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Germline pathogenic mutations in BRCA1 increase risk of developing breast cancer. Screening for mutations in BRCA1
frequently identifies sequence variants of unknown pathogenicity and recent work has aimed to develop methods for
determining pathogenicity. We previously observed that tumor DNA methylation can differentiate BRCA1-mutated from
BRCA1-wild type tumors. We hypothesized that we could predict pathogenicity of variants based on DNA methylation profiles
of tumors that had arisen in carriers of unclassified variants. We selected 150 FFPE breast tumor DNA samples [47 BRCA1
pathogenic mutation carriers, 65 BRCAx (BRCA1-wild type), 38 BRCA1 test variants] and analyzed a subset (nD54) using the
Illumina 450K methylation platform, using the remaining samples for bisulphite pyrosequencing validation. Three validated
markers (BACH2, C8orf31, and LOC654342) were combinedwith sequence bioinformatics in amodel to predict pathogenicity of
27 variants (independent test set). Predictions were compared with standard multifactorial likelihood analysis. Prediction was
consistent for c.5194-12G>A (IVS 19-12 G>A) (P>0.99); 13 variants were considered not pathogenic or likely not pathogenic
using both approaches. We conclude that tumor DNA methylation data alone has potential to be used in prediction of BRCA1
variant pathogenicity but is not independent of estrogen receptor status and grade, which are used in current multifactorial
models to predict pathogenicity.

Introduction

Breast cancer remains the most diagnosed cancer in women,
with an overall incidence in the UK of 1 in 8 (http://www.cancer-
researchuk.org/cancer-info/cancerstats/). Fortunately, advances
in treatment and screening have resulted in reduced mortality
rate.1 We now understand that breast cancer is a heterogeneous
disease, with different individuals benefiting from different treat-
ments depending on hormone receptor expression and genetic
mutations. Distinct novel molecular subgroups have been identi-
fied using a wide array of technologies, suggesting the need for
novel therapies targeting specific molecular alterations.2,3 A
minority of breast cancers (5-10%) is considered hereditary, and
approximately a quarter of these are due to germline mutations
in known cancer susceptibilities genes, including BRCA1
(OMIM# 113705) and BRCA2 (OMIM# 600185).4 Families
presenting with multiple breast cancer cases and families with

early onset ovarian cancer are currently tested by sequencing these
two genes, and this informs clinicians in the management of indi-
vidual treatment, and decisions concerning screening, chemopre-
vention or prophylactic surgery for unaffected mutation carriers.
Both triple negative tumors and BRCA1 germline mutated
tumors are significantly enriched in the basal subtype, which is
associated with poor prognosis. Current estimates suggest that up
to 15% of triple negative tumors are BRCA1 germline mutation
carriers.5,6

BRCA1 variants that are considered pathogenic mutations
include those leading to protein truncation or mRNA degra-
dation, and risk-associated missense alterations affecting pro-
tein function accompanied by clinical evidence of
pathogenicity. However, there are also a considerable number
of BRCA1 variants of uncertain clinical significance (>500
different variants7) namely missense variants with undeter-
mined effect on function or risk, small insertions or
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deletions, or alterations in noncoding sequence. Attempts to
classify these unclassified variants have utilized a range of
analyses. Segregation data can be used to identify if a variant
tracks with disease within a family; however, this is difficult
to apply to some variants since they are individually rare.8 In
silico approaches have been used to examine sequence evolu-
tionary conservation predicting the effect of specific amino
acid substitutions9 and potential splicing alterations.10 A mul-
tifactorial model has been developed to integrate these differ-
ent data together, starting with an empirical prior probability
based on bioinformatics predictions and incorporating likeli-
hood ratios derived from independent data sources to gener-
ate a posterior probability of pathogenicity.8 The advantages
of using this approach are that it incorporates all available
information from multiple data types in a single analysis with
a numeric output and allows for the addition of extra data.11

The posterior probability generated can then be used to clas-
sify the variant into 1 of 5 classes: Class 1 (probability
<0.001) – non pathogenic, or of no clinical significance;
Class 2 (probability 0.001-0.049) – likely non pathogenic or
of little clinical significance; Class 3 (probability 0.05-0.949)
– uncertain; Class 4 (probability 0.95-0.99) – likely patho-
genic; Class 5 (probability >0.99) – definitely pathogenic.12

We have previously shown that breast tumors from patients
with pathogenic germline BRCA1 mutations have distinct DNA
methylation profiles compared to familial breast cancer cases
with no BRCA1 or BRCA2 mutations (BRCAx).13 In this previ-
ous study, 81.3% of tumors with germline mutated BRCA1 were
correctly predicted using a support vector learning machine

approach based on DNA methylation data. The methylation pro-
files of BRCAx tumors are very similar to those of sporadic breast
cancers.14 The present study aimed to assess the DNA methyla-
tion of both published candidate genes and novel regions that
differ between tumors from germline BRCA1-mutation carriers
(referred to as BRCA1 tumors) and tumors from BRCAx families
(germline BRCA1-wild type), with the goal of providing an addi-
tional tool useful for the classification of unclassified BRCA1
variants.

Results

DNA methylation of prior candidate genes is dependent on
estrogen receptor (ER) status

Candidate regions were identified from previous data13,14 in
which DNA methylation levels were significantly different
between tumors of BRCA1-mutation carriers and those of
BRCAx individuals (Table S1). Twelve candidate regions were
analyzed in bisulphite converted DNA from 150 tumors
(BRCA1, BRCAx and BRCA1 test variant) by pyrosequencing.
We validated the expected difference between BRCA1 and
BRCAx tumors for 6/12 candidate regions, observing lower
median methylation in BRCA1 tumors for five candidate regions
[CD9 (OMIM# 143030), SGK1 (OMIM# 602958), ERCC3
(OMIM# 133510), and 2 regions in FGF2 (OMIM# 134920),
wilcoxon rank sum test, P<0.05] and significantly higher meth-
ylation in BRCA1 tumors for one gene [CD40 (OMIM#
109535), PD0.02] (Table S1). Logistic regression analysis

showed that methylation status was sig-
nificantly associated with BRCA1 muta-
tion status (Table S1). Since ER status is
a known predictor of BRCA1 mutation
status [local recurrence (LR) ranging
from 0.08-0.90 for ER-negative status,
dependent on grade],15 we assessed
whether differences observed in methyla-
tion between BRCA1 and BRCAx
tumors in the remaining five candidate
regions of interest were independent of
these known histopathological predic-
tors. Using a generalized linear model
we showed that methylation differences
observed in these five regions were asso-
ciated with ER status (P-value <0.05)
(Table S1). ER status and mutation sta-
tus are highly associated in this dataset
[generalized linear model (glm) P-value
D 4.31 £ 10¡7], and none of the five
candidates were significantly indepen-
dent from ER status, indicating that
they should not be used in conjunction
with existing pathology LRs15 in multi-
factorial modeling for prediction of vari-
ant pathogenicity. In light of these
findings, further analyses considering

Figure 1. Study Design. (A) Representation of the exonic position of the known mutations in the
BRCA1 gene used in this study, including pathogenic (missense and truncating) and test variants.
Some variants are represented by multiple tumors. (B) Flow diagram illustrating study design. Rect-
angular boxes indicate samples, hexagonal boxes represent experimental processes, and diamond-
shaped boxes denote bioinformatics processes or analysis.
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grade, another predictor of mutation sta-
tus, were not pursued.

Genome-wide analysis identifies
novel differentially methylated loci that
define BRCA1 mutation status

The overall study design is shown in
Figure. 1A-B. The Illumina HumanMety-
lation 450 (450K) BeadChip array has suc-
cessfully been used to assess DNA
methylation in formalin-fixed, paraffin-
embedded (FFPE)-derived DNA samples
using appropriate quality control and resto-
ration methods.16 We selected 60 samples
[BRCA1 pathogenic variants (nD20),
BRCAx (nD20), and BRCA1 test variant
(nD20)] for array analysis, of which 54
(90%) samples passed quality control
[BRCA1 pathogenic (18/20), BRCAx (19/
20), BRCA1 test variant (17/20)]; 482351/
485577 (99.3%) probes passed quality con-
trol (QC). TheWilcoxon rank sum test was
used in three analyses to identify (i) probes
with significant differences between tumors
from patients with germline BRCA1muta-
tions and tumors from BRCAx cases [false
discovery rate (FDR) q<0.05, nD250
probes]; (ii) probes with significant differ-
ences between ER positive tumors and ER
negative tumors (FDR q<0.05, nD55148
probes); and (iii) probes with significant
differences between low grade (Grades 1
and 2) and high grade (Grade 3) tumors
(FDR q<0.05, nD29 probes). Using a
Venn diagram we show that 23 probes
were apparently unique to the mutation
class analysis (Fig. 2A). Probes with an
absolute methylation difference between
groups of less than 5% were excluded, leav-
ing 18 probes with a range of absolute dif-
ference in methylation between 5% and
30%. We used consensus clustering of the
array data using the 18 selected probes that
differentiated BRCA1 pathogenic tumors
from the BRCAx tumors to determine with which cluster each of the
BRCA1 test variant tumors clustered. This method confirmed only
two tumor clusters based on these data (Fig. 2B) and found nine
BRCA1 test set variant tumors clustered with pathogenic BRCA1
mutated tumors, and eight BRCA1 test set variant tumors clustered
with BRCAx tumors.(Fig. 2C)

Pyrosequencing assays were designed for these 18 loci, and opti-
mized for 16. Methylation analysis of these regions was conducted
for 150 FFPE samples (54 matched to the array, the 90 independent
samples, and the 6 that did not pass array QC criteria). Intraclass cor-
relation coefficients (ICC) of assays were calculated to compare the
b values obtained from the array to pyrosequencing values for

matched samples, and the Wilcoxon rank sum test used to validate
the difference between the BRCA1 mutated and BRCAx group in
the independent samples (Table 1). A significant difference
(P<0.05) between BRCA1 samples and BRCAx samples was
validated for 5 loci [450K probe IDs cg24667115 (BACH2
OMIM# 605394), cg03029255 (C8orf31), cg02502358
(LYRM9), cg21645762 (LOC654342) and cg12472473
(chr13q34)] in the independent group of samples.

However, the cg12472473 (13q34) locus harbored a
CG>TG SNP with a minor allele frequency (MAF) of 0.2
within the CpG dinucleotide of interest, and pyrosequencing
genotyping showed that the T genotype was overrepresented in

Figure 2. Methylation array (450K) analysis defines pathogenic and neutral variants. (A) Venn
diagram representing the comparison of significant probe lists (FDR <0.05), showing 23 probes only
significant in the mutation status analysis. (B) Consensus clustering using 18 probes with a difference
in methylation between BRCA1 mutated and BRCAx greater than 5% identified two main clusters, as
shown by kmeans plot. (C) The resulting correlation matrix from these two clusters shows that these
clusters correlate with mutation status. Unclassified variants in green clustered with either the BRCA1
tumors or the BRCAx tumors.
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the BRCAx group (chi squared test, P<0.05). This region was
therefore excluded from further analysis. The technical and bio-
logical validation of the four loci is shown in Figure 3. Further,
despite selecting array probes that apparently predicted mutation
status independent of ER and grade status (see Fig. 2), logistic
regression analysis of the pyrosequencing data showed that
probes cg24667115 (BACH2) and cg02502358 (LYRM9) were
not independently associated with mutation status when ER sta-
tus was also included in the model (Table 2). Additionally, there

was evidence that methylation status of cg02502358 (LYRM9),
cg24667115 (BACH2) and cg21645762 (LOC654342) were cor-
related with grade, although this analysis was based on approxi-
mately half of the individuals, for which we had information on
all variables, which reduces the statistical power of the analysis.

As for candidate region analysis described above, these find-
ings suggest that the majority of methylation probes that are asso-
ciated with mutation status are, in fact, not independent of ER or
grade. Thus, with the exception of cg03029255 (C8orf31), the

Figure 3. Validation of LYRM9, BACH2, LOC654342, and C8orf31 loci. (A) Strip charts show array b values for the four validated loci plotted by muta-
tion status. Blue dotted line is plotted at the median of BRCA1 and BRCAx samples. ER negative samples are colored red, ER positive samples are colored
blue, and those samples for which ER status is unknown are colored green [BRCA1 (nD18), BRCAx (nD19), BRCA1 test variant (nD17), except BACH2,
where BRCA1 nD17]. (B) Strip charts showing the pyrosequencing methylation value of the independent group of samples validating the difference
observed on the array [LYRM9:BRCA1 (nD19), BRCAx (nD29), test variant (UV) (nD11); BACH2:BRCA1 (nD19), BRCAx (nD27), test variant (UV) (nD18);
C8orf31: BRCA1 (nD16), BRCAx (nD11), test variant (UV)(nD20). LOC654342:BRCA1 (nD9), BRCAx (nD18), test variant (UV) (nD7)].

Table 2. Logistic regression analysis of candidate genes.

Assay Logistic Regression P values Number of samples
included in logistic regression*

mut~meth mut~meth+ER mut~meth+ER+grade

Meth ER meth ER grade

BACH2 0.0265 0.0607 0.0002 0.0848 0.0131 0.0976 61
C8orf31 0.0003 0.0063 0.0101 0.0131 0.0866 0.3721 48
C17orf108 0.0166 0.1010 0.0002 0.1145 0.0495 0.0146 49
LOC654342 0.0038 0.0301 0.0043 0.0829 0.0645 0.0516 37

*only samples with complete data (methylation, ER status, and grade) were used in these logistic regressions

www.tandfonline.com 1125Epigenetics



markers identified in this study should not be used in conjunc-
tion with existing ER and grade LRs in multifactorial likelihood
prediction of variant pathogenicity.

Predictive capacity of different methylation markers of
mutation status

Pearson’s correlation coefficient was calculated for the pyrose-
quencing data of each locus against the others, and the R2 value
for all comparisons was less than 0.2, indicating a low extent of
correlation [R2 (BACH2 vs. C8orf31) D 0.0436, R2 (BACH2 vs.
LOC654342) D 0.1719, R2 (BACH2 vs. LYRM9) D 0.0207, R2

(C8orf31 vs. LOC654342) D 0.1935, R2 (C8orf31 vs. LYRM9)
D 0.0953, R2 (LOC654342 vs. LYRM9) D 0.0356].

The b values at these four loci were converted to z-scores and
combined in a logistic regression model. Due to missing data for
some of these markers, there were not enough data points to fit a
model to more than three markers. LYRM9 was therefore

removed from the model. Using the Leave One Out Cross Vali-
dation (LOOCV) method based on methylation data of the three
remaining markers alone, 32 out of 37 samples are correctly pre-
dicted (86%). The pyrosequencing methylation data was also
converted to z-scores, and the combined logistic regression model
correctly predicted 78 out of 97 [80% (positive predictive value
D76%), (negative predictive value D79%)] of samples with
known mutation status using only methylation data.

The logistic regression model including methylation of the
three validated loci was used to predict all tumor samples
from test set variant carriers based on methylation alone, and
results were compared to current classification based on other
evidence including ER and grade among other variables
(Table 3). To represent these predictions for all samples
based on their methylation, included those of known patho-
genicity, likelihood ratios (mLRs) were calculated using the
probability values generated by the prediction model

Table 3. Combined summary predictions of all unknown variants analyzed.

Number
of tumors

Number of
independent
tumors* HGVS Nuc HGVS Prot

Prior
probability

Current posterior
probabilityy

Current
Classificationy

Posterior
probability
using methylation
only

Classification
using
methylation
only

3 3 c.1486C>T p.Arg496Cys 0.02 0.00089 Class 1 0.00009 Class 1
3 2 c.2521C>T p.Arg841Trp 0.02 2.29E-12 Class 1 0.0005-0.00006 Class 1
3 3 c.4963T>C p.Ser1655Pro 0.03 1 Class 3 0.39565 Class 3
2 1 c.4103C>T p.Ala1368Val 0.02 0.00163 Class 2 0.010-0.004 Class 2
2 1 c.823G>A p.Gly275Ser 0.02 0.00427 Class 2 0.002-0.006 Class 2
2 2 c.5194-12G>A IVS 0.34 0.99999 Class 5 0.99638 Class 5
2 2 c.4039A>G p.Arg1347Gly 0.02 2.04E-12 Class 1 0.00967 Class 2
1 1 c.641A>G p.Asp214Gly 0.02 0.07426 Class 3 0.00065 Class 1
1 1 c.1984_1992del p.His662-

Arg664del
0.02 0.06058 Class 3 0.04922 Class 2

1 1 c.2912A>G p.His971Arg 0.02 0.00025 Class 1 0.03682 Class 2
1 1 c.203T>G p.Ile68Arg 0.66 1 Class 3 0.01215 Class 2
1 1 c.4185+9C>T IVS 0.02 0.00232 Class 2 0.00258 Class 2
1 1 c.4484+2_4484

+3ins8
IVS 0.97 0.98991 Class 4 0.97881 Class 4

1 1 c.4485-8C>T IVS 0.04 1 Class 3 0.00884 Class 2
1 1 c.5467+5G>C IVS 0.34 0.19022 Class 3 0.13048 Class 3
1 1 c.593+16C>G IVS 0.02 1 Class 3 0.14272 Class 3
1 1 c.454C>T p.Leu152Phe 0.02 1 Class 3 0.00016 Class 1
1 1 c.4991T>C p.Leu1664Pro 0.03 1.18E-05 Class 1 0.22327 Class 3
1 1 c.1534C>T p.Leu512Phe 0.02 0.00014 Class 1 0.28730 Class 3
1 1 c.4955T>A p.Met1652Lys 0.66 1 Class 3 0.96673 Class 4
1 1 c.3708T>G p.Asn1236Lys 0.02 1 Class 3 0.01645 Class 2
1 1 c.1036C>T p.Pro346Ser 0.02 0.00427 Class 2 0.00046 Class 1
1 1 c.2180C>T p.Pro727Leu 0.02 0.00017 Class 1 0.00352 Class 2
1 1 c.5096G>A p.Arg1699Gln 0.66 Intermediate risk - based

on segregation
analysis (Spurdle et al.,
2015)

0.97998 Class 4

1 1 c.5284A>G p.Arg1762Gly 0.03 1 Class 3 0.00247 Class 2
1 1 c.551C>T p.Ser184Phe 0.02 1 Class 3 0.01149 Class 2
1 1 c.1423A>T p.Ser475Cys 0.02 0.00395 Class 2 0.02111 Class 2

*only tumors from different individuals can be considered independent
ybased on segregation analysis alone (Arg1699Gln) or multifactorial likelihood analysis incorporating segregation, pathology, and other data points (see
supplementary Table S2)
1combined LR does not pass thresholds recommended as per ENIGMA BRCA classification guidelines (http://www.enigmaconsortium.org/), namely LR of
<0.5 (to reach final Class 2 or 1), or >2.0 (to reach final Class 4 or 5) and so should be considered Class 3 (uncertain).
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(probability of pathogenicity divided by 1
minus the probability of pathogenicity, shown
in Tables S2 and S3), and the log of these val-
ues was plotted (Fig. 4). This indicates which
samples of the same variant were similar in
pathogenicity prediction (for example, BRCA1
IVS 19-12 G>A) and those that are more dis-
cordant (Arg1347Gly), and also illustrates the
spread of methylation prediction for the known
variants (BRCA1 and BRCAx extremes of plot).

Of the 27 unique variants in the test set, one is
known to be an intermediate risk allele from
extensive segregation studies (Arg1699Gln),17

and 15 have sufficient information available to
place them in Class 1, 2, or 4, 5, based on multi-
factorial likelihood analysis that uses currently
accepted predictors of mutation status. Of the lat-
ter, one was considered Class 5 (pathogenic), one
Class 4 (likely pathogenic), seven were Class 1
(non pathogenic), 6 were Class 2 (likely non path-
ogenic), and the remainder were Class 3 (uncertain) after classifi-
cation. Comparing these segregation and multifactorial results to
those from methylation analysis alone, the intermediate risk vari-
ant Arg1699Gln had an LR of 25.218, the two Class 5 variant
IV19-12 G>A samples had LRs of 19.6 and 27.24 in favor of
pathogenicity, and the Class 4 variant BRCA1 IVS14+2 ins8 had
an LR of 1.43. The Class 1 variants had LRs ranging from 0.008
to 19.75 (with more than 60% of these <1), while the Class 2
variants had LRs ranging from 0.02 to 1.05.

There were 27 unique BRCA1 variants within these 37 indi-
viduals, five of which had at least two independent tumor sam-
ples from different analyzed individuals, and the logistic
regression model resulted in probabilities of pathogenicity for
each sample. These probabilities were converted to LRs and com-
bined by multiplication. Prior probabilities for these variants
based on bioinformatics analysis (see Materials and Methods)
were combined with the likelihood ratio calculated for each vari-
ant, and these posterior probabilities are summarized in Table 3.
Using the established posterior probability cut-offs for the IARC
5 tier classification system,12 BRCA1 IVS 19-12 G>A would be
classified as pathogenic (Class 5). Arg496Cys and Arg841Trp
would be classified as neutral (Class 1). This would suggest
that, at least based on current information, the likelihood ratios
derived from the methylation results based on three probes are
concordant for the majority of variants with the largest discor-
dance observed being with Class 3 (uncertain) variants. When
these likelihood ratios are combined with the bioinformatics
prior probabilities, the predictions for Class 1 and 2 variants
become far more consistent, but the prediction for BRCA1
IVS14+2 ins8 becomes more uncertain.

Discussion

Multiple studies have identified distinct epigenetic profiles
that correlate with different breast cancer subtypes and/or ER

status. The most recent example is data from The Cancer
Genome Atlas (TCGA) project, which used shared probes
between 27K and 450K analysis on 802 tumors to distinguish
five groups. Two groups were highlighted: Group 3 showed a
hypermethylated phenotype and was enriched for luminal sub-
type ER positive tumors, while Group 5 showed the lowest levels
of methylation in the probes selected and this group overlapped
with basal-like subtype ER negative tumors.2 The association
between methylation and subtype/ER status is recapitulated by
several other studies.14,18-24 which show a lower level of methyla-
tion in ER negative/basal-like tumors compared to ER positive/
luminal tumors. We previously showed a difference in methyla-
tion between familial breast tumors with different BRCA1 germ-
line mutations compared to BRCAx, and found that the
methylation clusters formed were independent of the intrinsic
subtype, and therefore had the potential to be independent of ER
status.13 We hypothesized that this difference in DNA methyla-
tion profile could contribute evidence to classify BRCA1
sequence variants of uncertain clinical significance.

We undertook a two-phase study to assess the value of
DNA methylation for predicting pathogenicity of BRCA1 var-
iants, the strength of which was the large number of BRCA1
mutant carrier and BRCAx (BRCA1 wild type) tumors used as
a reference to generate the predictive algorithm. There is no
evidence to suggest that BRCAx tumors have significantly dif-
ferent methylation profiles to sporadic breast cancers.14 The
first phase analyzed 12 previously reported candidate regions
and validated 5 regions to be strongly associated with muta-
tion status, but also showed that these associations were not
independent of ER status or grade. In the second phase, using
the Illumina 450K BeadChip array to conduct a genome-wide
analysis, we showed that DNA methylation profiles are largely
driven by ER status, with 55148 probes significantly associated
with ER status. The mechanism by which this occurs is still
not understood, and it is unknown whether these changes in
methylation occur at ER target genes or as a consequence of

Figure 4. Combined methylation likelihood ratios. LRs were calculated for each sample
using the model including only methylation. The log of the combined LR is plotted here
corresponding to each variant assayed.
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ER transcriptional regulation. Very few probes were signifi-
cantly associated with grade.

Using the Illumina 450K BeadChip array, we also identified
250 loci associated with mutation status, 23 of which initially
appeared to be independent of tumor ER status and grade. Of
these, 18 had an absolute methylation difference between groups
of greater than 5%, and using these 18 novel loci, we were able
to cluster the samples into two groups of BRCA1 carrier and
BRCAx tumors. The test set samples from variant carriers clus-
tered with the BRCA1 pathogenic or BRCAx subgroups. Of
these 18 loci, four sites were validated by pyrosequencing in an
independent group of samples, but logistic regression suggested
that for all but one probe, the association was not truly indepen-
dent from ER status and grade in the independent samples.
Using the data to predict the mutation status from these methyla-
tion values alone, a logistic regression model was created and used
to predict the pathogenicity of the 27 different test variants, and
these predictions based on methylation data were compared to
current evidence regarding pathogenicity using other information
sources (summarized in Table 3, detailed in Table S4). Combin-
ing the predictions from the methylation models with known
prior probabilities for each variant, BRCA1 IVS 19-12 G>A
would be classified as pathogenic (Class 5), and Arg496Cys and
Arg841Trp would be classified as neutral (Class 1). These classifi-
cations matched those based on multifactorial likelihood analysis
or segregation analysis, so the utilization of this methylation data
supports the predictions of these variants.

Further comparison of the current classifications and the
methylation derived classifications revealed very few major incon-
sistencies; a further 8 variants (Ala1368Val, Gly275Ser,
Arg1347Gly, His971Arg, BRCA1 IVS 12+9 C>T, Pro346Ser,
Pro727Leu, Ser475Cys) were classified by both methods as Class
1 (non pathogenic) or Class 2 (likely non pathogenic). A further
three variants (Ser1655Pro, BRCA1 IVS 23+5 G>C, BRCA1
IVS 9+16 C>G) were classified by both methods in the broad
uncertain Class 3, indicating for these few variants there is not
enough evidence to categorize them confidently by either
method. The methylation derived classification correctly predicts
the Class 4 variant within this test set, BRCA1 IVS 14+2 ins 8, as
Class 4. Due to missing pathology, lack of previous investigation
or a combined LR between 0.5 and 2.0 (which therefore does
not pass thresholds recommended by the ENIGMA BRCA classi-
fication guidelines, see http://www.enigmaconsortium.org/), six
variants do not have a current classification based on multifacto-
rial likelihood analysis or segregation analysis but are all classified
by the methylation model as Class 1 or Class 2 (Ile68Arg,
Leu152Phe, BRCA1 IVS 9+16C>G, Asn1236Lys, Arg1762Gly,
Ser475Cys). It is therefore difficult to assess the validity of the
methylation predictions for these variants. Finally, two variants
with current uncertain classification (Asp214Gly and His662-
Arg664del) share methylation characteristics with the less patho-
genic variants of Class 1 and 2.

The relationship between loss of BRCA1 function and a direct
or indirect mechanism that influences DNA methylation in nor-
mal or cancerous breast tissue remains unclear and an area for
future research. We observed two samples that exhibited BRCA1

promoter methylation (>10% by pyrosequencing); one BRCAx
sample and one test variant sample (BRCA1 IVS 9+16C>G).
The BRCAx sample was predicted to be more similar to a patho-
genic BRCA1 mutation (probability from methylation model D
0.8778, LRD7.18) (Table S3), while the test variant also had a
probability of 0.89 and LR of 8.1575 (Table S2), indicating the
potential similarity with pathogenic variants; however, the poste-
rior probability for this sample was 0.14 and remained Class 3
(uncertain). Therefore, it remains unclear whether BRCA1 pro-
moter methylation, which may be more heterogeneous in the dif-
ferent tumor cells, influences the DNA methylation profile in the
same manner as germline BRCA1 pathogenic mutations.

The BRCA1 variant Arg1699Gln has been shown to be defective
in the formation of foci in response to DNA damage, and also has
some effect on transcriptional activity; however, this variant was not
categorized as high risk, due to the mixture of intermediate and
defective phenotypes in the functional assays25 Another study, using
clinical parameters to assess pathogenicity, classified this variant as
deleterious,26 and a structural approach also indicated a pathogenic
phenotype.27 A recent functional complementation assay.28 pro-
vided additional evidence of pathogenicity, based on proliferation
and cisplatin response assays, as well as sensitivity to PARP inhibi-
tors. The most extensive genetic study of 68 families showed that
this variant was associated with an intermediate risk.17 Our logistic
regression model based on DNAmethylation indicated that this var-
iant was probably pathogenic, returning a probability of pathogenic-
ity of 0.97998. The methylation data supports increased risk known
to be associated with this variant.

One of the limitations of our study is the small number of ER
positive tumors with BRCA1 pathogenic mutations, and ER neg-
ative tumors without any known mutations (BRCAx). However,
this is indicative of an existing bias, which makes it difficult to
discover mutation specific changes, when the ER status is so
closely related to the methylation levels, and this bias is inherent
in most available study data. An interesting question to consider
is whether the ER positive BRCA1 tumors are in fact sporadic
cases; recent studies, including whole genome massively parallel
sequencing analysis of both ER positive and negative BRCA1
mutated tumors, provide evidence that this is not the case.29,30 A
further limitation of this study is the assumption, based on previ-
ous data,13 that all BRCA1 mutant tumors have similar profiles
for different missense or truncating mutations and the underlying
hypothesis that aberrant BRCA1 function is the driver of the
aberrant methylation profile. Much larger numbers of indepen-
dent tumors with the same BRCA1 variants would be required to
address this limitation. A limitation of using pyrosequencing is
that the fragmented DNA from FFPE samples resulted in higher
numbers of samples failing QC in each of the assays. Array based
methods have restoration procedures that are unsuitable for pyro-
sequencing, and thus we found between 30-75% of samples vari-
ably failed QC for each assay (Table 1). Due to the relative rarity
of these variants, FFPE blocks are the most available source of
material; however, they are subject to degradation in the quality
of DNA, as well as lower yields depending on size of tumor and
amount of remaining archival tissue. Furthermore, we did not
have access to adjacent normal tissue of the same patients, which
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may have provided further information on whether the genetic
variants influence the methylation of normal tissue in addition to
the tumor tissue. Lastly, common to many tumor methylation
profiling studies, we have not accounted for the numerous envi-
ronmental exposures and factors that might influence or con-
found the methylation profile of the tumor, such as age, BMI,
alcohol, smoking, and the tumor microenvironment. Future
studies should record such data on subjects to allow adjusting for
these factors in defining differential methylation.

In conclusion, we have developed a methylation-based predic-
tion tool that adds useful information that may be included in
the multifactorial model to classify BRCA1 variants of uncertain
clinical significance, but note that most methylation markers
identified are not truly independent of ER and grade status.
Thus, methylation data should be considered as complementary
to other pathology data for multifactorial likelihood prediction
modeling and may be useful for classifying variants with tumors
where these clinical variables may be absent. Measurement of
methylation allows a quantitative approach and, with the appro-
priate controls, methylation characterization provides promise to
reduce inter-laboratory variability in pathological marker calls
(such as immunohistochemistry methods31-33) and improves
application of this alternative tumor pathology characteristic for
mutation prediction studies in the future. The methylation data
measured using pyrosequencing can be incorporated into predic-
tion models easily, and may capture risk information associated
with multiple other pathological features. High-throughput anal-
ysis of multiple samples is also feasible, and we have shown here
that FFPE-derived DNA is amenable to this analysis, allowing
the use of archival tissue, essential for the investigation of rare
variants. In summary, this work suggests that the methylation
markers will have value for future variant classification for
BRCA1 and potentially for other genes with known tumor meth-
ylation phenotypes, such as MLH1 (OMIM# 120436) in colon
cancer (Cancer Genome Atlas Network, 2012b).

Materials and Methods

Samples
A total of 150 breast tumor DNA samples were available for anal-

ysis, comprising of three groups: germline BRCA1 mutated tumors
[henceforth referred to as BRCA1 (nD47)], germline BRCA1 wild
type tumors from women from high risk families [BRCAx (nD65)],
and the designated test variant tumors (nD38). Thirty-seven of these
samples (14 BRCA1, 23 BRCAx) were previously extracted and
described.13 Ninety samples of known BRCA1/2 germline status
[BRCAx (nD43), BRCA1 (nD32), BRCA1 test variants (nD15)]
were collected by the Kathleen Cunningham Foundation for
Research into Breast Cancer (kConFab) consortium. Ethical
approval for recruitment was obtained from the institutional review
boards or ethic committees of all sites, and written informed consent
was given by each participant.34 The tumors designated as BRCAx
came from women from high-risk families ascertained by kConFab
and, in each case, the tumor donor had undergone germline
BRCA1/2 mutation testing by full sequencing of the coding region

and splice junctions and multiplex ligation dependent probe amplifi-
cation (http://www.kconfab.org/). Additional tumors from BRCA1
test variant carriers were collected by the AFFECT study (nD23),
for which ethics approval for recruitment was obtained from Brigh-
ton East Ethics Committee (REC: 06/Q1907/135) and each partici-
pant gave written informed consent. Although test variants were
considered unclassified at study initiation, additional information
has since allowed class to be assigned to at least some of these (see
below). All variants are described using the cDNA nucleotide num-
bering which uses +1 as the A of the ATG translation initiation
codon in the reference sequence, with the initiation codon as codon
1. A representative section of each FFPE tumor sample was stained
by hematoxylin and eosin staining and evaluated by a pathologist to
verify tumor content (>70% tumor) and histology; between 3 and
9 unstained slides from each tumor were needle-macro dissected,
before standard phenol/chloroform DNA extraction and ethanol
precipitation. The locations of the exonic sequence variants (patho-
genic and test variants) assessed within the BRCA1 gene are repre-
sented in Figure 1A (6 additional intronic variations investigated are
not shown). Several variants had tumor samples from more than
one carrier: seven of the designated test set (Table 3) and nine of the
pathogenic variant set (Table S3). This study was approved by South
West London REC4 (REC: 11/LO/0145).

Laboratory analyses
Analysis of candidate regions

Candidate regions were identified previously13 and, in addition,
using likelihood ratio analysis on publicly available Illumina Golden-
gate array data for BRCA1 and BRCAx breast cancer tumors.14 All
pyrosequencing assays were designed using the PyroMark Assay
Design software. A common tag was placed on either the forward or
reverse primer (depending on the strand to be sequenced) and a
common universal biotinylated primer was used for all reactions in a
semi-nested two round PCR assay.35 PCR primers, cycling condi-
tions, sequencing primers, and sequence to analyze are detailed in
Table S5. Assays were optimized with fully methylated gDNA
(100%) (Zymo Research) compared to unmethylated DNA (0%,
whole genome amplified DNA (Genomiphi V2, GE Healthcare).
All PCR products were confirmed to be single bands by agarose gel
electrophoresis. Assay quality was further assessed by comparing
matched FFPE and fresh frozen samples with correlation coefficients
ranging from R2D0.65 to 0.83 and agreement between array and
pyrosequencing measured using intraclass correlation (Table1).
Methylation values were calculated as an average of all CpG sites
within each assay, as determined by the Pyro-QCpG software
(Qiagen).

Illumina 450K BeadChip genome-wide analysis

Array sample selection was based upon DNA concentration
quantified by Picogreen fluorescent nucleic acid stain (Invitrogen),
qPCR quality control performance (Illumina FFPE QC kit) and
multiplex GAPDH PCR.36 Bisulphite conversion of 500 ng of each
sample was performed using the EZ-96 DNAMethylation-GoldTM

Kit according to the manufacturer’s protocol (Zymo Research,
Orange, CA). Samples underwent restoration using the Illumina
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Infinium HD Restoration protocol, and 4 ml of bisulphite-con-
verted restored DNA was used for hybridization on the Infinium
HumanMethylation450 BeadChip, following the Illumina Infinium
HD Methylation protocol. Hybridization, scanning, and raw data
processing was performed by UCL Genomics (www.genomics.ucl.
ac.uk/). The intensities of the images were extracted using the
GenomeStudio (v.2011.1) Methylation module (1.9.0) software,
which normalizes within-sample data using different internal con-
trols that are present on the HumanMethylation450 BeadChip and
internal background probes. The methylation score for each CpG
was represented as a b value according to the fluorescent intensity
ratio representing any value between 0 (unmethylated) and 1
(completely methylated). Raw microarray data and processed nor-
malized data will be available from Gene Expression Omnibus
(GEO) (GSE72277). Post-array sample QC was implemented to
check technical aspects of the array (staining, hybridization, target
removal, extension, bisulphite conversion, specificity, non-polymor-
phism, and negative controls) using a threshold of >3SD outside
the normal distribution of each probe set across all samples. In total,
54 samples [90%: BRCA1 (nD18), BRCAx (nD19), BRCA1 test
variant (nD17)] passed these assessments. Detection P-values were
also used to evaluate probe performance, and probes that failed in
more than 20% of samples were discarded, leaving 482351/485577
probes (99.3%) available for analysis. Peak-based correction was
used to normalize the data between the two probe types,23 and
COMBAT37 was used to correct for batch effect between chips.

Statistical analysis
Wilcoxon rank sum test was used to determine statistical sig-

nificance between methylation data (pyrosequencing percentage
or 450K array b value) of the BRCA1 and BRCAx group, with
FDR adjusted P<0.05 considered significant. A generalized lin-
ear model (glm), implemented in R, was used to interrogate the
independence of mutation status, ER status, and grade, and to
generate a prediction model, which was utilized by the predict
command in R for predicting variant pathogenicity. The clust-
comp command from the clusterCons R package was used to
perform consensus clustering on b value of the 18 probes of all
samples on the Illumina 450K BeadChip array. Pearson’s correla-
tion coefficient between probes was calculated using the cor func-
tion in R, and reported as an R2 value.

A generalized linear model was constructed and used to predict
pathogenicity using the “predict” function in R version 2.15.1. The
resulting probabilities were converted to likelihood ratios by calculat-
ing probability/1-probability. The posterior probability was calcu-
lated as follows: the posterior odds was calculated using prior
probabilities obtained from sequence bioinformatics (as described
below) multiplied by the likelihood ratio of each variant and 1/1-
prior probability. This was then converted to a poster probability by
dividing this value by itself plus 1.

Assessment of test set variant classifications based on current
evidence

After completion of analysis and during manuscript preparation,
an extensive literature review and database search was undertaken to
identify the most up-to-date information pertinent to variant

classification for the entire test set variants. The most up-to-date pos-
terior probability based on multifactorial likelihood analysis was
accessed from a public website displaying information collated from
the literature (http://brca.iarc.fr/LOVD/home.php). For variants
that did not reach Class 1 (non pathogenic or of little clinical signifi-
cance) or Class 5 (pathogenic), the posterior probability was recalcu-
lated using additional information relevant to multifactorial analysis.
Methods used were as described previously,38 with two exceptions.
First, prior probability of pathogenicity was updated to incorporate
possible effects of sequence variation of splicing, based on in silico
splicing prediction algorithms adapted for this purpose (Tavtigian,
personal communication). Specifically, all exonic sequence variants
plus intronic variants detected in the vicinity of the splice junction
sequences with allele frequencies<0.5% were scored for their poten-
tial impact on splicing using MaxEntScan (MES), which computes
the maximum entropy score of a given sequence using splice site
models trained on human data.39 MES was calibrated by calculating
the average and standard deviation of MES scores for the wild type
splice junctions in BRCA1, BRCA2, and ATM, allowing raw MES
scores to be converted into z-scores. Based on BRCA1 and BRCA2
mutation screening data used previously to calibrate Align-
GVGD,7,9 rare variants that fall within the acceptor or donor region
and reduce the MES score for the splice signal in which they fall
showed ~97% probability to damage splice junction function when
they result in a calibrated MES z-score <-2 (for donors) or <-1.5
(for acceptors), or ~34% probability, when they result in a calibrated
MES z-score between -2 and 0 (for donors) or between -1.5 and 0.5
(for acceptors). Additionally, exonic rare variants that increased the
MES donor score of their sequence context and resulted in a cali-
brated MES donor z-score >0 had ~64% probability to create a de
novo donor, while if they resulted in a calibrated MES z-score
between -2 and 0, the probability to create a de novo donor was
~30% (Spurdle, Goldgar, Parsons, unpublished data). These MES-
based rules were used to identify rare sequence variants that are likely
to alter mRNA splicing. For exonic variants that resulted in a mis-
sense substitution, the higher of the two priors (missense vs. splicing)
took precedence for multifactorial likelihood analysis. Secondly,
revised pathology LRs were drawn from a recent large-scale age-strat-
ified analysis of 4477 BRCA1mutation carriers, 2565 BRCA2muta-
tion carriers, and 47565 breast cancer cases with no known
mutation (Spurdle et al., 2015). Additional information included
breast tumor ER and grade status extracted from the literature, fam-
ily history, segregation and co-occurrence likelihood ratios (LRs),
assessed from a previously described data set,7 and further segrega-
tion and pathology data, compiled for the variants identified
through the kConFab and AFFECT studies. Published mRNA assay
data were identified from the literature, where this was available.
Current class, and rationale for classification, is summarized in
Table S4 for all test variants.
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