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Abstract: The thermal and mechanical properties of biocomposites of poly(3-hydroxybutyrate-co-3-
hydroxyvalerate) (PHBV) containing 5 wt % of valerate units, with 20 wt % of potato pulp powder
were investigated in order (i) to obtain information on possible miscibility/compatibility between
the biopolymers and the potato pulp, and (ii) to quantify how the addition of this filler modifies the
properties of the polymeric material. The potato pulp powder utilized is a residue of processing for
the production and extraction of starch. The final aim of this study is the preparation of PHBV based
materials with reduced cost, thanks to biomass valorization, in agreement with the circular economy
policy, as result of the incorporation of agricultural organic waste. The results showed that the
potato pulp powder does not act as reinforcement, but rather as filler for the PHBV polymeric matrix.
A moderate loss in mechanical properties is detected (decrease in elastic modulus, tensile strength
and elongation at break), which regardless still meets the technical requirements indicated for rigid
packaging production. In order to improve the mechanical response of the PHBV/potato pulp powder
biocomposites, surface treatment of the potato pulp powder with bio-based and petroleum-based
waxes was investigated. Good enhancement of the mechanical properties was achieved with the
natural carnauba and bee waxes.

Keywords: bio-based polymers; natural fibers; biomass; biocomposites; fiber/matrix adhesion

1. Introduction

Biodegradable bio-based polymers, obtained from renewable resources, represent an important
alternative to petrol-derived non-degradable polymers. Thus bio-based polymers have become
an important issue both for academia and industry. Typical examples are poly(lactic acid) (PLA),
and polyhydroxylalkanoates (PHA), in particular polyhydroxylbutyrate (PHB) and its copolymers
poly(hydroxylbutyrate-co-valerate) (PHBV).

Polyhydroxyalkanoates are a wide family of polyesters, obtained by different bacteria cultivated
under stressful conditions, with properties quite similar to conventional plastics [1–3]. The
commercially marketed PHBV copolymers have good mechanical properties [4] and good resistance
to solubility in water [5]. PHB and PHBV are also highly biodegradable and biocompatible [6–8].
Unfortunately, the relatively high cost [3], compared to other biodegradable polymers such as PLA,
has somehow hindered research activity on the use of PHB and PHBV in commodity applications such
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as packaging and service items, and restricted their use to high-value applications, such as those in
medical and pharmaceutical sectors.

In order to achieve products with particular properties for different applications, biocomposites
can be utilized. Biocomposites are a special class of composite materials, obtained by mixing natural
fibers to bio-based polymers. Biocomposites represent an environmentally friendly and low-cost
alternative to conventional petroleum-derived materials. Their properties have been reviewed in
several books and articles [9–17]. The additional benefit offered by natural or bio-based fibers is that,
besides being biodegradable, they also exhibit a lower density, which makes biocomposites economical
and lightweight [18].

The mechanical performances of a fibers reinforced biocomposite result from both the matrix and
the fiber properties [19,20], and are strongly dependent on the fiber/matrix interphase [21]. The tensile
strength is more sensitive to the matrix/fiber adhesion, whereas the modulus depends in general
on both the matrix and the fiber properties. The percentage of fibers, their aspect ratio (length to
width ratio) and orientation, and the fiber–matrix adhesion are crucial elements responsible for the
final properties of natural fiber reinforced composites. The transmission of the applied stress to the
fibers occurs at the interface, which explains the necessity of a good matrix/fiber adhesion. Often
biocomposites made of hydrophobic polymers and hydrophilic natural fibers are characterized by
poor adhesion, which results in limited mechanical properties, due to the tendency of the fibers to
aggregate during processing. In addition, the hydrophilic nature of the lignocellulosic fibers usually
causes moisture absorption, which worsens processability and induces formation of porous products.
The fiber aspect ratio strongly influences the tensile modulus and the fracture properties. Fibers with
low aspect ratio and irregular shape in general behave as fillers, and not as reinforcement.

The poor compatibility between fiber and biopolymeric matrix can be improved by modifying the
fiber surface properties [17]. Physical and chemical methods can be utilized. Some physical treatments,
as for example stretching, can enhance the interface polymer/natural fibers, without changing the
chemical composition of the fibers. Plasma or corona treatment can induce compatibilization between
hydrophilic fibers and hydrophobic matrix, through formation of free radicals and surface cross-linking.
On the other hand, chemical methods utilize coupling agents to modify the surface composition of the
fibers, or chemical treatments to increase the surface roughness or to reduce the fiber hydrophilic nature.

Several types of natural fibers have been used to produce PHBV based biocomposites, for which
thermal and mechanical properties were investigated [8,22–27]. Organic wastes have also been
sometimes utilized as reinforcement or additives for different polymers [28]. Significant amounts of
organic wastes from industry and agriculture remain unutilized, so that the use of organic residue
materials in biocomposites can represent a sustainable method to produce materials for different
applications, characterized also by reduced cost, meeting even a circular economy approach.

Potato wastes are biomasses rich in starch and lignocellulosic constituents. After extraction of
starch, the potato pulp accumulates in high amounts—approximately 0.75 tons of pulp arises per ton
of purified starch. Within the European Union, about 140,000 tons of dried potato pulps are produced
annually in the starch industry [29]. The original potato pulp contains water up to about 90%, but
de-watering processes generally results in an increase in the dry matter up to about 90 wt %. Dried
potato pulp, which consists mainly of lignocellulosic fibers, starch and, at a lesser extent, of proteins,
can be used as filler for reinforcement of biopolymers. As the starch content that remains after potato
processing can be quite high, similar to that of the lignocellulosic fibers, the potato pulp powder can
be defined as a mixture of lignocellulosic fibers and starch, both with hydrophilic structure. The cost
of the potato pulp powder is low, which makes it even more interesting for industrial utilization [30].
Potato pulp powder has never been utilized to produce biocomposites with PHBV. In the present work,
biocomposites made of PHBV and 20 wt % of potato pulp powder have been produced by extrusion,
followed by injection molding, and characterized in terms of thermal, mechanical and morphological
properties. Preliminary tests indicated that potato pulp powder could be added and easily processed
with PHBV up to a percentage of about 20 wt %. Due to the high cost of PHBV, in order to investigate
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the cheapest formulation, in the present study the properties of the PHBV based biocomposite with
20 wt % of potato pulp powder were analyzed. To make the preparation of the biocomposite simpler,
a plasticizer, acetyl-tri-n-butyl citrate (ATBC) was used. ATBC is in general an efficient plasticizer of
PHAs [31]. It is derived from naturally occurring citric acid, is non-toxic and accepted for contact
with food [32,33]. In addition, in an attempt to improve the adhesion between PHBV and potato
pulp and reduce the tensions at the interface, in the present study fiber coating with bio-based and
petroleum-based waxes was employed and investigated.

2. Materials and Methods

2.1. Materials

Commercial grade polyhydroxyalkanoate (PHI002™) was supplied in pellets by Naturplast®

(Caen, France). The material is a copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)
with 5 wt % valerate content, characterized by a density of 1.25 g/cm3 and a melt flow index (190 ◦C,
2.16 kg) of 10–20 g/10 min.

The plasticizer acetyl-tri-n-butyl citrate (ATBC) was purchased from SigmaAldrich S.R.L.
(Milan, Italy).

The calcium carbonate (CaCO3) OMYACARB® was an inert filler supplied by the company OMYA
(Oftringen, Switzerland). The powder, which has fine granulometry with particle size distribution
centered at 12 µm, is used to facilitate the removal of the injection molded specimen from the mold.

The dried potato pulp (PP) powder was provided by the company (SüdStärke, Schrobenhausen,
Germany). The moisture content was about 3 wt %, and the composition of the dry matter: cellulose
16 wt %, hemicellulose 7 wt %, lignin 20 wt %, starch 25 wt %, pectin 17 wt %, proteins 7 wt %,
ash 5 wt %.

Wax-based additives Aquacer 561, Aquacer 581, Aquacer 593 and Hordamer PE 02 were provided
by BYK Additives & Instruments (Wesel, Germany). They are (i) non-ionic aqueous emulsions of bee
wax (Aquacer 591), (ii) non-ionic aqueous emulsions of carnauba wax (Aquacer 581), (iii) non-ionic
aqueous emulsion of a modified polypropylene wax (Aquacer 593), and (iv) anionic aqueous emulsion
of polyethylene (Hordamer PE 02).

2.2. Composite Preparation

Biocomposites of PHBV with potato pulp powder were prepared by adding 20 wt % of PP powder
to a polymeric matrix, constituted by the biopolymer PHBV, with concentration 85 wt %, the plasticizer
ATBC, with concentration 10 wt %, and CaCO3, with concentration 5 wt %. For comparison, pure
PHBV and the PHBV mixed only with the plasticizer ATBC were also processed in the same way.
For the preparation of the PHBV based biocomposites with potato pulp powder coated with natural
waxes, 20 mL of wax aqueous emulsion with concentration 5% w/v were added to 19 g of PP powder.
The mixture was carefully hand blended for sufficient long time. The PHBV based samples investigated
in the present study, with the relative composition, are listed in Table 1.

Table 1. Composition of the PHBV based matrix and biocomposites.

Potato Pulp Natural Wax

PHBV(100%) - -
PHBV(90 wt %)+ATBC(10 wt %)

PHBV(85 wt %)+ATBC(10 wt %)+CaCO3(5 wt %)
[PHBV(85 wt %)+ATBC(10 wt %)+CaCO3(5 wt %)](80 wt %) PP(20 wt %)
[PHBV(85 wt %)+ATBC(10 wt %)+CaCO3(5 wt %)](80 wt %) PP(19 wt %) Aquacer 561 (1 wt %)
[PHBV(85 wt %)+ATBC(10 wt %)+CaCO3(5 wt %)](80 wt %) PP(19 wt %) Aquacer 581 (1 wt %)
[PHBV(85 wt %)+ATBC(10 wt %)+CaCO3(5 wt %)](80 wt %) PP(19 wt %) Aquacer 593 (1 wt %)
[PHBV(85 wt %)+ATBC(10 wt %)+CaCO3(5 wt %)](80 wt %) PP(19 wt %) Hordamer PE (1 wt %)
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Before processing, PHBV and the PP powder, non-coated and coated, were dried at a temperature
of 60 ◦C for at least 24 h. The PHBV based matrix and biocomposites were prepared by using a MiniLab
II HAAKE Rheomex CTW 5, a co-rotating conical twin-screw extruder, which allows the mixing of
the different components. The molten materials were transferred from the mini extruder through a
preheated cylinder to a mini injection molder (Thermo Scientific HAAKE MiniJet II), which allows us
to prepare dog-bone tensile bars specimens to be used for thermal and mechanical characterization.
The dimensions of the dog-bone tensile bars were: width in the larger section: 10 mm, width in
the narrow section: 4.8 mm, thickness 1.35 mm, length 90 mm. The extruder operating conditions
adopted for all the formulations are reported in Table 2. After preparation, all the samples were stored
in a desiccator and analyzed the day after in order to avoid physical ageing effects on the physical
properties investigated.

Table 2. Operating condition use for the extrusion and injection molding process.
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2.3. Composite Characterization

The thermal stability of the potato pulp powder and selected samples was investigated by
thermogravimetric analysis (TGA), carried out on about 10 mg of sample by using a Perkin Elmer
TGA 7 (Waltham, MA, USA), under nitrogen flow (35 mL/min), at a heating speed of 10 K/min from
50 ◦C to 600 ◦C.

The morphology of the potato pulp powder and PHBV based matrix and biocomposites was
investigated by scanning electron microscopy (SEM) with an FEG-Quanta 450 ESEM instrument
(Waltham, MA, USA). The micrographs of samples fractured with liquid nitrogen and etched with
gold were collected. Backscattered electrons generated the images whose resolution was provided by
beam deceleration with a landing energy of 2 kV.

Differential scanning calorimetry (DSC) measurements were performed with a Perkin Elmer
Calorimeter DSC 8500 (Waltham, MA, USA) equipped with an IntraCooler III as a refrigerating system.
The instrument was calibrated in temperature with high purity standards (indium, naphthalene,
cyclohexane) according to the procedure for standard DSC [34]. Energy calibration was performed
with indium. Dry nitrogen was used as purge gas at a rate of 30 mL/min. The samples were analyzed
from −85 ◦C to 200 ◦C at the heating rate of 10 K/min.

Tensile tests on the samples prepared with the injection molder were performed at room
temperature, at a crosshead speed of 10 mm/min, by means of an INSTRON 5500 R universal testing
machine (Canton, MA, USA), equipped with a 10kN load cell and interfaced with a computer running
the Testworks 4.0 software (MTS Systems Corporation, Eden Prairie, MN, USA). At least five specimens
were tested for each sample in according to the ASTM D 638, and the average values reported.

3. Results and Discussion

3.1. Thermogravimetric Analysis of the Potato Pulp Powder, the PHBV Based Matrix and Biocomposites
[PHBV(85 wt %)+ATBC(10 wt %)+CaCO3(5 wt %)](80 wt %)+PP(20 wt %)

The thermal stability of the potato pulp PP was determined by means of the thermogravimetric
analysis under nitrogen flow, because the contact of the material with air is reduced in the extruder and
molder. Figure 1 shows the thermogravimetric curve of the PP powder, which reports the change in
weight according to a fixed temperature program. Due to thermal degradation of the fiber components
that occurs at high temperatures [35,36], a relatively low processing temperature is required to process
biocomposites containing natural fibers.
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Figure 1. Thermogravimetric curves of the potato pulp powder (PP), the PHBV based matrix and
biocomposite [PHBV(85 wt %) + ATBC(10 wt %) + CaCO3(5 wt %)](80 wt %) + PP(20 wt %) without
and with wax treatment at 10 K/min under nitrogen flow (estimate error: ± 0.2 weight %). The dotted
lines are the derivative of the weight % curves.

The initial weight loss, detected in Figure 1 at temperatures lower than 150 ◦C, is due to
water vaporization. The water content of PP is approximately 3 wt %. The weight residue that
is observed at high temperature is due to the carbon deposit that remains in the presence of an inert
atmosphere. Thermal degradation of PP takes place in the temperature range 200◦C–600 ◦C, and is
due to degradation of hemicellulose, which occurs mainly in the range 200◦C–350 ◦C, cellulose, which
is generally observed between 250 ◦C and 400 ◦C, and lignin, which starts at about 250 ◦C [35,36].
Starch degradation extends from approximately 300 ◦C to 350 ◦C [37], and proteins degradation from
200 ◦C to 400 ◦C [38].

From Figure 1 the potato pulp powder appears stable up to approximately 190 ◦C. This proven
thermal stability assures us that PP powder does not undergo substantial degradation during the
processing of the PHBV biocomposites at 180 ◦C, with the residence time at this temperature being not
longer than 1.5 min.

Figure 1 shows also the the thermogravimetric curves of the PHBV based matrix and biocomposite
with 20 wt % of PP without and with surface treatment of the potato pulp powder with waxes. The
thermal degradations of the PHBV based matrix occurs in a single step in a narrow temperature range.
The initial degradation temperature is located at about 300 ◦C, whereas the maximum degradation
rate is centred at about 315 ◦C, in agreement with previous studies [39,40]. The thermal degradation
of the biocomposites takes place in multiple steps, as cumulative process of the matrix and the filler.
Independently of the wax treatment, biocomposites start to degrade at about 190 ◦C, whereas the
maximum degradation rate shifts to around 280 ◦C. The temperature reduction of the main degradation
step with respect to the PHBV matrix could be ascribed to a combined degradation process of the
components, in the presence of the PP moisture [41]. As expected, the residue of the biocomposite at
600 ◦C is higher with respect to that of the PHBV based matrix, because of the lignocellulosic and starch
residues. The thermogravimetric curves also show that potato pulp powder is the last component to
undergo degradation.
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In conclusion Figure 1 reveals that the processing of the biocomposites at 180 ◦C does not
substantially affects the potato pulp powder structure, because the degradation of the biocomposite
starts at the same temperature as the original unprocessed potato pulp powder. It also shows that PP
powder can be used for the production of PHBV based biocomposites.

3.2. Scanning Electron Microscopy of the Potato Pulp Powder

Morphology of the potato pulp powder were investigated with scanning electron microscopy
(SEM). Figure 2 reports the relative SEM images. A quite homogeneous distribution of the pulp
fragments, which appear as small aggregates, can be observed. The aggregates are relatively large
(200 µm and more). The round shaped particles detected at 1200× magnification in the PP powder are
either starch or pectin, because they disappear after treatment with amylase and pectinase.
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Figure 2. SEM images of the PP powder at the magnifications indicated.

3.3. Thermal, Mechanical and Viscoelastic Properties of the PHBV Matrix

The thermal and mechanical properties of the PHBV matrix were investigated as preliminary step,
in order to better quantify the influence of the fibers on the material properties.

The specific heat capacity (cp) curves of PHBV, and PHBV mixed with (i) the plasticizer ATBC,
and (ii) with ATBC and the mineral filler CaCO3, measured at 10 K/min, are shown in Figure 3.
As described in the section Materials and Methods, the samples were processed for 1 min at 80 ◦C.

The glass transition of PHBV, which occurs in proximity of 5 ◦C, in agreement with literature
data [42], is scarcely visible due to the high crystallinity of the samples. For this reason, no appreciable
variation of Tg in the presence of (i) ATBC and (ii) ATBC and the mineral filler CaCO3 can been detected.
The glass transition is followed by an endothermic peak, centered around 60 ◦C, which was connected
to initial partial melting and enthalpy recovery of the rigid amorphous fraction [43]. The main melting
extends from approximately 120 ◦C to 180 ◦C, and shifts to slightly lower temperatures in the PHBV
samples mixed with the plasticizer ATBC and the mineral filler CaCO3, due to a lower perfection of
the PHBV crystal in the presence of additives [44]. A multiple melting behavior is exhibited by PHBV
after addition of ATBC, which proves that reorganization and recrystallization occur at higher extent
in the presence of the plasticizer, due to the enhanced mobility of the PHBV chains. Reorganization
and recrystallization events, which generally take place in semi-crystalline polymers at a relatively low
heating rate [45,46], have also been widely discussed and rationalized for the homopolymer PHB [47].
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Figure 3. Specific heat capacity (cp) of PHBV and PHBV mixed with (i) ATBC and (ii) ATBC and
the mineral filler CaCO3 at the concentrations indicated. The curves were obtained upon heating at
10 K/min after previous fast cooling to −85 ◦C. The ordinate values refer only to the bottom curve. All
the other curves are shifted vertically for the sake of clearness.

Table 3 lists the measured enthalpy of fusion (∆hm), normalized to the PHBV content, and the
crystalline weight fraction (wC) calculated from the ∆hm values divided by the enthalpy of fusion of
100% crystalline PHBV, assumed equal to that of the homopolymer PHB (∆hm

◦ = 143 J/g) [47]. The wC
value are found to increase in the presence of ATBC and further after addition of CaCO3, which means
that (i) the plasticizer, by enhancing the chain mobility, favors the crystal growth in PHBV, and that
(ii) the mineral filler acts as nucleating agent for PHBV.

Table 3. Enthalpy of fusion (∆hm), and crystalline weight fraction (wC) for PHBV and PHBV mixed
with (i) ATBC and (ii) ATBC and the mineral filler CaCO3 (estimated errors: ± 1 J/g for ∆hm, and
±0.02 for wC).

∆hm (J/g) wC

PHBV(100%) 92 0.65
PHBV(90 wt %)+ATBC(10 wt %) 97 0.68

PHBV(85 wt %)+ATBC(10 wt %)+CaCO3(5 wt %) 103 0.72

The mechanical properties of PHBV and PHBV after processing in the presence of (i) the plasticizer
ATBC, and (ii) the plasticizer ATBC and the mineral filler CaCO3 are summarized in Figure 4. PHBV
is a brittle polymer, with a high elastic modulus and tensile strength. The addition of the plasticizer
ATBC, as expected, modifies slightly the mechanical properties: the elastic modulus and the tensile
strength decrease, and, conversely, the elongation at break increases. Despite the slightly higher
crystallinity, which generally leads to an increase in the elastic modulus and in the tensile strength,
and a decrease in the elongation at break, in the presence of the plasticizer ATBC the intermolecular
forces between the PHBV chains become weaker, the mobility of the polymeric chains enhances, and a
decrease in strength and an increase in flexibility and ductility is produced. Similar behaviors were
reported for other PHBV plasticized systems [31,48,49]. The addition of the mineral filler CaCO3 has
negligible further effect on the mechanical properties of PHBV. Although mineral particles generally
act as stress concentrators, capable of initiating cracking and favoring specific and/or different fracture
mechanisms, the influence of these fillers on the mechanical properties of a polymer can be small if
present in low percentage. In this case, it can be assumed that the ‘perturbed’ polymer fraction around
each mineral particle is low compared with the “unperturbed” one.
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Figure 4. Elastic modulus, tensile strength and elongation at break of PHBV and PHBV mixed with
(i) ATBC and (ii) ATBC and the mineral filler CaCO3 at the concentrations indicated (estimated errors
from standard deviation for elastic modulus, and elongation at break: ± 10%; for tensile strength ± 5%).

3.4. Thermal and Mechanical Properties of the PHBV Based Biocomposites without and with Surface Treatment
of the Potato Pulp Power with Waxes

The thermal and mechanical properties of the biocomposite of PHBV with 20 wt % of PP powder
were investigated in order to quantify how the addition of these fibers modifies the structure of the
polymeric material. These data together provide information on possible miscibility/compatibility
between the PHBV and the potato pulp.

In an attempt to improve compatibility between PHBV and the potato pulp powder, some
bio-based and petroleum-based waxes were used as compatibilizers, through a fiber coating treatment.
The thermal and mechanical properties of the PHBV based biocomposites in the presence of
compatibilizers were also studied.

The specific heat capacity (cp) curves of the PHBV based matrix and biocomposites with PP
powder non-treated and treated with the waxes, measured at 10 K/min, are shown in Figure 5.
As described in the Materials and Methods section, all the samples were processed for 1 min at 80 ◦C.
The main melting process of the waxes, which is not visible in the cp curves due to their small amount,
is located at approximately 65 ◦C, 85 ◦C, 160 ◦C and 95 ◦C, for Aquacer 561, Aquacer 581, Aquacer 593,
and Hordamer PE, respectively.

Figure 5 shows that a multiple melting behavior is exhibited by the all the samples, which attests
to the occurring of reorganization and recrystallization processes upon heating. However, for the PHBV
based biocomposites the melting temperature of the first peak shifts to slightly lower temperatures,
due to a lower perfection of the PHBV crystals that grow in the presence of the potato pulp powder.

Table 4 lists the measured enthalpy of fusion (∆hm), measured from the cp curves plotted in
Figure 5, after normalization to the PHBV amount, and the crystalline weight fraction (wC) calculated
from the ∆hm values divided by the enthalpy of fusion of 100% crystalline PHBV (∆hm

◦ = 143 J/g) [47].
The wC value of the biocomposites containing fibers treated with the waxes are, within the experimental
error, very close to those of the PHBV matrix and formulations without waxes. This attests that the PP
powder, also after surface treatment with waxes, does not act as nucleating agent for the crystallization
of PHBV.
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Figure 5. Specific heat capacity (cp) of the PHBV matrix and biocomposites indicated in the legend. The
curves were obtained upon heating at 10 K/min after previous fast cooling to −85 ◦C. The ordinate
values refer only to the bottom curve. All the other curves are shifted vertically for the sake of clearness.

Table 4. Enthalpy of melting (∆hm), and crystalline weight fraction (wC) of PHBV based matrix and
biocomposites (estimated errors: ± 1 J/g for ∆hm, and ± 0.02 for wC).

∆hm (J/g) wC

PHBV(85 wt %)+ATBC(10 wt %)+CaCO3(5 wt %) 103 0.72
[PHBV(85 wt %)+ATBC(10 wt %)+CaCO3(5 wt %)](80wt %)+PP(20 wt %) 103 0.72

[PHBV(85 wt %)+ATBC(10 wt %)+CaCO3(5 wt %)](80 wt %)+PP(19 wt %)+Aquacer 561 (1 wt %) 103 0.68
[PHBV(85 wt %)+ATBC(10 wt %)+CaCO3(5 wt %)](80 wt %)+PP(19 wt %)+Aquacer 581 (1 wt %) 101 0.71
[PHBV(85 wt %)+ATBC(10 wt %)+CaCO3(5 wt %)](80 wt %)+PP(19 wt %)+Aquacer 593 (1 wt %) 101 0.71
[PHBV(85 wt %)+ATBC(10 wt %)+CaCO3(5 wt %)](80 wt %)+PP(19 wt %)+Hordamer PE (1 wt %) 101 0.71

The mechanical properties of the PHBV based matrix and biocomposites with PP powder
non-treated and treated with the bio-based and petroleum-based waxes are summarized in Figure 6.
The elastic modulus of the biocomposite containing non-treated PP is found to be smaller with respect
to the PHBV matrix, as well as the tensile strength and the elongation at break. The loss in the
mechanical properties cannot be ascribed to PHBV degradation in the presence of potato pulp, which
is supposed not to occur during processing at 180 ◦C for a short time, as discussed above. This
assumption is confirmed by a study that proved that the molar mass of the PHBV matrix and the
final mechanical properties of biocomposites with lignocellulosic fibers are negligibly affected by
processing at about 180 ◦C, also in the presence of a small amount of moisture [50]. The worsening of
the mechanical properties can be ascribed to the low aspect ratio of the potato pulp particles, so that
PP powder acts for PHBV as filler, and not as reinforcement. Poor adhesion between the PP powder
and the polymeric matrix is attested also by the lower tensile strength exhibited by the biocomposite.
In regards to the elongation at break of the biocomposite, it appears to be smaller than that of the
polymeric matrix because the dispersed filler particles act as stress concentrators. The incorporation
of the PP powder to PHBV inhibits the deformation, which leads to reduced ductility of the material.
Poor interactions are common in PHBV/lignocellulosic composites [39,51,52] and in PHBV/starch
blends [53], because lignocellulosic fillers and starch are strongly hydrophilic whereas the PHBV is
more hydrophobic.
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Figure 6. Elastic modulus, tensile strength and elongation at break of the PHBV based biocomposites
indicated in the legend (estimated errors from standard deviation for elastic modulus, and elongation
at break: ± 10%; for tensile strength ± 5%).

Figure 6 also reveals that the surface treatment of the fibers with waxes can improve the mechanical
properties. The best results are obtained by using the natural bio-based wax Aquacer 581. The elastic
modulus, the tensile strength and the elongation at break of the biocomposite with PP powder treated
with the carnauba wax (Aquacer 581) increase with respect to biocomposites with non-treated PP. This
proves that the matrix/fiber adhesion improves and that better interfacial interactions are established
between the polymer matrix and the potato pulp particles, which are made more hydrophobic by the
incorporation of the carnauba wax. The increased interaction results in an improved load and stress
transfer between the polymeric matrix and the filler.

The treatment of PP powder with the bio-based wax Aquacer 561 (bee wax) does not cause
significant changes in the elastic modulus and elongation at break of the biocomposite, although a
higher tensile strength proves a better adhesion between the polymeric matrix and the filler. Similar
effects on the mechanical properties of the PHBV biocomposite are provided by the surface treatment
of PP powder with the petroleum-based waxes.

3.5. Morphology of the PHBV Based Biocomposites without and with Surface Treatment of the Potato Pulp
Power with Waxes

A morphological characterization by SEM was performed on fragments of dog-bone specimens of
the PHBV matrix and biocomposites with PP powder non-coated and coated with natural waxes, with
the aim of investigating the dispersion of the PP particles and the adhesion between the polymer matrix
and the filler. Figure 7 shows that the topology of the pure PHBV matrix appears quite smooth and
without evident voids. In the PHBV based biocomposite containing 20 wt % of PP powder, the filler
particles appear well dispersed within the matrix and their distribution uniform, which means that
they were satisfactorily separated during the extrusion process. The micrograph at 1200x magnification
of the biocomposite [PHBV(85 wt %)+ATBC(10 wt %)+CaCO3(5 wt %)](80 wt %)+PP(20 wt %) clearly
shows that the interfacial adhesion between the PHBV matrix and the PP power is quite poor, because
the fiber appears pulled out. This explains the decrease in the tensile strength that is observed after
addition of the PP powder to the PHBV matrix (Figure 6).
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Figure 7. SEM images of the PHBV based matrix and biocomposites at the indicated magnification.

SEM observations on the PHBV based biocomposite after filler surface treatment with bee and
carnauba waxes (Aquacer 561 and Aquacer 581, respectively) indicate substantial differences with
respect to the untreated biocomposites. After filler coating, the fracture surface of the PHBV based
biocomposite appears to be locally continuous and smoother, indicating that the compatibility of the
matrix and the fibers is improved, which leads to better mechanical tensile properties, as previously
discussed (Figure 6). Thus the surface treatment of the PP powder with the natural bee and carnauba
waxes is proven to improve the wetting of the PHBV matrix, which results in a better PHBV/PP
powder adhesion. The better adhesion between PHBV and the potato pulp particles can be ascribed
to the composition of the bio-based Aquacer 561 and Aquacer 581 waxes. Both carnauba and bee
waxes are rich in esters and hydroxyl esters (approximately 50% and 15% in constituent composition,
respectively) [54,55], which can favor interactions with both the polymeric matrix and the hydrophilic
potato pulp powder, made mainly of lignocellulosic fibers and starch.
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4. Conclusions

The PP power utilized to produce biocomposites acts as filler, and not as reinforcement, for
the PHBV matrix. The loss in mechanical properties is however not very high: the elastic modulus
decreases by about 20% when the PP powder concentration is 20 wt %, with the result that this
biocomposite still presents properties valuable for practical applications. The adhesion between the PP
powder and the polymeric matrices is poor, as attested by the tensile strength, which has been found to
be smaller for the biocomposite with respect to the PHBV matrix. The decrease is of about 40% when
the PP powder concentration is 20 wt %. Also the ductility of the biocomposites is slightly smaller with
respect to that of the PHBV polymeric matrix, because the incorporation of the PP powder promotes
microcracks formation at the polymer/filler interface.

An interesting result obtained by the present study is that a simple surface coating of the PP
power with a bio-based wax, carnauba wax, can markedly improve the mechanical properties of the
PHBV based biocomposite. Adhesion between the polymeric matrix and the filler improves also when
another natural wax, bee wax, is used as surface coating of the PP powder. The use of bio-based waxes
does not hinder biodegradability: on the contrary it allows to maintain a high content of bio-based
components in the biocomposites.

In conclusion PP powder, which is an organic waste from the production and extraction of starch
and no-food competition biomass, can be suitable for processing in the melt with the bio-based and
biodegradable PHBV, presenting no main problems in processing. Due to the low aspect ratio of the
PP powder, there is not a reinforcing effect on the polymeric matrix, but rather a moderate loss in
mechanical properties that anyway still meet the technical requirements indicated for rigid packaging
production. All the components of the biocomposites, including the natural waxes, are in the list
of food contact approved substances, thus even food packaging application can be considered. The
addition to PHBV of potato pulp powder up to about 20 wt % offers the possibility to reduce the cost
of the final products, considering the relatively high cost of this polymer, and to make available the
utilization and valorization of an abundant agro-food biomass such as potato pulp, according to the
principles of the circular economy.
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