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Identifying genes in the genomic context is central to a cell’s ability to interpret the genome. Yet, in general, the signals
used to define eukaryotic genes are poorly described. Here, we derived simple classifiers that identify where transcription
will initiate and terminate using nucleic acid sequence features detectable by the yeast cell, which we integrate into
a Unified Model (UM) that models transcription as a whole. The cis-elements that denote where transcription initiates
function primarily through nucleosome depletion, and, using a synthetic promoter system, we show that most of these
elements are sufficient to initiate transcription in vivo. Hrp1 binding sites are the major characteristic of terminators; these
binding sites are often clustered in terminator regions and can terminate transcription bidirectionally. The UM predicts
global transcript structure by modeling transcription of the genome using a hidden Markov model whose emissions are the
outputs of the initiation and termination classifiers. We validated the novel predictions of the UM with available RNA-seq
data and tested it further by directly comparing the transcript structure predicted by the model to the transcription
generated by the cell for synthetic DNA segments of random design. We show that the UM identifies transcription start
sites more accurately than the initiation classifier alone, indicating that the relative arrangement of promoter and ter-
minator elements influences their function. Our model presents a concrete description of how the cell defines transcript
units, explains the existence of nongenic transcripts, and provides insight into genome evolution.

[Supplemental material is available for this article.]

Identification of the cellular mechanisms that define gene struc-

ture has been a long-standing problem in molecular biology: It is of

interest not only for the study of transcription and its regulation,

but also for understanding how new genes arise (Carvunis et al.

2012), creating synthetic regulatory elements (Blount et al. 2012),

and explaining the many types of ‘‘cryptic’’ transcripts (Xu et al.

2009; Yassour et al. 2010). While much is known about individual

elements that function in eukaryotic transcription initiation and

termination (see below), to our knowledge it has not been sys-

tematically explored which elements are critical on a genome-wide

basis, what proportion of all transcription these elements can ac-

count for, and how they work together across entire chromosomes.

For example, sequences that can function as promoters in some

contexts may be disabled by transcription originating from an

upstream or antisense promoter via repressive changes in the

chromatin environment (Kaplan et al. 2003; Houseley et al. 2008;

Bumgarner et al. 2009) or transcriptional interference (Mazo et al.

2007). Interactions in cis are also clearly important for transcrip-

tional terminators, since a sequence can only be used to terminate

a transcript if it is first transcribed. Moreover, the existence of

physical connections between the 59 and 39 ends of genes that

depend on proper 39 end formation (Ansari and Hampsey 2005;

Tan-Wong et al. 2012) suggests the existence of a feedback mech-

anism between terminators and promoters.

In eukaryotes, protein-coding genes are transcribed by RNA

polymerase II (Pol II), which is loaded onto the promoter region via

the general transcription factors (GTFs) (Juven-Gershon et al. 2008).

However, the GTFs generally lack sequence specificity. In yeast, the

only clear exception is the TATA-binding protein (TBP; encoded by

the gene SPT15), which recognizes the TATA box. Although there

appear to be TATA-like elements bound by Spt15 in most

promoters (Rhee and Pugh 2012), only a minority have a canonical

TATA box (Basehoar et al. 2004), and TATA boxes and TATA-like

sequences also occur elsewhere in the genome. Motif matches for

many yeast sequence-specific transcription factors (TFs) are

enriched in promoters (Lee et al. 2007; Erb and van Nimwegen

2011), but it is not clear that they are sufficient to define

transcription start sites (TSSs), as their activity is often dependent

on other features of the promoter (Iyer and Struhl 1995; Sharon

et al. 2012). Moreover, most yeast promoters have multiple TSSs,

varying within a range of ;26 bp (Pelechano et al. 2013). The exact

start site appears to be controlled by the sequence surrounding the

site (Chen and Struhl 1985; Hahn et al. 1985; Nagawa and Fink

1985) and has a consensus of YR (where Y = pyrimidine and

R = purine) (Zhang and Dietrich 2005) which is likely recognized

by TFIIB and/or Pol II (Pinto et al. 1992; Li et al. 1994; Bushnell

et al. 2004).

In many eukaryotes, including yeast, a distinguishing feature

of promoters is the presence of a nucleosome-depleted region

(NDR) immediately upstream of the TSS (Yuan et al. 2005; Lee et al.

2007). Yeast promoters often contain a high A/T content and poly-

dA:dT tracts, which inherently inhibit nucleosome formation (Iyer

and Struhl 1995; Yuan et al. 2005; Kaplan et al. 2009; Tillo and

Hughes 2009). Many promoters also contain binding sites for

general regulatory factors (GRFs), including Rap1, Reb1, and Abf1

(Harbison et al. 2004), which cause nucleosome depletion in vivo

where bound (Yu and Morse 1999; Yarragudi et al. 2004; Badis et al.

2008; Hartley and Madhani 2009; Kaplan et al. 2009; Ganapathi

et al. 2011). However, none of these features are present in all
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promoters, and some occur outside of known promoters. More-

over, promoter definition is complicated by the fact that transcript

initiation occurs bidirectionally in many promoter regions, with

cryptic unstable transcripts (CUTs) produced by transcription in

the antisense orientation (Neil et al. 2009; Xu et al. 2009). Pro-

moters can further be regulated in cis by transcription over the

promoter region, which results in transcriptional interference or

histone modification (Kaplan et al. 2003; Martens et al. 2004; Mazo

et al. 2007).

Termination of coding transcripts in yeast (and other eu-

karyotes) occurs when a cleavage and polyadenylation (CPA) site is

recognized, mRNA cleavage occurs, and a polyadenine tail is

added, producing a mature mRNA. Cleavage tends to occur over

a range of about 36 bases and prefers to occur at (C/G)AA motifs

(Pelechano et al. 2013), which may be recognized by the 39 en-

donuclease Ysh1 (Mandel et al. 2006; Garas et al. 2008). Following

cleavage, the nascent mRNA no longer has a 59 m7G cap and be-

comes a substrate for 59!39 exonucleases that degrade the nascent

RNA, leading to destabilization of the Pol II/RNA association and

termination of transcription (Connelly and Manley 1988; Kim

et al. 2004; West et al. 2004). CPA sites have been previously de-

scribed as comprising several relatively simple motifs that are

bound and recognized by the sequence-specific RNA-binding

protein (RBP) components of the cleavage machinery. In yeast,

these include the AU-rich efficiency element, bound by Hrp1

(Kessler et al. 1997; Chen and Hyman 1998), the A-rich positioning

element, bound by Rna15 (Gross and Moore 2001), and several

U-rich elements surrounding the cleavage site (likely bound by

Yth1 and/or Cft1 [also known as Yhh1]) (Barabino et al. 1997;

Dichtl et al. 2002; Tacahashi et al. 2003). In addition to mRNAs,

Pol II synthesizes several types of noncoding transcripts, including

snRNAs, snoRNAs, and CUTs, which have independent termina-

tion mechanisms (Jacquier 2009). For example, the RBPs Nab3 and

Nrd1 recognize sequences present in RNAs and are important in

the maturation of snoRNAs (Jacquier 2009) and the labeling of

CUTs as TRAMP/exosome substrates (Wyers et al. 2005; Arigo et al.

2006). The CUT termination pathway provides a nonproductive

termination mechanism for Pol II transcripts, as the resulting

transcripts are immediately degraded.

Despite this extensive literature describing the sequences

and factors involved, there has been no global examination of

which features are critical to yeast gene identity, and therefore,

the problem of how yeast (or any other eukaryote) delineates

transcription units remains an open question. Many programs to

identify genes in genomic DNA exist (e.g., Burge and Karlin 1997;

Alexandersson et al. 2003; Solovyev and Shahmuradov 2003;

Majoros et al. 2004), but these generally rely on sequence features

unlikely to be used in the process of transcription, including se-

quence conservation and open reading frames (ORFs). Attempts

to identify promoters (Prestridge 1995; Megraw et al. 2009) and

CPA sites (Graber et al. 2002; Cheng et al. 2006) using mecha-

nistic features, such as TF and RBP specificities, have met with

varying success. To our knowledge, no study has taken an in-

tegrated approach to model the entire process of transcript defi-

nition or has tested the predictions of the model in vivo. Several

groups have used synthetic promoter systems to assay the ex-

pression levels of pools of constructs (e.g., Gertz et al. 2009;

Raveh-Sadka et al. 2012; Sharon et al. 2012). However, these

studies aimed to measure how TF binding sites (TFBSs) or nucle-

osome positioning sequences affect expression level and so used

a basal promoter sequence into which individual sequence ele-

ments were inserted or deleted. To our knowledge, no study has

directly tested what sequences are necessary to generate a func-

tional promoter in vivo.

Here, we have created a computer model that can explain

genome-wide yeast transcript structure and is supported by mul-

tiple lines of experimental validation. The model is underpinned

by classifiers that mimic the choices the cell makes when initiating

and terminating transcripts. These classifiers indicate that the

transcription of most yeast genes can be explained by relatively few

features and reveal which trans-acting factors are most influential

and which cis-elements help to define individual genes. Despite

the fact that we did not incorporate CUTs into the training pro-

cedure, our model predicts bidirectional transcription from uni-

directional promoters, indicating that the same sequence features

generally drive transcript initiation for both mRNAs and CUTs and

that CUTs are an inherent, and possibly unavoidable, feature of

yeast promoters. Our model indicates that yeast CPA sites are also

generally bidirectional, suggesting that convergent genes use the

same termination elements. We combined these classifiers into

a unified model that can predict where transcription will initiate

more accurately than the initiation classifier alone, indicating that

the relative arrangement of promoter and terminator elements in

cis is a likely mechanism for orienting promoters. We go on to

verify the predictions of the model using both existing data and

experiments of our own design. This is the first model that de-

scribes how a eukaryotic cell defines transcript structure genome

wide.

Results

Models of transcription initiation and termination

We first sought to ask how well we could explain the specific rec-

ognition of yeast promoters and CPA sites by cellular factors, using

the known sequence features associated with these elements. This

question can be framed as a computational classification problem,

in which algorithms seek to classify input sequences as positives

(e.g., promoter) or negatives (e.g., nonpromoter) on the basis of

features in the sequences (e.g., TF motif scores at specific posi-

tions). We refer to the two resulting classifiers as the ‘‘initiation’’

and ‘‘termination’’ classifiers because they identify the regions

where transcriptional units initiate (promoters) and terminate

(CPA sites).

Because we wanted the models to mimic cellular mecha-

nisms, we restricted the input features to those that can be re-

alistically sensed by nuclear factors, including predicted TF bind-

ing sites, nucleosome-excluding sequences, and DNA structural

features, as well as the binding sites for RBPs and nucleotide con-

tent for genomic regions encompassing transcripts (since NTP

concentrations can affect Pol II elongation rates) (Fig. 1A; Mason

and Struhl 2005). For both RBPs and TFs, binding sites were pre-

dicted using motif models, rather than measured in vivo binding

sites (i.e., ChIP data). We created an index of promoter and CPA

sites of ORF-containing genes, using RNA-seq and tiling array data

(see Supplemental Methods), which we used as positive examples.

For the initiation classifier, we used nonpromoter sequences se-

lected throughout the genome as negatives. For the termination

classifier, we used sequences within transcripts as negatives (see

Supplemental Methods). In order to calculate features, we sub-

divided these sequences into bins to reflect known or potential

location preferences for specific features relative to TSS or CPA sites

(see Supplemental Table 1; Supplemental Methods) and calculated

a single score (e.g., a TF motif score) for each feature within each
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bin. This binning procedure limits the resolution of the classifiers,

since they cannot identify the exact locations of features within

bins, but it has two major advantages. First, it accounts for the fact

that most yeast promoters and terminators use a range of initiation

and cleavage sites (see Supplemental Fig. 1A,B; Pelechano et al.

2013). Second, it greatly reduces the number of features consid-

ered. A full list of the features initially included in each classifier is

available in Supplemental Tables 2 and 3.

We created our classifiers using Random Forests (Breiman

2001), an approach that is capable of capturing nonlinear re-

lationships between the features and classes, such as cooperative

interactions among TFs (see Supplemental Methods). To produce

positive examples for the two classifiers, we first identified TSSs

and CPA sites for protein-coding genes. We defined TSSs using

those observed in Lipson et al. (2009) and CPA sites using RNA-seq

reads containing poly(A) sequences (see Supplemental Methods;

Nagalakshmi et al. 2008). This yielded 5010 genes with both TSS

and CPA sites. We scored the initiation classifier features in six

bins, as shown in Figure 1A, for 600 bp surrounding the TSS (from

�500 to +100, relative to the TSS). We obtained negative examples

by dividing nonpromoter portions of the genome into overlapp-

ing 600-bp windows, yielding 72,276 negative examples. For the

termination classifier, we scored features in three 50-base bins

encompassing 150 bases surrounding the CPA site (from �75 to

+75, relative to the CPA site) (see Fig. 1A). We derived negative

examples by dividing sense ORFs into overlapping 150-bp seg-

ments, yielding 155,093 negative exam-

ples. A complete description of the se-

quence selection rules is given in the

Supplemental Methods. We split the ge-

nome into two halves (chromosomes 1–8

and 9–16), using half to train the classi-

fiers and leaving the other half of the

genome for testing the model. Within

each training half, we created eight ran-

dom forests, each training on seven

chromosomes and withholding one chro-

mosome for model refinement. The pre-

dictions from the eight forests were then

averaged to produce a classification score

for the test data. Figure 1B (and Supple-

mental Fig. 2) shows the performance of

the classifiers in segregating the positives

from negatives in the test data.

To minimize overfitting of the

models, remove redundant features, and

make the models easier to interpret, we

sought to reduce the number of included

features. We did this by iteratively re-

building the model, adding one feature at

a time, with features sorted by decreasing

‘‘importance’’ (as defined by the random

forests algorithm), and retaining only

those that appreciably improved the

performance of the model measured on

the ‘‘refinement’’ data (see Supplemental

Methods). This feature reduction pro-

cedure only slightly decreased the per-

formance of each classifier on the ‘‘test’’

data, while greatly reducing the numbers

of features (Fig. 1B; Supplemental Fig. 2).

A striking result of this procedure is that

the two classifiers are dominated by

a small number of critical feature types:

We retained a total of 15 features for the

initiation classifier and four features for

the termination classifier (Fig. 1A; Sup-

plemental Fig. 3). We also found that,

using these reduced feature sets, a linear

model (logistic regression) performed

only marginally worse than the Random

Forests model (AUROC of 0.901 vs. 0.908

for initiation, and 0.946 vs. 0.952 for ter-

mination), indicating that there are few

important nonlinear feature interactions.

Figure 1. Design, refinement, and performance of the classifiers. (A) Classifier pipeline. Training and
test examples were generated by calculating the relevant features (rounded boxes) using the DNA
sequence of the example. The features were calculated over the bins shown in the colored boxes. At the
bottom of the colored boxes, the components of the minimal feature sets are shown. Feature colors
represent the feature type, including transcription factors (TF), general transcription factors (GTF), base
content (%NT), or RNA-binding proteins (RBP). (B) ROC curves representing initiation and termination
classifiers with either all features tested or the minimal feature sets, derived from the test data. The line
y = x represents the curve expected by random classification.
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Indeed, the important trans-acting factors tend to bind distinct sets

of promoters (Supplemental Fig. 3E), consistent with independent

function.

The initiation classifier was largely dependent (14/15 fea-

tures) on six main types of features: binding sites for the GRFs

Reb1, Abf1, and Rap1; binding sites for Rsc3 (a putative GRF and

component of the RSC complex) (Badis et al. 2008); DNA structural

features and poly(A) tracts (which correlate with G/C content and

presumably serve to deplete nucleosomes, and so are hereafter

described collectively as ‘‘G/C content’’ features); and TATA boxes

(Fig. 1A). A classifier with this reduced feature set has an AUROC

only 2.6% lower than one containing all 1698 features (AUROC =

0.908 vs. 0.934) (Fig. 1B), suggesting that these signals are re-

sponsible for establishing the identity of the vast majority of yeast

promoters.

The termination classifier was reduced to only two feature

types (Fig. 1A): G/C content and Hrp1 binding sites. Together,

these confer an AUROC of 0.952 on the test data, only slightly

lower than that obtained when all 147 features are included

(AUROC = 0.968). We initially included A- and U-rich motifs to

capture the canonical sequence specificities of the other CPA fac-

tors (Barabino et al. 1997; Gross and Moore 2001; Dichtl et al.

2002; Tacahashi et al. 2003), but these were not selected by the

above procedure. This result might be explained by several possi-

bilities: The sequence preferences of these factors may be better

captured by base content than by the motifs; the motifs may not

accurately capture the specificities of the factors; or the factors may

not strongly impact cleavage site selection. G/C content can also

impact nucleosome occupancy, which appears low at terminators,

although the significance of this observation is unknown (Chung

et al. 2010; Fan et al. 2010; Allan et al. 2012; Brogaard et al. 2012).

Strikingly, Hrp1 binding sites in terminator regions are often

flanked by additional TA repeats that tend to remain in phase (Fig.

2A). Hrp1 can occupy two directly adjacent TA(3) motifs (Perez-

Canadillas 2006). However, the overall pattern of Hrp1 motif oc-

currence in terminator regions is inconsistent with cooperative

binding (Supplemental Methods), so this pattern may simply re-

flect the fact that each additional TA di-nucleotide creates another

potential Hrp1 binding site.

We next asked how well the classifiers identify the TSS and

CPA sites on a per-base level. Despite the low intrinsic resolution of

the predictors (;70 bp for the initiation classifier and ;50 bp for

the termination classifier, due to the bin sizes), the majority of

bases used as TSSs/CPA sites in promoter/terminator regions

(Pelechano et al. 2013) lie near the center of these peaks (Supple-

mental Fig. 1C,D). Moreover, searching for the initiator (CA) and

the cleavage site ([G/C]AA) motifs within the peaks often identifies

the exact TSS or CPA site (Supplemental Fig. 1E,F; see Supplemental

Methods), consistent with earlier observations that the exact

transcript start and end bases are determined by local sequence

cues, following identification of the general regions for transcript

initiation (Hahn et al. 1985; Nagawa and Fink 1985) and termi-

nation (Russo et al. 1991).

Both promoters and CPA sites are bidirectional

Strikingly, the key features for both the classifiers contain little

strand specificity. The most important features of the initiation

classifier (GRF sites and G/C content/poly[A] sequences) are thought

to function through their role in NDR formation (Iyer and Struhl

1995; Yu and Morse 1999; Lee et al. 2007; Badis et al. 2008; Kaplan

et al. 2009; Tillo and Hughes 2009) and so should function

bidirectionally, since NDRs have no orientation. Indeed, for the

initiation classifier, the predictions for the forward and reverse

strands in the test set are highly correlated (Pearson R » 0.5), and

the correlation is maximal when the DNA strands are offset by

�208 bp, relative to the forward strand. Thus, the initiation

classifier predicts that many promoters initiate transcripts in

either orientation. Indeed, the average distance between the

predicted sense and antisense TSSs (212 bp) is consistent with

bidirectional initiation observed in vivo (Neil et al. 2009).

Both the Hrp1 motif and G/C content are symmetric, and

correspondingly, the termination classifier’s predictions are also

highly correlated between the forward and reverse DNA strands

(Pearson R » 0.8 when offset by 90 bp), suggesting that the same

cleavage signals can operate in either orientation. In fact, 42%

of convergent genes have only one optimal Hrp1 site between

them. Further, RNA-seq reads containing poly(A) sequences

(Nagalakshmi et al. 2008) indicate that a substantial fraction of

CPA sites terminate transcripts in both orientations, that this is

especially common for CPA sites between convergent genes, and

that the distance between cleavage sites on either strand is con-

sistent with the same cleavage signals being used to terminate both

transcripts (Fig. 2B).

Promoter-defining elements drive transcription in vivo

To our knowledge, our classifiers represent the first rigorous dem-

onstration that the few features highlighted can account for the

identity of most yeast gene structures. We next sought experi-

mental evidence that the features are necessary and sufficient in

Figure 2. Properties of terminators. (A) Base content surrounding the
3457 optimal nonoverlapping Hrp1 binding sites in terminator regions
(#150 bp upstream of CPA site). Colors indicate the base at the corre-
sponding position, from 25 bp upstream of to 25 bp downstream from the
motif match. (B) Alignment of RNA-seq reads corresponding to poly(A)
sites (Nagalakshmi et al. 2008) on both DNA strands for convergent
intergenic regions (Conv.) and elsewhere in the genome (Else.). Data are
aligned to sense poly(A) sites and include all poly(A) sites in the genome
with at least two reads. The data represent the average read count of all
aligned loci and are smoothed over a 5-bp window.
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vivo. We began by examining published expression data sets cor-

responding to mutations in the key trans-acting factors: Abf1,

Reb1, Rap1, Rsc3, and Spt15 (TBP) (Alper et al. 2006; Badis et al.

2008). For a given DNA sequence, our model provides a score for

how ‘‘promoter-like’’ a sequence is (from 0 to 1). We considered

a gene’s promoter to depend on a factor if leaving out the corre-

sponding feature reduced the promoter’s score by at least 0.1. In

general, the expression of genes whose promoters are predicted to

depend on a factor changes significantly more in the correspond-

ing mutant (by rank sum test) (see Supplemental Methods; Sup-

plemental Fig. 4). This finding demonstrates that the initiation

classifier can identify the set of genes controlled by the predicted

promoter-defining factors. Consistent with the notion that there is

little interaction between promoter-defining features, motif scores

for the individual TFs perturbed in each experiment predict the

genes affected nearly as well as the initiation classifier (Supple-

mental Fig. 4).

We next tested whether these cis-elements are sufficient to

initiate gene expression in vivo using a combinatorial library of

promoter constructs driving GFP, embedded in a context that oth-

erwise has no promoter-like properties. These constructs encom-

passed the parts of the promoter most critical to the model (from

�150 to +80 relative to the TSS). We designed the sequences in three

different sections (Fig. 3A) encompassing four of the bins used in

the model (one of the sections encompassed two bins). The

designed sequences were selected computationally from a large

excess of randomly generated sequences of varying G/C content,

with or without sites for Abf1, Reb1, Rap1, Rsc3, or Spt15 ran-

domly placed within the regions in which they are relevant to the

model. Some of the sequences are predicted to form functional

promoters by virtue of their G/C content alone. For each frag-

ment containing a TFBS, we synthesized a fragment that is

identical except that the TFBS was disrupted at several key bases.

We used conventional oligonucleotide synthesis followed by

pooled ligations to create a library of promoters from these pro-

moter fragments that theoretically contained 86,688 distinct

sequences. We assayed the relative activity of each promoter

in yeast by using cell sorting and sequencing to estimate the

Figure 3. Construction and analysis of the combinatorial promoter library. (A) Synthetic double-stranded promoter fragments with complementary
overhangs were ligated together to yield full-length promoters, which were then cloned into a GFP expression vector. We used flow cytometry and
sequencing to measure the expression level of each promoter (see Methods). (B) Point-density scatter plot showing the correlation between the initiation
score and the expression level (as described in Methods, log-scale). Darkness corresponds to point density. Horizontal and vertical lines indicate the
expression level and initiation score thresholds for considering sequences ‘‘expressed’’ and a ‘‘predicted promoter,’’ respectively. (C–G) Identical to B but
divided into promoters containing (C ) Reb1, (D) Abf1, (E ) Rap1, and (F) Rsc3 binding sites in the�150:�80 bin, and (G) the TATA box in the�80:�50 bin.
(H–J ) Point-density scatter plots showing the expression level of promoters that are identical except for the presence or absence of functional (H) Rap1,
(I ) Rsc3, or ( J ) Spt15 (TBP) binding sites. The line y = x marks the point at which expression is identical between the two promoters, regardless of the
binding site’s presence. The other GRFs (Abf1 and Reb1) are similar to Rap1 (H ).
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expression level of each promoter, similar to a procedure used pre-

viously (see Methods and Supplemental Methods for details; Sharon

et al. 2012), yielding sufficient data to estimate the expression level

of 48,928 different promoters.

We obtained a strong and significant correlation between initi-

ation score (a number between 0 and 1) and GFP expression level

(Spearman R = 0.64, i.e., 41% [R2] of variance in ranks explained

P » 0) (Fig. 3B), indicating that the features of the promoter

model are sufficient for promoter function. At an optimal

threshold (promoter score = 0.37, GFP expression level = 2.69),

the promoter classifier achieves a true positive rate of 73%, with

a false positive rate of only 21%. Promoters containing Rap1,

Reb1, and Abf1 binding sites, to which the model assigns high

scores, are nearly always expressed (expression > 2.69) (Fig. 3C–E),

and the expression level is consistently higher than promoters that

are identical except for disruption of the binding site (e.g., Fig. 3H).

The impact of Rsc3 sites and the TATA box appear weaker; many

promoters containing these elements are neither expressed nor

predicted to be functional promoters (Fig. 3F,G). Nonetheless,

comparison of GFP levels from the promoters that are identical

except for the presence and absence of Rsc3 or TATA

elements showed that these elements have a positive impact on

promoter function (Fig. 3I,J). Overall, the model explains

a considerable amount of the variation in GFP expression; the

additional diversity in expression may be due to experimental

variability as well as the presence of TFBSs that affect gene ex-

pression level, but not promoter identity, and so were not consid-

ered in our analysis.

A unified model improves computational gene identification

We next created a ‘‘Unified Model’’ (UM) aimed at describing the

full process of transcription. The UM uses a hidden Markov model

(HMM), which is ideal for this purpose because it can probabilis-

tically model the states of Pol II as it initiates, transcribes, and

terminates transcription in a similar way to how it occurs in the

cell. In essence, an HMM takes as inputs a model structure (as in

Fig. 4A) and a set of ‘‘observations’’ (i.e., the classifier scores for

Figure 4. A genome-scale yeast transcript model. (A) The structure of the Unified Model HMM. Circles represent states and arrows represent interstate
transitions. Inside state circles, the number of bases the model expects to remain in each state is shown in parentheses. Transition probabilities, as a percent
of outgoing transitions, are shown on transition arrows. Very infrequent transitions (probability < 1%) are not shown. (IG) Intergenic state. (B) Genome
Browser display illustrating the predictions of the models at the GAL1-10 locus of chromosome 2. The tracks on the top half represent data for the forward
strand of DNA, with the reverse strand on the lower half. From center: blue bars represent genes, with thinner bars representing UTRs, and the gray bar
represents a Ty element. Black tracks represent RNA-seq read density on a log scale (Levin et al. 2010). The Unified Model’s predictions are shown with dark
green, blue, and red on a single track representing the probability of being in each of the states, where the probabilities are shown stacked. The light green
and red tracks on the outer edge represent the scores for the initiation and termination classifiers, respectively. Initiation peaks corresponding to the true
TSS and other potential TSSs for the CHS3 gene are as indicated, and some examples of predicted nongenic transcripts that are supported by RNA-seq are
shown boxed.
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each base of a chromosome) and outputs the probability of the

model being in each state at each base (i.e., chromosome-wide

transcript structures). The model structure includes parameters

describing the probability distributions of the observations in each

state (i.e., the distributions of the classifier scores within each of

the states shown in Fig. 4A), as well as the probability distribution

of transitions between states (e.g., the probability of going from

intergenic to TSS+). Since there are eight different states and four

different observations (two classifiers for both DNA strands) (Fig.

4A), the model requires 32 (8 3 4) means and 32 (8 3 4) variances

for observations, as well as 64 (8 3 8) different transition proba-

bilities (40 of which are zero, since not all state transitions are

allowed, e.g., Gene+ directly to Gene�). To ensure that the model is

symmetric, such that the predicted transcript structure will be

identical for a chromosome sequence and its reverse complement

(since a chromosome’s strand labels are arbitrarily assigned), we

used the same means and variances for equivalent states between

the (+) and (�) strands and ensured that the transition probabilities

were symmetrical, resulting in a total of 56 nonzero parameters

(see Supplemental Tables 4, 5).

The UM states correspond to TSSs, transcript bodies (‘‘Gene’’),

and CPA sites on the forward and reverse strands, as well as a state

corresponding to bidirectional transcript termination and a state

for intergenic DNA (Fig. 4A). The model considers transcription in

both orientations simultaneously, scanning in only one direction.

The order of the states for transcripts on the reverse strand is thus

reversed relative to the forward strand, e.g., while the TSS is fol-

lowed by a gene on the forward strand, the TSS is followed by an

intergenic region on the reverse strand. Because TSS and CPA sites

typically cover a range of bases (Pelechano et al. 2013), we repre-

sented TSS and CPA sites as states that can span multiple bases. As

a result, we could not use our original transcript map (the one used

to train the initiation and termination classifiers) to derive the UM

parameters because it has only a single base for each TSS and CPA

site and so does not capture the actual range of bases used for these

sites or the transitions between these and the other model states.

Further, these annotations excluded many cellular RNAs, in-

cluding ORF-containing genes for which we did not have TSS/CPA

site estimates.

To overcome these limitations, we defined a new transcript

map that could be used in deriving the HMM parameters. In our

initial analyses (data not shown), the model outputs (i.e., the

predicted transcript structures) were surprisingly sensitive to the

choice of parameters and the transcript maps from which they

were derived. Ultimately, we derived the parameters using a tran-

script map that divided the genome into the eight HMM states

based on multiple types of RNA-seq data (Nagalakshmi et al. 2008;

Lipson et al. 2009; Levin et al. 2010; Ozsolak et al. 2010) (see

Supplemental Methods and Supplemental Fig. 5 for details). We

also found that the performance of the UM could be substantially

improved by tuning the observation means (i.e., the expected

classifier score in each state) to maximize the correlation of the

probability of being a transcript (as predicted by the UM) to the

expression levels in the training data, measured by RNA-seq on

a per-base level (see Supplemental Methods for details; Levin et al.

2010). We speculate that this process may compensate for errors or

omissions in the initial transcript map. It is also possible that some

aspects of transcription are not captured well by the binary state

annotations in our transcript map. Here we present results for the

UM trained on chromosomes 9–16 and tested on chromosomes

1–8 using scores from initiation and termination classifiers trained

on chromosomes 9–16 (ensuring neither UM nor classifiers had

seen these chromosomes previously). Similar model parameters

and performance were attained by swapping the training and test

data.

Given the classifier scores for an entire chromosome, the UM

outputs the probability of being in each state at every base. The

probability corresponds to the posterior marginals of the HMM

states. An example of our UM predictions at the GAL1-10 locus

(and surrounding region), located on chromosome 2, is shown in

Figure 4B. There is generally a good correspondence between gene

annotations and the transcript predictions (and the exceptions are

informative; see below). The UM robustly predicts TSSs, CPAs, and

transcripts of known genes: Figure 5A shows ROC analysis, and

Supplemental Figure 6 shows the same data as precision-recall

curves. The overall sensitivity (recall) of detecting transcripts on

a base-by-base level is 76.6% (P » 0), and the precision is 76.9% (P <

10�299, taken as predicted transcribed bases that are within 100 bp

of a known transcript) (see Supplemental Methods). For compari-

son, random guessing with a probability of 42.1% (the proportion

of the genome encompassed by a transcript on a given strand)

would yield precision and recall values of 42.1%. TSSs and CPAs are

much more sparse than transcripts, yet the ROC and precision-

recall analyses indicate that the UM is also adept at identifying

these elements (Fig. 5A; Supplemental Fig. 6). We did not expect

the UM to achieve perfect classification in this analysis because it is

penalized for predicting any transcript that is absent from our gene

annotations, even if these transcripts exist in the cell (see below).

Further, if the UM predicts an antisense over a sense transcript, it is

penalized twice in this analysis: Predicting the antisense transcript

yields false positives, and missing the sense transcript yields false

negatives.

The UM also allowed us to ask whether the interaction of

sequence features along the chromosome is important to their

function in vivo. If so, the UM would be expected to be better at

identifying TSSs than the initiation classifier alone. Indeed, the

UM is much better than the initiation classifier at distinguishing

true TSSs from bases that are within ORFs (AUROC = 0.925 vs.

0.863, representing nearly a halving of the error rate) (Fig. 5B),

indicating that the relative arrangement of promoter and CPA sites

on the chromosome has an important influence on the usage of

the individual elements and that this context-dependence is being

modeled by the UM. Manual examination of the UM and the

classifier outputs confirm that the HMM often identifies the cor-

rect TSS for a given gene even when the initiation classifier iden-

tifies other, often stronger, potential TSSs nearby, suggesting that

this context-dependence is being incorporated in the UM. CHS3 in

Figure 4B is one such example (indicated with arrows).

We next investigated the nongenic transcripts predicted by

the model. Transposons and sn/snoRNAs, although not consid-

ered as known transcripts in the analyses above, are also generated

by Pol II (Lesage and Todeschini 2005; Richard and Manley 2009).

These elements encompass 2.95% of predicted transcribed inter-

genic bases, and overall 71.3% of the bases of these elements are

predicted to be transcribed, despite these elements being absent

from the classifier training data (P < 10�7). Remaining in-

consistencies between the model and the annotated transcripts

are split approximately evenly between predicting transcription

on the wrong strand (15.3% of predicted transcribed bases)

and predicting transcripts in intergenic regions (>100 bases from

ORF-containing transcripts; 11.7% of predicted transcribed bases).

Figure 4B contains several such instances. In addition to capturing

most of the known genes, the model identifies a known antisense

transcript of GAL10 (Houseley et al. 2008), transcripts antisense to

de Boer et al.
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ETR1 and YBR016W, and a short intergenic transcript between

ETR1 and OLA1. Notably, all are also observed in the RNA-seq data.

In order to determine more globally whether there was evi-

dence to support the existence of transcripts that do not corre-

spond to known features, we compared the UM’s predictions to

available RNA-seq data. Among the transcripts predicted antisense

to known genes, 23.5% of bases are supported by strand-specific

RNA-seq reads (Lipson et al. 2009) (compared with 8.5% expected

by chance; P » 0), and 39.0% of intergenic bases that are predicted

to be transcribed are supported by the same RNA-seq data (com-

pared with 25.6% expected by chance; P » 0). Finally, examining

complete transcript predictions that do not overlap known fea-

tures (see Supplemental Methods), we find that available RNA-seq

(Levin et al. 2010) and NET-seq (Churchman and Weissman 2011)

data show that the predicted TSSs and CPA sites of nongenic

transcripts appear in aggregate to be largely correct (Supplemental

Fig. 7). These comparisons demonstrate that the model is captur-

ing many real nongenic transcripts and suggest that these tran-

scripts are produced by the same mechanisms that produce con-

ventional Pol II transcripts.

Transcripts produced from randomly generated DNA
sequences

An intriguing feature of our classifiers and the UM is that the critical

sequence features are relatively simple and would therefore be

expected to arise in random sequence at a relatively high frequency.

For example, the binding sites for Reb1, Abf1, and Rap1 have only 7,

7, and 9 critical bases, respectively, and tolerate some degeneracy;

thus, binding sites for at least one of these factors should appear

approximately every 2 kb in a randomly generated sequence. Hrp1

binding sites, with a six-base optimal binding site, appear even more

frequently—roughly once every kb in the A/T-rich yeast genome.

Thus, relatively long transcripts should be produced with some

frequency even from a randomly generated DNA sequence.

To confirm that such transcripts do arise and are consistent

with the predictions of the UM, we assayed transcription in vivo

from synthetic DNA fragments that were integrated into the yeast

genome. We tested four 6-kb fragments, each composed of two

tandem 3-kb DNA fragments, denoted A1B1, A1B2, A2B1, and

A2B2. These fragments contained randomly generated sequences

with a G/C content similar to that of the yeast genome (38%), into

which we randomly inserted binding sites for Rap1, Abf1, Rsc3,

Reb1, and Spt15, to reduce the amount of DNA to be synthesized

(see Supplemental Methods). The 3-kb fragments we synthesized

contained an average of 3.75 Spt15, 2.25 Abf1, 0.75 Reb1, 0.25

Rap1, and 3.25 Rsc3 consensus binding sites each, which is only

slightly more than the number expected in completely random

sequences of the same length (2.56, 0.99, 0.24, 0.24, and 1.2

binding sites, respectively). We did not intentionally add CPA sites

because they appear very frequently in randomly generated DNA

sequences. We integrated these constructs into the genome and

assayed expression using a custom tiling array.

The expression data shown in Figure 6 and Supplemental

Figure 8 illustrate that all four fragments produce a diverse set of

transcripts whose expression levels span three orders of magni-

tude. The UM predicts the majority of transcript species correctly.

There are several instances of promoters that initiate transcripts

bidirectionally (A1-a/A1-b, B1-a/B1-b, B2-b/B2-c), as well as nu-

merous instances of convergent transcripts that appear to termi-

nate at the same bidirectional CPA site (B1-b/B1-c, B2-a/B2-b, A2-c/

B1-a, B2-c/kan-R). Of the 12 easily distinguished transcripts, nine

are robustly predicted by the UM (A1-a, A1-b, A2-b, B1-a, B1-b,

B2-a, B2-b, B2-c, kan-R). There are several examples where tran-

scripts are generated on both DNA strands. These cases are difficult

for the UM to predict because it has no states representing tran-

scripts on both strands; nonetheless, in both instances of over-

lapping transcripts (A2-a/A2-b and kan and transcripts generated

antisense to kan), the model is uncertain and partially predicts

transcripts on both strands. In other cases, it is uncertain which

strand is transcribed when the data support the transcription of

only one strand under the condition tested (A1-c, B1-a, B2-c). Of

the easily distinguished transcripts, our model achieves a precision

and a recall of 0.69, on a transcript-by-transcript basis, allowing

a 200-base offset for TSS and CPA sites. Because the model is in-

capable of simultaneously predicting both of the overlapping

Figure 5. Performance of the UM. (A) ROC curves illustrating how well the UM predicts TSSs, transcripts, and CPA sites, when classifying the positive and
negative examples for the initiation and termination classifiers, as well as ORFs/transcripts and nontranscript bases. (B) ROC curve comparing the ability of
both the UM and initiation classifier to distinguish between TSSs and bases that are part of nondubious ORFs. The line y = x represents the curve expected
by random classification.
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transcripts A2-a and A2-b, the theoretical maximum is a precision

and recall of 0.92. By simulating random guessing for the positions

and strands of transcripts, but assuming the number and sizes of

transcripts are known, the upper bound of what is expected by

chance is a precision and recall of about 0.029. Altogether, these

results demonstrate that transcripts can arise from a pseudorandom

sequence at a predictable frequency.

Discussion
The modeling and experimental validation presented here indicate

that the majority of mRNA transcript definition in Saccharomyces

cerevisiae is relatively simple, and that transcription occurs as

a probabilistic process that can be faithfully captured in a hidden

Markov model. Both the models and the experimental data de-

scribed here indicate that, rather than simply being a property of

promoters, promoters are defined by the presence of an NDR,

resulting from sequences that inherently inhibit nucleosome for-

mation, such as G/C content and poly(A) sequences, or binding

sites for a small number of chromatin-modifying TFs, mainly GRFs.

Most of the features originally tested in the initiation classifier

correspond to motifs for other TFs, and so the slight loss in the

initiation classifier’s performance when reducing the number of

features (Fig. 1B) may be explained by less frequent utilization of

other mechanisms, such as the ability of arrays of TFBSs to exclude

nucleosomes and promote transcription (Pettersson and Schaffner

1990; Adams and Workman 1995; Miller and Widom 2003; Bai

et al. 2011). However, the fact that a linear model performed as well

as Random Forests suggests that the major promoter-defining

elements do not work cooperatively.

Importantly, our model captures the interactions between

these features in cis: The fact that the UM is more accurate at

identifying promoters than the initiation classifier alone indicates

that promoter selection can be influenced by cleavage site usage

and the relative arrangement of these elements on the chromo-

some (Fig. 5B). Although previous studies have characterized

potential mechanisms for these types of cis interactions in the

regulation of specific genes, our model suggests that they are of

widespread importance. One possible mechanism for this in-

fluence is through gene looping, which is a physical connection

between the 59 and 39 ends of genes dependent on proper 39 end

formation (Ansari and Hampsey 2005; Tan-Wong et al. 2012).

Following pioneering rounds of transcription from all promoter-

like sequences, successful CPA events may reinforce the ‘‘correct’’

transcript choice (Fig. 7). Previous studies have also established

that transcription can influence the function of nearby elements

by transcriptional interference (Mazo et al. 2007) and repressive

changes in the chromatin environment of the downstream pro-

moter (Kaplan et al. 2003). These mechanisms would force pro-

moters to compete with one another in cis, with factors such as

initiation frequency, epigenetic state, and gene loop formation

determining which promoter becomes dominant (Fig. 7). Given

this model, we would expect that under conditions where an up-

stream promoter is inactivated, downstream promoters could be-

come active as repressive transcription from the upstream pro-

moter stops. Indeed, we can find many potential examples of this

phenomenon (Supplemental Fig. 9). Thus, while few TFBSs con-

tributed to the initiation classifier, they could help determine which

among competing promoters is dominant, since the relative acti-

vation levels of promoters near each other can influence which

transcripts are produced in the neighborhood. Such a mechanism

may also explain why it is beneficial to incorporate expression levels

in training the UM parameters: Their inclusion indirectly informs

the model about the global transcriptional state of the cell.

The initiation classifier explains the presence of many non-

coding transcripts. Previously reported cryptic transcripts, in-

cluding CUTs, SUTs, and antisense transcripts (Xu et al. 2009;

Yassour et al. 2010), are all, on average, associated with promoter-

like sequences at the 59 end (Supplemental Fig. 10). Many of these

transcripts initiate from bidirectional promoters (Neil et al. 2009;

Xu et al. 2009). In our analysis, the correlation between the initi-

ation classifier’s predictions for the forward and reverse DNA

strands is only about 0.5, suggesting that there is some asymmetry

incorporated into the promoter itself; indeed, the distribution of

the critical promoter-defining features is only partly symmetric

(Fig. 1A). It is possible that either the arrangement or orientation of

binding sites for some of the other ;200 TFs in S. cerevisiae help to

make initiation more efficient in one direction. The base content

of the nascent transcript could also be a contributor to asymmet-

rical transcript initiation from bidirectional promoters. We found

that the ratio of As to Ts is important in the first 100 transcribed

bases, which could help to control the efficiency of Pol II promoter

release, since elongation rate can be affected by nucleotide content

(Mason and Struhl 2005).

Figure 6. Predicted transcript structure and measured expression of two of the four randomly generated 6-kb fragments. Tracks as in Figure 4, except
that ‘‘Expression’’ was measured using custom Agilent tiling arrays. The construct names are indicated in the center, and discernible transcripts are labeled
along the tiling array data. A1B1 and A2B2 constructs are shown in Supplemental Figure 8 and show very similar results.
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The termination classifier is both remarkably accurate (Fig.

1B) and very simple, depending on only base content and Hrp1

sites. Historically, the Hrp1 binding site was thought to control

the efficiency of downstream cleavage, while selection of the site

of cleavage was determined by the positioning element (Guo and

Sherman 1996). Our model is partly consistent with this view and

further suggests that the general location of cleavage is de-

termined primarily by Hrp1-binding, with a minor but significant

contribution by A/T-content to cleavage site identity. The palin-

dromic nature of the features favored by the termination classifier

strongly supports the bidirectional nature of yeast cleavage sites.

It has previously been shown that some yeast terminators can

stimulate cleavage and polyadenylation in either orientation

(Peterson and Myers 1993; Egli et al. 1997; Aranda et al. 1998) and

that the 39 ends of convergent yeast genes frequently overlap

(Nagalakshmi et al. 2008; Ozsolak et al. 2010). We provide evi-

dence that the same cis elements are generally used to stimulate

transcript termination in either orientation. In fact, our UM

predicts that over 40% of convergent genes have overlapping

terminator regions (see Supplemental Methods). Such a mecha-

nism could have a role in preventing transcriptional interference

between adjacent genes by minimizing overlapping transcription

and could also contribute to genome compaction.

The simplicity of our model means that gene structures can

easily be designed and should arise spontaneously in evolution.

Yeast is a prevalent system in synthetic biology (e.g., Khalil et al.

2012; Wei et al. 2012; Westfall et al. 2012). However, most of the

promoter and terminator sequences currently in use are based on

native sequences and so have the potential to recombine (Blount

et al. 2012). Our model provides a guide with which these elements

can be designed de novo. The simplicity of these elements also

means that they can easily arise over evolutionary time. For pro-

moters, all that is fundamentally required is the gradual expansion

of A/T-rich tracts and/or addition of binding sites for the five TFs

that dominate the model. Indeed, promoter-like sequences will

occur in randomly generated DNA sequences at a rate of ;1/kb (see

Supplemental Methods). Since a given promoter-sized sequence is

likely to contain multiple TFBSs purely by chance (there are, on

average, 27 perfect TFBSs per kilobase of random DNA drawn from

the yeast base composition, using the YeTFaSCo expert-curated

motifs [de Boer and Hughes 2012]), then a newly emerged pro-

moter will likely already be regulated in some way. The fact that

functional variants can arise frequently at random could explain

both the relatively high evolutionary rates in cis-regulatory se-

quence (Kellis et al. 2003; Weirauch and Hughes 2010) and de

novo gene birth. Creating new genes from essentially random

DNA was thought to be very unlikely (Jacob 1977), but several

recent studies have shown that it may be more common than

previously thought (Levine et al. 2006; Cai et al. 2008; Carvunis

et al. 2012). Consistent with this, our UM predicts that 66% of

bases in randomly generated DNA sequences will be transcribed on

one strand or another. One model for the origin of new genes in-

volves first generating a stable transcript, then acquiring coding

potential, and finally acquiring a function (Cai et al. 2008). How-

ever, until now, it was unclear how simple it is to generate stable

transcriptional units from essentially random intergenic DNA.

Methods
Supporting data and model predictions are available on our
website (http://hugheslab.ccbr.utoronto.ca/supplementary-data/
transcription_model/). Additional methodological descriptions
are available in the Supplemental Methods and Analysis.

Creating the initiation and termination classifiers

For the initiation classifier, features included the YeTFaSCo data-
base’s Expert-Curated set of TF motifs (version 1.00) (de Boer and
Hughes 2012), nucleosome-excluding sequences, and DNA struc-
tural features (Supplemental Table 2). The termination classifier
used a set of RBP motifs, as well as various counts of base compo-
sition (Supplemental Table 3). The initiation classifier also in-
cluded these features but only for the 100 bases after the TSS. De-
tails on how we calculated each feature for each bin are available in
Supplemental Methods.

We divided each chromosome into positive and negative ex-
amples for each classifier, where the initiation classifier
compared examples of promoters to nonpromoter sequences, and
the termination classifier compared the CPA sites of genes to gene
bodies. We trained the classifiers on examples from half of the
yeast chromosomes, and within these eight chromosomes, we left
one chromosome out for evaluation of performance and optimi-
zation of the models. For each chromosome left out, we made four
replicate forests, each with 50 trees. Thus, each classifier consisted
of 1600 decision trees and was trained on half the genome.

Creation and analysis of the combinatorial promoter library

We designed several hundred promoter segments encompassing
the most important feature bins of the initiation classifier. We

Figure 7. Gene definition model. (A) In the absence of transcription, the
DNA forms nucleosomes except where prevented by bound TFs (such as
the GRFs) or by the DNA structure. (B) Transcription begins indiscrimi-
nately from nucleosome-free regions in proportion to the efficiency of pre-
initiation complex (PIC) formation. Promoters compete with one another in
cis through the act of transcription. (C ) An equilibrium is reached where
some promoters are active and others are repressed. Successful cleavage
and polyadenylation reinforces the promoter choice. (D) If a nucleosome-
free region is destroyed (for instance, through loss of GRF binding), it is no
longer competent for initiating transcription. Downstream promoters are
then de-repressed, become active, and a new equilibrium is reached.
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generated random DNA sequences, embedded TFBSs within each,
and scored them by the initiation classifier in every possible
combination. We selected those sequences that had relatively high
initiation scores in multiple contexts for synthesis, and designed
corresponding control sequences which were identical, but with
the added TFBS perturbed. We also designed high and low G/C
content promoter segments that either score highly or lowly, but
into which we did not specifically add TFBSs. TFBSs were generated
by sampling from the position frequency matrix of the corre-
sponding factor using the frequencies as weights. The segments
had 43, 48, and 41 different sequences in the �150:�80, �80:TSS,
and TSS:+80 positions, respectively, and these had complementary
overhangs at either end that ensured the segments would combine
in the desired order and would yield, in theory, 86,688 different
promoters.

We ordered the promoter parts as single-stranded oligonu-
cleotides from Sigma-Aldrich. To generate double-stranded pro-
moter parts, we phosphorylated and annealed the forward and
reverse strands for each sequence. We then pooled and ligated
these double-stranded promoter segments in bulk, purified and
cloned the resulting promoters into an expression vector con-
taining GFP, and transformed them into E. coli. We then isolated
the resulting library and transformed it into yeast cells. We sorted
the pooled yeast library by flow cytometry into six fluorescence
bins and grew the sorted cells overnight. We then isolated DNA
and amplified, barcoded, and sequenced the promoter DNA to
determine the proportion of each promoter in each bin. We cal-
culated the expression level of each promoter by weighting the
probability of each promoter ending up in each bin by the average
fluorescence of the bin.

Data access
The data from this study have been submitted to the NCBI Gene
Expression Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo/)
under accession numbers GSE47004 and GSE48860. Supplemental
and unprocessed data are also available at the author’s website:
http://hugheslab.ccbr.utoronto.ca/supplementary-data/transcription_
model/.
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