https://www.ncbi.nlm.nih.gov/gene/6623

ASRGL1 asparaginase and isoaspartyl peptidase 1 https://www.ncbi.nlm.nih.gov/gene/80150

LEPROTL1 leptin receptor overlapping transcript like 1 https://www.ncbi.nlm.nih.gov/gene/23484

FDFT1 farnesyl- diphosphate farnesyltransferase 1 https://www.ncbi.nlm.nih.gov/gene/2222

CNOT7 CCR4- NOT transcription complex subunit 7 https://www.ncbi.nlm.nih.gov/gene/29883

TSC22D3 TSC22 domain family member 3 https://www.ncbi.nlm.nih.gov/gene/1831

TNK2 tyrosine kinase non receptor 2 https://www.ncbi.nlm.nih.gov/gene/10188

RNASET2 ribonuclease T2 https://www.ncbi.nlm.nih.gov/gene/8635

CPT2 carnitine palmitoyltransferase 2 https://www.ncbi.nlm.nih.gov/gene/1376

PGM2 phosphoglucomutase 2 https://www.ncbi.nlm.nih.gov/gene/55276

https://www.ncbi.nlm.nih.gov/gene/51083
https://www.ncbi.nlm.nih.gov/gene/7345
https://www.ncbi.nlm.nih.gov/gene/9322
https://www.ncbi.nlm.nih.gov/gene/5054
https://www.ncbi.nlm.nih.gov/gene/6615
https://www.ncbi.nlm.nih.gov/gene/8915
https://www.ncbi.nlm.nih.gov/gene/2936
https://www.ncbi.nlm.nih.gov/gene/5253
https://www.ncbi.nlm.nih.gov/gene/3300
https://www.ncbi.nlm.nih.gov/gene/56262
https://www.ncbi.nlm.nih.gov/gene/1474
https://www.ncbi.nlm.nih.gov/gene/3714
https://www.ncbi.nlm.nih.gov/gene/427
https://www.ncbi.nlm.nih.gov/gene/55286
https://www.ncbi.nlm.nih.gov/gene/7841
https://www.ncbi.nlm.nih.gov/gene/2664
https://www.ncbi.nlm.nih.gov/gene/6623
https://www.ncbi.nlm.nih.gov/gene/80150
https://www.ncbi.nlm.nih.gov/gene/23484
https://www.ncbi.nlm.nih.gov/gene/2222
https://www.ncbi.nlm.nih.gov/gene/29883
https://www.ncbi.nlm.nih.gov/gene/1831
https://www.ncbi.nlm.nih.gov/gene/10188
https://www.ncbi.nlm.nih.gov/gene/8635
https://www.ncbi.nlm.nih.gov/gene/1376
https://www.ncbi.nlm.nih.gov/gene/55276
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(primary immunodeficiency), and TNF signaling pathway. Antigen 
extraction and processing is an essential immune process for trig-
gering the T cell- mediated immune response.22 The main role of 
TNF is to regulate immune cells.23 The various functions of the 
DEGs in metastatic colorectal tumors cause significant changes to 
the specific recognition of tumors by T cells and production of an-
tibodies by B cells.

With the gradually increasing research on the tumor microen-
vironment and tumor immunity, new technologies and methods 
will be applied to the diagnosis and treatment of metastatic CRC.24 
According to this, we analyzed the infiltrating immune cells in the 
tumor tissues of high- risk and low- risk score patients. The results 
showed that when comparing the high and low model score groups, 
B cells and macrophages, the two antigen- presenting cells, were 
both immature and unable to drive the antigen presentation as 
usual. Memory CD4+ T cells can rapidly respond to secondary an-
tigen stimulation, quickly release the cytokines interferon γ (IFN- γ), 
interleukin 4 (IL- 4), IL- 5, and IL- 2, and divide rapidly.25 Among the 
infiltrated lymphocytes in the tumor tissues of patients with metas-
tasis, we found that CD4+ memory T cells were resting and could 
not effectively mediate an immune response. Combining the above 
prognostic analysis and GSEA analysis results, it is clear that patients 

with metastatic colorectal tumors have a high MR- risk score. The 
poor prognosis is potentially caused by the loss of normal functions 
of T and B cells.

In summary, we characterized immune cell infiltration in meta-
static CRC tissues: antigen- presenting cells were immature and un-
differentiated and auxiliary memory cells were in a resting state and 
could not exert secondary immune defense functions. Therefore, 
we further consider whether immune checkpoint inhibitors may play 
vital roles in such a situation. We found that the expression of im-
mune checkpoint genes in tumor cells of the high- risk score group 
were inhibited. This suggests that the immune checkpoint markers 
in tumor tissues of high- risk patients are reduced. The response of 
these patients to immunotherapy may not be obvious, which may be 
a possible reason for their poor prognosis.

To verify the reliability of our model, we then used the in situ 
carcinoma and adjacent tissues of metastatic or non- metastatic CRC 
patients to examine the expression of 14 metastasis- related genes. 
The tumor tissues of metastatic CRC patients had high expres-
sion levels of several genes in this panel. Additionally, to verify the 
changes in immune cell function in these patients, peripheral blood 
samples were subjected to a fine analysis of T and B cells. Consistent 
with our previous analysis, patients with metastatic colorectal 

F I G U R E  5 External	validation	of	the	performance	of	the	MR-	risk	score	model	in	the	Gene	Expression	Omnibus	(GEO)	dataset.	(A)	
Distribution of risk scores for the GEO dataset using the 14 metastasis- related genes in the prediction model. (B) The survival status of 
colorectal cancer (CRC) patients in the GEO dataset belonging to the high-  and low- MR- risk score groups. (C) Kaplan– Meier (KM) survival 
curves of patients in the two risk score groups. (D) Time- dependent receiver operating characteristic (ROC) curve for predicting survival 
time with area under the curve (AUC) values in the two risk score groups. Heat map of MR- risk score model for expression levels of 14 genes 
in the GEO (E) and TCGA- COAD datasets (F).
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F I G U R E  6 Fourteen	metastasis-	related	prognostic	features	associated	with	overall	survival	(OS)	in	colorectal	cancer	(CRC)	patients.	(A)	
Univariate Cox regression analysis showed that the clinicopathological data parameters in The Cancer Genome Atlas (TCGA) cohort were 
associated with OS in CRC patients. (B) Multivariate Cox regression analysis showed that the clinicopathological data parameters were 
associated with OS in CRC patients in the TCGA cohort. (C) Correlation analysis between MR- Risk score and pathological staging time and 
TNM staging time of CRC patients. (D) A nomogram of COAD 5 –  and 7- year survival rates combined with cancer metastatic gene profiles. 
(E) Calibration plot of the prognostic model. The y- axis is the actual OS rate and the x- axis is the predicted OS rate. (F) The proportion of 
cancer metastasis in the high-  and low- risk score subgroups.
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tumors had many B and T cells in the naïve state without normal 
immune functions. This partly explains why colorectal tumors tend 
to metastasize, but whether these alterations to immune cells are 
mediated by changes to the above 14 metastasis- related genes re-
quires further investigation.

5  |  CONCLUSIONS

We successfully established a CRC prognostic risk score model by 
analyzing genes specifically expressed in metastatic colorectal tu-
mors. This model can be used to predict the survival rates of CRC 

F I G U R E  7 The	immune	infiltration	performance	of	the	model	in	the	high-	risk	and	low-	risk	groups.	(A)	Comparison	of	infiltration	rates	of	
22 immune cell types in tumor tissues of the high-  and low- risk groups. (B) The correlation coefficient scatter plot showed the correlation 
between tumor immune cell infiltration and the MR- Risk score. (C) Immunocyte infiltration in tumor tissues with high and low prognosis 
scores. (D) Correlation between MR- risk score and immune checkpoint gene expression levels in tumor tissues.
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patients. We also preliminarily examined the immunology- based 
mechanisms controlling colorectal tumor metastasis. Poor prognosis 
may be affected by the loss of T and B cell functions and a main-
tained naïve state. These data may help guide CRC clinical practice 
and individualized treatment.
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