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CBR antimicrobials alter coupling between the
bridge helix and the b subunit in RNA polymerase
Anssi M. Malinen1, Monali NandyMazumdar2, Matti Turtola1, Henri Malmi1, Thadee Grocholski1,
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Bacterial RNA polymerase (RNAP) is a validated target for antibacterial drugs. CBR703 series

antimicrobials allosterically inhibit transcription by binding to a conserved a helix (b0 bridge

helix, BH) that interconnects the two largest RNAP subunits. Here we show that disruption of

the BH-b subunit contacts by amino-acid substitutions invariably results in accelerated

catalysis, slowed-down forward translocation and insensitivity to regulatory pauses. CBR703

partially reverses these effects in CBR-resistant RNAPs while inhibiting catalysis and

promoting pausing in CBR-sensitive RNAPs. The differential response of variant RNAPs to

CBR703 suggests that the inhibitor binds in a cavity walled by the BH, the b0 F-loop and the

b fork loop. Collectively, our data are consistent with a model in which the b subunit fine

tunes RNAP elongation activities by altering the BH conformation, whereas CBRs deregulate

transcription by increasing coupling between the BH and the b subunit.
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R
NA polymerase (RNAP) mediates synthesis of an RNA
copy of the template DNA—the first and often decisive
step in gene expression. All RNAPs transcribing cellular

genomes are multisubunit enzymes that share homologous
catalytic cores1,2. Bacterial RNAP, a five-subunit complex
aabb0o, is the simplest model system for studies of funda-
mental mechanistic properties of all multisubunit RNAPs and
a validated target for antibacterial drugs3.

The cycle of nucleotide incorporation by RNAP is governed by
alternate closure and opening of the active site by a b0 subunit
mobile domain called trigger loop (TL): catalysis of phospho-
diester bond formation involves an obligatory closure4,5, whereas
translocation along the DNA requires opening of the active site6.
RNAP also reversibly isomerizes into an off-pathway state that is
inhibitory for nucleotide addition. The off-pathway state, aka an
elemental pause7, is the precursor to all regulatory events during
transcription elongation, such as longer-lived pauses and
termination8–10. Long-lived pauses in turn function to
synchronize transcription and translation in prokaryotes11,12

and to recruit regulatory proteins to transcribing RNAP in all
domains of life13–15.

The structural rearrangements accompanying catalysis are
relatively well understood. The TL folding into a closed
conformation is dependent on the formation of a triple-helical
bundle with the b0 subunit bridge helix (BH), a long metastable a
helix that spans the active site cleft and moulds into a groove in
the b subunit4 (Fig. 1a). The stability of folded TL is also
modulated by its interaction with the b0 F-loop, an amino-
terminal extension of BH16. The structural rearrangements
associated with isomerization into the elemental pause remain
elusive owing to the transient nature of the state. It has been
suggested that this isomerization involves fraying of the RNA
30-end in the active site, kinking of the BH, opening of the b0

clamp domain and changes in the template DNA conformation in
the vicinity of the active site8,17–20.

RNAP active site structure evolved to achieve optimal balance
between catalytic efficiency, processivity and amenability to
regulation21. First, the stability of folded TL is tuned up to
permit both efficient catalysis and rapid translocation that require
folding and unfolding of TL, respectively. Second, the propensity
to isomerize into the elemental paused state is tuned up to permit
both efficient RNA chain elongation and the proper response to

regulatory signals. In this work, we present evidence that
conformational coupling between the b subunit and BH plays
an important role during elongation by RNAP. We also report
plausible structural models of CBR703 (N-hydroxy-N0-phenyl-3-
trifluoromethyl-benzamidine) series inhibitors22,23 bound in an
occluded pocket at the BH-b subunit interface and elucidate
mechanistic details of their antibacterial action.

Results
RNAPs with amino-acid substitutions at BH-b interface. To
gain insights into the mechanism of action of CBR-type antibiotics,
we performed the detailed analysis of elongation activities of five
RNAPs with substitutions at the BH-b subunit interface, the
anticipated binding site of CBRs (Fig. 1b). The BH b0F773V and
F-loop b0P750L were first identified in a genetic screen for alleles
resistant to CBR-type inhibitors22. b0F773V RNAP was later
characterized as pause and terminator resistant24 and has been
suggested to have altered translocation and fidelity25. The D-loop
bP560S,T563I (RpoB5101) RNAP was identified in an in vivo
screen as an enzyme with decreased termination26. The Fork loop
bV550A RNAP was designed to probe interactions of b0F773 with
the b Fork loop. The BH b0H777A RNAP was reported to have
relatively unaltered in vitro activity and mild in vivo growth defects
in a study by Jovanovic et al.27 Here we reevaluated b0H777A
properties to probe the clash between CBR703 and one of the
b0H777 conformers revealed by docking experiments (see below).

Most of experiments in this study were performed with wild
type and b0F773V RNAPs that also contained a BH b0N792D
substitution. The b0N792D substitution increased Escherichia coli
RNAP sensitivity to streptolydigin (STL)28 but did not detectably
affect the nucleotide addition and translocation rates as well as
translocation bias (this work), enabling us to use low con-
centrations of STL, which do not interfere with fluorescence
measurements, to bias RNAP forward in translocation studies.

We assembled variant RNAP transcription elongation com-
plexes (TECs) on chemically synthesized nucleic-acid scaffolds
containing fluorescent 6-methyl-isoxanthopterin (6-MI) base in
the template strand and used direct time-resolved translocation6

and nucleotide-addition29,30 assays to study the effects of
substitutions on RNAP translocation equilibrium, translocation
rates, catalytic activity and response to CBR703. We also
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Figure 1 | Binding site of CBR series inhibitors at the BH-b subunit interface. (a) An overview of the bacterial TEC. b (light blue) and b0 (wheat) are

depicted as semi-transparent surfaces, a and o (largely obstructed by b0) subunits are depicted as flat grey outlines. BH (orange), F-loop (orange),

TL (green—closed conformation, dashed light green—open conformation), RNA (red), template (black) and non-template (grey) DNA strands are depicted

as cartoons. Amino-acid residues altered in this study are depicted as spheres. A red arrow indicates the direction of the view in b. (b) CBR703 (sticks with

brown carbons and inset) docked at the BH-b subunit interface of E. coli RNAP (PDB 4IGC)37. The native amino-acid residues replaced by CBR703-

resistant and -sensitive (bP560S and b0H777A) substitutions are depicted as sticks. Cartoons and side chain’s carbons of b and b0 are coloured pastel blue

and orange, respectively. The outwards37,50,51 (opaque) and inwards52 (semi-transparent) facing conformers of E. coli b0His777 are shown. Green and

black-dashed lines depict polar and p-stacking interactions, respectively. Figure was prepared using PyMOL Molecular Graphics System, Version 1.6.0.0;

Schrödinger, LLC. The sources of atomic coordinates are listed in Supplementary Table 3.
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compared effects of these substitutions on RNAP response to a
regulatory pause site in the presence and absence of CBR703.

b0F773V and b0P750L backward bias translocation equilibrium.
All five variant RNAPs translocated forward following the
incorporation of the cognate GMP, as judged by increase in 6-MI
fluorescence. To assess the completeness of translocation, we
compared fluorescence intensities of TECs extended by rNMP
and 20dNMP. The 20dNMP-extended TECs are anticipated to
display higher level of fluorescence than the rNMP-extended
TECs unless the latter are fully post-translocated because 20 OH
group is essential for stabilizing the pre-translocated state6. The
20dNMP-extended b0F773V and b0P750L TECs displayed brighter
fluorescence than the rNMP-extended TECs (Fig. 2a and
Supplementary Fig. 1). In contrast, the fluorescence levels of
GMP- and 20dGMP-extended TECs formed by other RNAPs
were the same. Forward-biasing 30dNMP- and rNMP-extended
b0F773V and b0P750L TECs with the next incoming substrate
NTPs and their non-hydrolyzable analogues, respectively,
reported fluorescence levels similar to those of the 20dNMP-
extended TECs (Fig. 2a and Supplementary Fig. 1). We concluded
that the 20dNMP-extended b0F773V and b0P750L TECs are
nearly 100% post-translocated, whereas AMP- or GMP-extended
TECs contain B40% and CMP- or UMP-extended TECs contain
B70% of pre-translocated state. Overall, the above experiments
revealed that b0F773V and b0P750L RNAPs displayed a
measurable fraction of pre-translocated states, whereas other
RNAPs in our set were nearly 100% post-translocated.

b0F773V RNAP translocation is controlled by TL opening. We
employed two antibiotics with established modes of action,
tagetitoxin (TGT) and STL, to demonstrate that translocation of
b0F773V TEC is controlled by opening and closure of the active
site by the TL. TGT is a high-affinity pyrophosphate analogue
that backward biases RNAP by stabilizing the closed active
site6,31. Indeed, addition of saturating amounts of TGT to
rNMP-extended TECs reduced their fluorescence to the level of

non-extended TECs, which corresponds to the pre-translocated
state (Fig. 3). STL binds to the inner face of the BH and stabilizes
the open active site conformation, favouring the post-translocated
state28,32. Indeed, addition of saturating amounts of STL to
rNMP-extended TECs increased their fluorescence to the level of
20dNMP-extended TECs, which correspond to the post-trans-
located state (Fig. 2b). CBR703 also forward biased b0F773V
TECs in a concentration-dependent manner, although it was less
potent than STL and failed to quantitatively move the TECs into
the post-translocated state (Fig. 2b). Both STL and CBR703
forward biased wild-type RNAP, as evident from their ability to
offset the effect of TGT on translocation equilibrium (Fig. 2c).
The response of b0F773V RNAP to STL suggests that the shift of
translocation equilibrium towards the pre-translocated state in
this RNAP originates, at least in part, from an increased stability
of the folded TL. The ability of CBR703 to forward bias b0F773V
and wild-type RNAPs suggests that the inhibitor destabilizes the
folded TL.

Altered RNAPs have decreased forward translocation rate. We
performed parallel time-resolved measurements of nucleotide
addition and translocation for GMP (and CMP in case of
b0F773V RNAP) addition reactions. The forward and backward
translocation rates were inferred from a delay between nucleotide
addition and translocation curves using a reversible translocation
model, as described in Supplementary Methods. These analyses
revealed that RpoB5101 and bV550A substitutions reduced the
forward translocation rate to 30–40 s� 1 (from 60 s� 1 in wild-
type RNAP), whereas b0F773V and b0P750L substitutions
reduced the rate to 9 s� 1 (Fig. 3 and Supplementary Fig. 2).
The backward translocation rate was estimated at 6 s� 1

for GMP-extended b0F773V and b0P750L TECs and at 20 s� 1 for
CMP-extended b0F773V TEC (Fig. 3d), but did not measurably
contribute to the kinetics of fluorescence change in other RNAPs
and was fixed to zero during analyses. Whereas the 6 s� 1 rate
could be potentially masked by 60 s� 1 forward translocation rate
in wild-type RNAP (assuming 10% uncertainly in determination
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Figure 2 | Effects of CBR703 and substitutions at the BH-b subunit interface on translocation equilibrium. Top schematic describes the experimental

set-up. Best fit curves were simulated using parameters described in Supplementary Table 4. Fluorescence data were averaged over two to three

experiments. (a) b0F773V TECs display measurable fractions of the pre-translocated state. Fluorescence of rNMP (grey fill) and 30dNMP (pink fill)-

extended TECs normalized to the level of 20dNMP-extended TECs. White bars depict the effects of the next substrate NTP (pink outline) or its non-

hydrolyzable analogue (grey outline). Error bars are s.d. (b) CBR703 and STL forward-biased b0F773V RNAP sensitized to STL by the b0N792D substitution.

Left panel: GMP-extended TEC. Right panel: CMP-extended TEC. TGT (red) and STL (black) quantitatively move the TECs into pre- and post-translocated

states, respectively. CBR703 (orange) and cytidine-50-[(a,b)-methyleno]triphosphate (CMPCPP; blue) measurably forward bias the TECs. (c) STL and
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of equilibrium levels of fluorescence), the 20 s� 1 value strongly
suggests that b0F773V substitution increases backward translo-
cation rate. The shift of translocation equilibrium towards the
pre-translocated state in b0F773V RNAP thus originates from
both the decrease in forward and increase in backward translo-
cation rates. The decrease in BH mobility or bendability25 alone is
not sufficient to explain such observations, whereas stabilization
of the folded TL, in part as a consequence of less bendable BH,
satisfactory explains the observed effects.

Altered RNAPs are differentially sensitive to CBR703. We
investigated the effect of CBR703 on nucleotide addition and
translocation rates of variant RNAPs in the single nucleotide

addition assay. Preincubation of TECs with 100mM CBR703
lengthened nucleotide addition cycle twofold in the wild-type and
RpoB5101 RNAPs, had little effect on bV550A and facilitated the
completion of the cycle by b0P750L and b0F773V RNAPs twofold
(Fig. 3c). b0H777A RNAP was inhibited nearly 250-fold and is
discussed in a separate section (see below). At the level of indi-
vidual steps, nucleotide addition was unaffected or inhibited,
whereas forward translocation was marginally inhibited in wild-
type RNAP, unaffected in RpoB5101 and stimulated in bV550A,
b0P750L and b0F773V RNAPs (Fig. 3c). CBR703 also reduced
backward translocation rate of b0P750L TEC below the detection
threshold and marginally slowed-down backward translocation of
b0F773V TECs (Fig. 3d). The effect of CBR703 on translocation
rates of b0P750L and b0F773V RNAPs is consistent with its
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forward-biasing effect in the equilibrium assay (Fig. 2b) and
reinforces the hypothesis that inhibitor promotes the TL
unfolding. Consistently, with the results of single nucleotide
addition assays, CBR703 permitted rapid processive transcription
through the long template by b0F773V, b0P750L and bV550A
RNAPs (Fig. 4 and Supplementary Fig. 3). In contrast, tran-
scription by wild-type RNAP was significantly impeded by mul-
tiple pauses.

Altered RNAPs have reduced sensitivity to regulatory pause.
b0F773V and RpoB5101 RNAPs are among the least pause
responsive E. coli RNAPs hitherto characterized24. To find out
whether pause insensitivity is a general property of RNAPs with
substitutions at the BH-b subunit interface, we evaluated their
response to the hairpin-stabilized hisP pause element using a
standard single-round in vitro transcription assay33. We used the
pIA171 linear transcription template on which the hisP was
positioned downstream from a strong T7A1 promoter (Fig. 4).
On this template, radiolabelled transcription complexes can be
halted at position A29 when transcription is initiated in the
absence of UTP, with ApU dinucleotide, ATP, GTP and
a–[32P]CTP. The halted A29 complexes can then be chased on
addition of all four NTP substrates. We found that, similar to
b0F773V and RpoB5101 RNAPs characterized earlier24, b0P750L
and bV550A RNAPs were relatively resistant to the hisP pause

(Fig. 4 and Supplementary Fig. 3), suggesting that weakening
BH-b subunit contacts universally leads to insensitivity to
regulatory pauses. Strikingly, the sensitivity of b0F773V,
b0P750L and bV550A RNAPs to hisP pause was partially
restored in the presence of CBR703. The latter result suggests
that CBR703 promotes formation of native intermediates in the
pausing pathway.

In silico docking of CBRs at the BH-b interface. It has been
anticipated for some time that CBR-type compounds bind at the
BH-b subunit interface of E. coli RNAP near b’F773 based on
extensive set of in vivo selected CBR703- and CBR9379-resistant
mutations22. Here we used AutoDock Vina34 and GOLD35,36

programs, which rely on different algorithms and scoring
functions, to identify the binding sites for CBR703, CBR9379
and CBR9393 in E. coli RNAP holoenzyme crystal structure (PDB
4IGC)37. Both Vina and GOLD failed to identify a common
binding mode for the three inhibitors to rigid RNAP but robustly
recovered overlapping binding sites for CBR9379 and CBR9393
when b0Leu770 and b0Phe773 side chains were set flexible
(Supplementary Fig. 4). Moreover, Vina independently recovered
the same binding mode for CBR703 (Fig. 1b), a relatively
symmetric substructure of CBR9379.

In the resulting models, the structural moieties common for the
three CBRs are positioned in a spacious cavity walled by the BH,
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Fork loop and F-loop and interact with key residues implicated
in resistance to CBRs (Fig. 1b and Supplementary Fig. 4)
Trifluoromethyl group forms hydrogen bond with bArg637 and
interacts with aromatic p-system of b0Phe773. Trifluoromethy-
lated benzene ring stacks with b0Phe773 in an offset parallel
configuration, whereas the second benzene ring contacts
b0Pro750, b0Ile774 and bVal550. The N-hydroxyamidine
moieties interconnecting benzene rings in CBR703 and
CBR9379 interact with hydroxyl group and main chain carbonyl
of bSer642. Bulky substituents in position 4 (in CBR9393) and 5
(in CBR9379) of trifluoromethylated ring extend into b lobe,
form multiple van der Waals interactions with RNAP side chains
and hydrogen bond with bGlu611 (in CBR9393–RNAP complex)
and bPro552 main chain carbonyl (in CBR9379–RNAP complex)
accounting for higher potency of the larger CBRs (Supplementary
Fig. 4). The atomic coordinates of CBR703, CBR9379 and
CBR9393–RNAP complexes are provided as Supplementary
Data 1–3, respectively.

We noted that in Thermus thermophilus RNAP structures, the
orientation of the BH b0His1075 side chain is different from that
of the homologous b0His777 in the crystal structure of E. coli
RNAP holoenzyme that we used for docking experiments. The
b’His1075 side chain extends into the CBR703-binding cavity and
clashes with the unsubstituted aromatic ring of CBR703 (Fig. 1b).
This observation suggests that the E. coli b’His777 side chain may
alternate between the inwards and outwards facing conforma-
tions, interfering with CBRs binding in the former state. In
support of the docking model, the b’H777A substitution
increased E. coli RNAP affinity for CBR703 fivefold (Fig. 5).

CBR703 promotes TEC isomerization into an inactive state. All
assembled TECs that we characterized to date contain 5–25% of a
slow reacting TEC (1-2 s� 1)6. The slow fraction originates at or
before the nucleotide addition step, but is only well resolved in

translocation traces because of dense temporal sampling. We
noted that CBR703 increased the fraction of slow TEC in CBR-
sensitive (wild type and RpoB5101) but not CBR-resistant
(bV550A and b’F773V) RNAPs (Fig. 3 and Supplementary
Fig. 2). The increase in fraction of slow TEC is particularly
apparent in a set of translocation time curves of the wild-type
RNAP recorded at increasing concentration of CBR703 (Fig. 5a)
and becomes explicit when the CBR-hypersensitive b0H777A
RNAP is used (Fig. 5b). We found that the simplest kinetic model
consistent with the wild-type and b0H777A RNAPs data
postulates that the slow TEC is an inactive TEC in slow
equilibrium with an active TEC (Fig. 5c). Note that such
definition of a slow TEC matches the definition of a paused
TEC. The isomerization rate constants were also in the order of
those estimated for the elemental pause in single molecule
experiments9,38. The model predicts that CBR has a dual effect on
transcription: it slows down nucleotide addition twofold and
promotes isomerization of active TECs into inactive TECs.
A stronger effect of CBR703 on b0H777A RNAP originates from
changes in two distinct equilibriums: first, the substitution
increases CBR703-binding affinity fivefold; second, CBR703
increases bias towards the inactive state 38-fold in b0H777A
RNAP (Kiso¼ 0.26, Kiso

CBR¼ 10) but has only 2.5-fold effect in the
wild-type RNAP (Kiso¼ 0.35, Kiso

CBR¼ 0.83). The capacity of
CBR703 to promote TEC isomerization into an inactive state
inferred from single nucleotide addition experiments in Fig. 5 is
entirely consistent with the CBR703 effects on transcription
through the long template in Fig. 4 and Supplementary Fig. 3,
where CBR703 gradually halts b0H777A RNAP at multiple sites
and restores pause sensitivity of CBR-resistant RNAPs.

Discussion
Collectively, our data are consistent with the model where
disruption of the BH-b subunit contacts relaxes RNAP into a
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ground state characterized by the predominantly closed active
site, fast and error-prone catalysis, slow translocation and
insensitivity to regulatory pauses. b0F773V RNAP is a quintes-
sential example of such RNAP. In contrast, in the wild-type
RNAP, motions of the b subunit modulate on-pathway elonga-
tion and isomerization into off-pathway states (Fig. 6). Specifi-
cally, conformational coupling between the BH and b subunit
destabilizes BH–TL interactions in a controllable manner, thereby
fine tuning translocation and catalysis. Perhaps independently,
the b subunit–BH interactions also control the equilibrium
between the active and paused states of the TEC via the BH
anchor and switch 1 regions19,20,39,40.

From a structural perspective, decoupling from the b subunit
enables the BH to adopt its native helical conformation and to
form multiple interactions with the folded TL, thereby promoting
the active site closure. The lack of b-induced distortions in the
BH structure also diminishes transitions associated with pausing:
isomerization of template DNA strand and opening of the clamp
domain, which have been structurally linked to the distorted
BH20,41. In contrast, binding of CBR inhibitors fills the void at the
BH-b subunit interface and strengthens b subunit interactions
with the BH. As a result, the BH–TL interactions are weakened,
the folded TL is destabilized and catalysis is slowed down. The b
subunit also induces larger distortions in the BH conformation,
increasing RNAP propensity to isomerize into inactive state(s)
that kinetically resembles the natural intermediates of the pausing
pathway. The latter effect may play the major role in the
antibacterial action of CBR inhibitors. Whereas the threefold
decrease in elongation rate slows down bacterial growth, a small

increase in propensity to isomerize into the inactive state at each
sequence position increases the frequency of long-lived pause and
arrest events, ultimately leading to premature cessation of
transcription that is detrimental for cell viability. Similarly, we
hypothesize that deregulated transcription, rather than the slow
forward translocation rate, makes b0F773V and b0P750L
RNAPs inviable in the absence of CBRs22. Binding of CBR
inhibitors restores the coupling between the BH and b subunit in
these RNAPs, thereby restoring transcriptional regulation and
supporting viability of the mutant strains.

Methods
Proteins and reagents. DNA and RNA oligonucleotides were purchased from
IBA Biotech (Göttingen, Germany) and Fidelity Systems (Gaithersburg, MD, USA).
TGT was from Epicentre (Madison, WI, USA), CBR703 from Maybridge (Tintagel,
UK) and STL from Sourcon-Padena (Tübingen, Germany). Cytidine-50-[(a,b)-
methyleno]triphosphate and guanine-50-[(a,b)-methyleno]triphosphate were from
Jena Bioscience (Jena, Germany). RNAPs and yeast inorganic pyrophosphatase
were expressed and purified as described previously42,43. Plasmids are listed in
Supplementary Table 1. Template strand oligonucleotides and RNA primers are
listed in Supplementary Table 2. Schematics of all nucleic-acid scaffolds used in this
study are shown in Supplementary Fig. 5.

TEC assembly. TECs (1mM) were assembled by a procedure developed by
Komissarova et al.44 An RNA primer labelled with Atto680 fluorescent dye at the
50-end was annealed to template DNA, and incubated with 1.5 mM RNAP for
10 min at 25 �C in TB10D buffer (10 mM MgCl2, 40 mM HEPES-KOH pH 7.5,
80 mM KCl, 5% glycerol, 2.5% dimethylsulphoxide, 0.1 mM EDTA and 0.1 mM
DTT) and with 2mM of the non-template DNA for 20 min at 25 �C. For TECs used
in nucleotide addition measurements, RNA was the limiting component at 1 mM
and the template strand was used at 1.4 mM, whereas for TECs used in
translocation, the template strand was limiting at 1 mM and RNA was added at
1.4 mM.

Nucleotide addition measurements. To determine the incorporation efficiency of
NTP, 20 and 30dNTP substrates, 1 mM TEC in 20ml of TB10D buffer was incubated
for 10 min with 5 mM substrates at 25 �C and quenched by adding 80ml of loading
buffer (94% formamide, 13 mM Li4-EDTA and 0.2% Orange G). Time-resolved
measurements were performed in an RQF 3 quench-flow instrument (KinTek
Corporation, Austin, TX, USA). The reaction was initiated by rapid mixing of 14 ml
of 0.4 mM TEC with 14ml of 400 mM NTP. Both TEC and NTP solutions were
prepared in TB10D buffer and, where indicated, supplemented with 100 mM
CBR703. The reaction was allowed to proceed for 0.004–10 s at 25 �C, quenched
with 86ml of 0.5 M HCl and immediately neutralized by adding 171 ml of loading
buffer (290 mM Tris base, 13 mM EDTA, 0.2% Orange G, 94% formamide). RNAs
were separated on 16% denaturing polyacrylamide gels and visualized with
Odyssey Infrared Imager (Li-Cor Biosciences, Lincoln, NE, USA); band intensities
were quantified using ImageJ software45.

Translocation measurements. RNAP translocation was assayed by monitoring
changes in fluorescence of 6-MI base incorporated into template DNA6.
Equilibrium levels of fluorescence were determined by recording emission spectra
of 6-MI (excitation at 340 nm) with an LS-55 spectrofluorometer (Perkin Elmer,
Waltham, MA, USA) at 25 �C. The fluorescence at peak emission wavelength
(420 nm) was used for data analysis and representation. Preassembled TECs were
diluted at 50–100 nM into 500 ml of TB10D buffer, supplemented with 40 pM
pyrophosphatase in a Quartz SUPRASIL Macro/Semi-micro Cell (Perkin Elmer;
catalogue number B0631132) and the initial fluorescence was recorded. NTP
substrates (5mM) and RNAP inhibitors were then sequentially added into the
cuvette under continuous mixing and incubated for 5 min before taking each
reading. Time-resolved measurements were performed in an Applied Photophysics
(Leatherhead, UK) SX.18MV stopped-flow instrument at 25 �C. The reaction was
initiated by mixing 60 ml of 0.2 mM TEC with 60 ml of 400mM NTP. Both solutions
were prepared in TB10D buffer and, where indicated, supplemented with
0.4–250 mM CBR703. 6-MI fluorophore was excited at 340 nm and emitted light
was collected through 400 nm longpass filters. At least three individual traces were
averaged for each reported curve.

Single-round pause assays. TECs were formed for 15 min at 37 �C with 30 nM
linear PCR-generated pIA171 template and 40 nM RNAP holoenzyme in 20 mM
Tris-acetate, 20 mM Na-acetate, 2 mM Mg-acetate, 14 mM 2-mercaptoethanol,
0.1 mM EDTA and 4% glycerol, pH 7.9. To halt RNAP after the addition of A29,
synthesis was initiated in the absence of UTP, with 150 mM ApU, 5 mM ATP
and GTP, and 1 mM CTP supplemented with [a-32P]-CTP. For b0H777A enzyme,
ATP and GTP were used at 50 mM and CTP at 10 mM to allow for efficient
halted complex formation. Halted complexes were incubated with CBR703
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(or dimethylsulphoxide) for 3 min at 37 �C. Transcription was restarted by addition
of one-tenth volume of 100 mM GTP, 1.5 mM CTP, ATP and UTP, and
250mg ml� 1 rifapentin. Samples were removed at 7, 15, 30, 45, 60, 120, 180, 300
and 480 s and after a final 5 min incubation with 200 mM GTP (chase), and were
quenched by addition of an equal volume of 10 M urea, 50 mM EDTA, 45 mM
Tris-borate; pH 8.3, 0.1% bromophenol blue and 0.1% xylene cyanol. RNAs were
separated on 8% denaturing polyacrylamide gels and quantified using a Typhoon
FLA 9000 scanner (GE Healthcare), ImageQuant Software and Microsoft Excel.
Each assay was performed in triplicate.

Docking experiments. The three-dimensional structures of CBR703, CBR9379
and CBR9393 were built in Discovery Studio 3.5 (Accelrys, San Diego, CA, USA)
and optimized using Minimize Ligands protocol and CHARMM force field46. In
CBR703 and CBR9379 benzene rings interconnected by N-hydroxyamidine, moiety
were modelled in cis–configuration, whereas N-hydroxyamidine and carbamide (in
CBR9379) moieties were modelled planar with non-rotable C-N and C-O bonds.
In CBR9393, the bond between the benzene ring and a-nitrogen of
piperazinylethylamino group was set non-rotable, whereas ternary nitrogen of
piperazinyl moiety was protonated and positively charged during docking runs.
RNAP fragment comprising amino-acid residues within 20 Å from the putative
CBR-binding cavity (Supplementary Data 4) was extracted from E. coli RNAP
holoenzyme crystal structure (PDB 4IGC)37 and prepared for docking using
Prepare Protein protocol of Discovery Studio (for GOLD runs) and AutoDock
tools47 (for AutoDock Vina runs). GOLD 5.2 (refs 35,36) docking runs were
performed using LIGSITE-binding cavity detection algorithm48 and GoldScore
scoring function. AutoDock Vina 1.1.2 docking runs were performed in
25� 25� 18 Å3 search space centred at 130.9, 6.8, � 6.7 Å (coordinate space of
Supplementary Data 1–4) using default scoring function34.

Data analyses. Time-resolved nucleotide incorporation and translocation data
were simultaneously fit to a three-step model using the numerical integration
capabilities of KinTek Explorer software49 (KinTek Corporation). The model
postulated that the initial TEC16 slowly and reversibly interconverts between
inactive and active states and, on the addition of the NTP substrate, undergoes an
irreversible transition to TEC17, followed by irreversible translocation except for
b0F773V and b0P750L RNAPs where translocation was modelled as a reversible
process. Equilibrium titration data were fit to the dissociation equilibrium
equations that accounted for changes in concentrations of all reactants on complex
formation using Scientist 2.01 software (Micromath, Saint Louis, MO, USA). These
models are described in detail in Supplementary Methods.
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