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Abstract

This study was to investigate the effect of nicotine on insulin sensitivity and explore the underlying mechanisms. Treatment
of Sprague-Dawley rats with nicotine (3 mg/kg/day) for 6 weeks reduced 43% body weight gain and 65% blood insulin
level, but had no effect on blood glucose level. Both insulin tolerance test and glucose tolerance test demonstrated that
nicotine treatment enhanced insulin sensitivity. Pretreatment of rats with hexamethonium (20 mg/kg/day) to antagonize
peripheral nicotinic receptors except for a7 nicotinic acetylcholine receptor (a7-nAChR) had no effect on the insulin
sensitizing effect of nicotine. However, the insulin sensitizing effect but not the bodyweight reducing effect of nicotine was
abrogated in a7-nAChR knockout mice. Further, chronic treatment with PNU-282987 (0.53 mg/kg/day), a selective a7-
nAChR agonist, significantly enhanced insulin sensitivity without apparently modifying bodyweight not only in normal mice
but also in AMP-activated kinase-a2 knockout mice, an animal model of insulin resistance with no sign of inflammation.
Moreover, PNU-282987 treatment enhanced phosphorylation of signal transducer and activator of transcription 3 (STAT3) in
skeletal muscle, adipose tissue and liver in normal mice. PNU-282987 treatment also increased glucose uptake by 25% in
C2C12 myotubes and this effect was total abrogated by STAT3 inhibitor, S3I-201. All together, these findings demonstrated
that nicotine enhanced insulin sensitivity in animals with or without insulin resistance, at least in part via stimulating a7-
nAChR-STAT3 pathway independent of inflammation. Our results contribute not only to the understanding of the
pharmacological effects of nicotine, but also to the identifying of new therapeutic targets against insulin resistance.
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Introduction

Insulin resistance occurs in 20%–25% of the human population

[1]. It is a chief component of type 2 diabetes mellitus and an

important risk factor for cardiovascular disease as well as certain

forms of cancer [2–5]. Since the commonly used insulin sensitizer

thiazolidinediones, selective agonists for nuclear peroxisomal

proliferator-activated receptor-c, have been reported to be

associated with increased risk of massive hepatic necrosis, heart

failure, and bladder cancer in patients treated with these drugs [6–

8], it is of great value to identify new therapeutic targets for

development of novel therapy against insulin resistance.

Smoking cigarette has been associated with insulin resistance

[9]. As a major constituent of tobacco, nicotine has long been

considered to induce insulin resistance, but till now, results from

clinical and animal studies are contradictory. Clinical studies

reported that nicotine infusion acutely impairs insulin sensitivity in

type 2 diabetic patients and smokers but not in healthy subjects

[10,11]. Long-term nicotine gum or nicotine patch replacement in

previous smokers is associated with insulin resistance [12,13].

However, animal studies show that long-term oral nicotine

administration reduces insulin resistance in obese rats [14]. In

fact, clinical studies may have more influencing factors. Smoking

history may complex the outcome of nicotine in examined subjects

because approximately 4000 compounds exist in cigarette smoke.

Recent in vitro study suggests that nicotine may have opposite

action on insulin sensitivity when treating temporarily or

chronically [15]. Thus, more evidence for the effect of nicotine

on insulin sensitivity is needed to be provided on different animal

models and the underlying mechanism is needed to be clarified.

In our previous study, we were surprised to find that chronic

nicotine treatment can significantly reduce HOMA of insulin

resistance (HOMA-IR) in normal rats, suggesting that nicotine

may enhance insulin sensitivity [16]. In the present study, to

further study this phenomenon, we treated normal rats with

nicotine for 6 weeks and examined insulin sensitivity by detecting

blood glucose and insulin levels, and performing insulin tolerance

test and glucose tolerance test. Nicotinic acetylcholine receptor
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(nAChR) antagonist, a7-nAChR agonist, signal transducer and

activator of transcription 3 (STAT3) inhibitor, a7-nAChR

knockout (a7-nAChR2/2) and AMP-activated kinase-a2 knock-

out (AMPKa22/2) mice were used to indentify the nAChR

subtypes mediating the effect of nicotine on insulin sensitivity and

explore the underlying mechanisms. We demonstrated that

chronic treatment of nicotine enhanced insulin sensitivity in

normal rodents through a7-nAChR-STAT3 pathway which is

independent of the anti-inflammatory effect of nicotine. Activation

of a7-nAChR also improved insulin sensitivity in AMPKa22/2

mice, a model of insulin resistance.

Materials and Methods

Ethics Statement
All animals received human care and all study protocols were

approved by the Institutional Animal Care and Use Committee of

Second Military Medical University, China.

Chemicals
Nicotine was purchased from U-sea Biotech Co., Ltd.,

Shanghai, China. PNU-282987 and hexamethonium chloride

were purchased from Sigma (St. Louis, MO). 2-(N-(7-nitrobenz-2-

oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose (2-NBDG) was from

Invitrogen. STAT3 specific inhibitor, S3I-201, was provided by

Santa Cruz Biotechnology (Santa Cruz, CA).

Animals and genotyping
Male Sprague-Dawley rats were purchased from Sino-British

SIPPR/BK Lab Animal Ltd, Shanghai, China. a7-nAChR2/2

mice, AMPKa22/2 mice were generated and genotyped by PCR

analysis as described previously [17–19].

Animal treatment
To study the effect of nicotine on insulin sensitivity, Sprague-

Dawley rats aged 10–11 weeks were divided into two groups. The

control group received subcutaneous injection of saline; the

nicotine group received subcutaneous injection of nicotine

Figure 1. Chronic nicotine treatment reduces body weight and improves basal metabolic parameters as well as insulin sensitivity
indexes in normal rats. After 6 weeks of saline or nicotine treatment, (A) weight gain, (B, C, D) basal metabolic parameters and (E, F) insulin
sensitivity indexes were evaluated. Data are means 6 SE (n = 6–8). *P,0.05, **P,0.01 vs saline treatment.
doi:10.1371/journal.pone.0051217.g001
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(3 mg/kg/day). Body weight was measured once a week. Insulin

tolerance test, glucose tolerance test were performed and blood

samples were collected for biochemical assays after 6 weeks of

treatment.

To identify the nAChR subtypes involved in nicotine-induced

increase of insulin sensitivity, Sprague-Dawley rats were treated

with saline or hexamethonium (20 mg/kg, i.p.) 20 minutes before

subcutaneous injection of saline or nicotine (3 mg/kg) every day.

Male a7-nAChR2/2 mice aged 8–9 weeks were subcutaneously

injected with saline or nicotine (3 mg/kg/day). Body weight was

measured once a week. After treatment for 6 weeks, blood samples

were collected for biochemical assays.

To examine whether selective a7-nAChR agonist, PNU-

282987, can enhance insulin sensitivity, male C57BL/6J mice

aged 8–9 weeks were subcutaneously injected with saline or PNU-

282987 (0.53 mg/kg/day) [20,21]. Body weight was measured

once a week. Insulin tolerance test, glucose tolerance test were

performed after 6 weeks of treatment.

To find out downstream molecules of a7-nAChR to enhance

insulin sensitivity, male AMPKa22/2 mice and C57BL/6J mice

aged 8–9 weeks were subcutaneously injected with saline or PNU-

282987 (0.53 mg/kg/day) for 6 weeks. In AMPKa22/2 mice,

body weight was examined once a week. Insulin tolerance test and

glucose tolerance test were performed and blood samples were

collected for biochemical assays at the end of treatment. In

C57BL/6J mice, the phosphorylation of STAT3 in skeletal

muscle, visceral adipose and liver were examined by Western blot

after 6 weeks of treatment.

Insulin tolerance test (ITT)
Rats were injected with insulin (0.25 IU/kg, i.p.) after an over-

night fast, while mice were injected with insulin (0.55 IU/kg, i.p.)

after 6-hour fast. Blood glucose levels were measured at indicated

times with a portable glucose meter (LifeScan, Milpitas, CA) after

tail snipping [19,22–24].

Glucose tolerance test (GTT)
Glucose (2.0 g/kg) was given to mice (i.p.) and rats (i.g.) after an

over-night fast. Blood glucose levels were then measured at

indicated times with a portable glucose meter (LifeScan, Milpitas,

CA) after tail snipping. Simultaneously, blood samples were

collected for examining insulin concentration [19,23,25].

Cell Culture and differentiation
Mouse C2C12 myoblasts were purchased from American Type

Culture Collection and cultured with Dulbecco’s modified Eagle’s

medium supplemented with 10% (v/v) FBS, 2 mmol/L glutamate,

15 mmol/L HEPES, 500 IU/mL penicillin, and 100 mg/mL

streptomycin in 95% O2 and 5% CO2. To obtain fully

differentiated myotubes, FBS was removed from cell culture at

70% confluence. Cells were incubated in a medium containing

only 2% (v/v) horse serum for 4 additional days [19,26].

Glucose Uptake Assay
Glucose uptake was measured using a nonradioactive fluores-

cent glucose 2-NBDG method, as described previously [19,27].

Briefly, cells were either left untreated or preincubated with one of

the following treatments for 48 hours prior to treatment with

100 nM insulin for 15 min: 30 mM PNU-282987; 30 mM PNU-

282987 plus 100 mM S3I-201. Subsequently, 100 mM 2-NBDG

solution was added and the cells with 2-NBDG were incubated for

an additional 10 min. The fluorescence retained in the cells was

measured with a microplate fluorimeter (Infinite M200; Tecan,

Hillsborough, NC), set at an excitation wavelength of 488 nm and

an emission wavelength of 542 nm [28].

Immunoblotting
Phosphorylation of STAT3 was examined by SDS-PAGE and

immunoblotted as described previously [18,29]. Antibodies against

phosphorylated or total STAT3 were from Cell Signaling

Technology (MA, USA). Antibodies against a7-nAChR were

from Millipore (MA, USA). Secondary antibodies were IR-

Dye800CW goat anti-rabbit IgG (LI-COR Biosciences, Nebraska,

USA). The images were captured and analyzed by the Odyssey

infrared fluorescence imaging system (Li-Cor Bioscience) [30].

Each experiment was repeated at least three times.

Blood biochemical assays
Blood glucose and triglyceride levels were measured with an

autoanalyzer (Beckman Autoanalyzer; Beckman Instruments,

Figure 2. Chronic nicotine treatment enhances insulin sensi-
tivity in normal rats. After 6 weeks of saline or nicotine treatment, (A)
insulin tolerance test (ITT) and (B, C) glucose tolerance test (GTT) were
performed. ITT was performed in overnight fasted rats with insulin
challenge at 0.25 IU/kg of body weight (i.p.). GTT was performed in
overnight fasted rats with glucose challenge at 2.0 g/kg of body weight
(i.g.). Data are means 6 SE (n = 7). *P,0.05, **P,0.01 vs saline treated
rats.
doi:10.1371/journal.pone.0051217.g002
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Fullerton, CA, USA). Rat insulin levels were measured by

radioimmunoassay with a kit from Tianjin Jiuding Medical

Bioengineering (Tianjin, China). This assay has a limit of detection

of 0.92 mIU/mL, with interassay and intraassay coefficients of

variation of 7.6% and 12.2%, respectively. Mice insulin levels were

determined by enzyme-linked immunosorbent assay (ELISA)

according to the manufacturer’s instructions (Mercodia, Uppsala,

Sweden). This assay has a limit of detection of #0.10 mg/L, with

interassay and intraassay coefficients of variation of 2.3% and

5.1%, respectively. The homeostasis model assessment of insulin

resistance (HOMA-IR) index was calculated using the following

formula [31,32]: HOMA-IR = fasting blood insulin (mIU/L)6fast-

ing blood glucose (mmol/L)/22.5. The quantitative insulin

sensitivity check index (QUICKI) was calculated according to

the original formula [33] as the inverse log sum of fasting insulin in

mIU/L and fasting glucose in mg/dl. QUICKI = 1/[log(fasting

blood glucose)+log(fasting blood insulin)].

Statistical analysis
Data are expressed as the mean 6 SEM. Statistical comparisons

between two groups were performed by Student’s t test.

Comparisons among several groups ($3 groups) were performed

by analysis of variance followed by Tukey’s post hoc test. Statistical

significance was set at P,0.05.

Results

Chronic nicotine treatment enhances insulin sensitivity in
normal rats

After 6 weeks of treatment, the weight gain in nicotine-treated

rats was only 57% of that in saline-treated rats (Fig. 1A). Blood

triglyceride levels showed a 40% reduction after nicotine

treatment (Fig. 1B). Nicotine treatment significantly reduced

65% basal insulin level (Fig. 1D) but had no effect on glucose

level (Fig. 1C), indicating a higher insulin sensitivity in nicotine

Figure 3. Blocking peripheral nAChRs except for a7-nAChR by hexamethonium pretreatment has no effect on insulin sensitizing
effect of nicotine in normal rats. After 6 weeks of treatment with saline followed by saline or nicotine (Control), or with hexamethonium followed
by saline or nicotine (Hex), (A) weight gain, (B, C, D) basal metabolic parameters and (E, F) insulin sensitivity indexes were examined. Data are means
6 SE (n = 7–8). *P,0.05, **P,0.01 vs Control-Saline; #P,0.05, ##P,0.01 vs Hex-Saline.
doi:10.1371/journal.pone.0051217.g003
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treated rats. Nicotine treated-rats reduced HOMA-IR to 35% and

elevated QUICKI indexes to 112% of that in saline-treated rats

(Fig. 1, E and F), supporting that chronic nicotine treatment

enhances insulin sensitivity.

We further performed ITT and GTT to evaluate insulin

sensitivity. ITT showed significant decrease of blood glucose levels

at 30, 45 and 60 minutes after insulin injection in nicotine-treated

rats compared with those in saline-treated rats (Fig. 2A), suggesting

that nicotine treatment enhances insulin sensitivity. Meanwhile,

GTT showed a more rapid glucose clearance (Fig. 2B) but lower

insulin levels (Fig. 2C) in nicotine-treated rats compared with

saline-treated animals. Thus, results from both ITT and GTT

confirmed that chronic nicotine treatment enhanced insulin

sensitivity in normal rats.

Nicotine enhances insulin sensitivity through activating
a7-nAChR

We then studied which nicotinic receptor subtype mediated the

insulin sensitizing effect of nicotine. Pretreatment of rats with

hexamethonium had no significant effect on nicotine-induced

alteration of body weight (Fig. 3A), blood glucose and insulin levels

(Fig. 3, C and D), HOMA-IR (Fig. 3E) and QUICKI (Fig. 3F), but

significantly reversed nicotine-induced reduction of blood triglyc-

eride level (Fig. 3B). As hexamethonium is a peripheral non-

selective antagonist for nAChRs with low potency at a7-nAChR,

and a relative low dose of hexamethonium which antagonizes most

of the major types of nAChRs except for a7-nAChR [34–36] was

used in our experiments, these results suggest the involvement of

a7-nAChR in the elevation of insulin sensitivity by nicotine.

We further confirmed the involvement of a7-nAChR in the

increase of insulin sensitivity by nicotine using a7-nAChR2/2

mice. Genotype of wild-type, heterozygous and homozygous a7-

nAChR knockout mice was determined by PCR analysis with tail

DNA. A representative PCR result is shown in Fig. 4A. Wild-type

(+/+) mice gave a 440 bp band, whereas heterozygous (+/2) mice

gave an additional 750 bp band and the homozygous (2/2) mice,

only a 750 bp band.

After nicotine treatment for 6 weeks, a7-nAChR2/2 mice

reduced 2.360.44 g, 9.2% of initial bodyweight (Fig. 4B). The

blood glucose levels in nicotine-treated mice were within normal

range and had a tendency to increase compared with those in

Figure 4. a7-nAChR knockout abrogates insulin sensitizing effect of nicotine. (A) Genotype characterization by PCR analysis of tail DNA
from offspring derived from heterozygous intercrosses. Expected fragment sizes of the wild-type mice (+/+; 440 bp), heterozygous knockout mice (+/
2, 440 bp and 750 bp) and homozygotous knockout mice (2/2; 750 bp) are shown. Only a7-nAChR homozygotous knockout mice were used for
chronic treatment. After 6 weeks of saline or nicotine treatment, (B) weight gain, (C, D) basal metabolic parameters and (E, F) insulin sensitivity
indexes were evaluated in a7-nAChR2/2 mice. Data are means 6 SE (n = 5–6). **P,0.01 vs saline treatment.
doi:10.1371/journal.pone.0051217.g004
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saline-treated mice (Fig. 4C). a7-nAChR knockout reversed the

reduction of blood insulin level and HOMA-IR index as well as

the increase of QUICKI index induced by nicotine (Fig. 4, D–F).

These results further support that nicotine enhances insulin

sensitivity through activation of a7-nAChR.

Selective activating a7-nAChR can enhance insulin
sensitivity

To examine whether selective activating a7-nAChR can

enhance insulin sensitivity, we treated mice with PNU-282987, a

selective agonist for a7-nAChR, for 6 weeks. Compared with

treatment with saline, PNU-282987 treatment resulted in similar

weight gain but 80% HOMA-IR reduction (P,0.01, Fig. 5, A and

B). ITT showed 53% significant decrease of blood glucose levels at

30 minute after insulin injection in PNU-282987-treated mice

(Fig. 5C). Meanwhile, GTT showed lower blood insulin levels

(Fig. 5E) but similar glucose change in PNU-282987-treated mice

compared with saline-treated animals. These results demonstrate

selective activating a7-nAChR can enhance insulin sensitivity,

further confirming the critical role of a7-nAChR in the

enhancement of insulin sensitivity by nicotine.

STAT3 but not AMPKa2 participates in the downstream
signal pathway of a7-nAChR to enhance insulin
sensitivity

AMPKa2 and STAT3 have been reported to play important

roles in regulating insulin sensitivity [37–41]. AMPKa22/2 mice

develop insulin resistance [42,43]. To identify the involvement of

AMPKa2 in the downstream signal pathway of a7-nAChR to

enhance insulin sensitivity, we examined if activation of a7-

nAChR in AMPKa22/2 mice could improve insulin resistance.

Fig. 6A illustrates the PCR products obtained with tail DNA from

homozygous (2/2) and heterozygous (+/2) AMPKa2 knockout

and wild-type (+/+) mice. The expected size of the AMPKa2+/+

amplicon is 200 bp, while that of the amplicon from AMPKa22/2

mice is 600 bp.

As shown in Fig. 6, PNU-282987 treatment mildly reduced

weight gain without statistical significance (Fig. 6B), but signifi-

cantly reduced 60% HOMA-IR (Fig. 6C), increased glucose

clearance in ITT and GTT (Fig. 6, D and E), while had no effect

on insulin level in GTT (Fig. 6F). These results suggest that

activation of a7-nAChR improves insulin sensitivity in

AMPKa22/2 mice, which rules out the involvement of AMPKa2.

Moreover, these results combined with the results from normal

rats (Fig. 1 and 2) and mice (Fig. 5) suggest that nicotine could

modulate insulin sensitivity under both physiological and patho-

physiological conditions.

We then examined whether stimulating a7-nAChR lead to

STAT3 activation. Western blotting showed that treatment of

mice with PNU-282987 had no effect on STAT3 protein level but

enhanced STAT3 phosphorylation in insulin target tissues, 1.78

fold, 1.72 fold, and 1.66 fold for skeletal muscle, adipose tissue and

liver, respectively (Fig. 7A–C). To further verify the direct effect of

a7-nAChR on insulin sensitivity and the involvement of STAT3,

we performed test on C2C12 myotubes. Western blots verified the

existence of a7-nAChR protein in C2C12 myotubes (Fig. 7D). As

expected, insulin stimulated glucose uptake was enhanced 25%

Figure 5. Selective a7-nAChR agonist, PNU-282987, enhances insulin sensitivity in normal mice. (A) Weight gain in mice during PNU-
282987 treatment. At the end of PNU-282987 treatment, (B) HOMA-IR, (C) insulin tolerance test (ITT) and (D, E) glucose tolerance test (GTT) were
performed. ITT was performed in mice 6 h after food removal with insulin challenge at 0.55 IU/kg of body weight (i.p.). GTT was performed in
overnight fasted mice with glucose challenge at 2.0 g/kg of body weight (i.p.). Data are means 6 SE (n = 5–6). *P,0.05, **P,0.01 vs saline treatment.
doi:10.1371/journal.pone.0051217.g005
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after PNU-282987 incubation. Moreover, the improved insulin

stimulated glucose uptake by PNU-282987 was total impaired by

specific STAT3 inhibitior, S3I-201 (Fig. 7E).

Discussion

In the present study, we demonstrated that chronic treatment

with nicotine enhanced insulin sensitivity in normal rats. We

further showed that nicotine exerts insulin sensitizing effect

through activating a7-nAChR-STAT3 signaling pathway. Activa-

tion of a7-nAChR not only improves insulin sensitivity in normal

mice but also AMPKa22/2 mice, an animal model of insulin

resistance.

It has been reported that chronic nicotine administration can

reduce insulin resistance in obese rats and mice [14,44]. However,

our current study demonstrated nicotine can improve insulin

sensitivity in normal rats, which is a state different from obesity

induced insulin resistance.

Previously, Swislocki et al showed that subcutaneous implanted

nicotine pellets had no effect on insulin sensitivity in adult and

juvenile rats [45,46]. These discrepancies may be explained by a

variety of factors, especially dosage, treatment duration, and route

of nicotine administration [47]. The nicotine dose used in our

study is 3 mg/kg/day roughly equal to 30% of theirs. Besides, the

nicotine treatment time of ours is 3 weeks longer than theirs.

Nicotine can activate multiple nAChR subtypes, and different

nAChR subtypes share different dose sensitivity [48]. Nicotine was

also reported to show different effect depending on different

exposure time [15]. Thus, relatively low dose and long treatment

time perhaps help to bring into play the insulin sensitizing effect of

nicotine. As for nicotine delivery route, we used subcutaneous

injection which is also different from implanted sustained release

Figure 6. Selective a7-nAChR agonist, PNU-282987, enhances insulin sensitivity in AMPKa22/2 mice. (A) Genotype characterization by
PCR analysis of tail DNA from offspring derived from heterozygous intercrosses. Expected fragment sizes of the wild-type mice (+/+; 200 bp),
heterozygous knockout mice (+/2, 200 bp and 600 bp) and homozygous knockout mice (2/2; 600 bp) are shown. (B) Weight gain in mice during
PNU-282987 treatment. At the end of treatment, (C) HOMA-IR, (D) insulin tolerance test (ITT) and (E, F) glucose tolerance test (GTT) were performed.
ITT was performed in mice 6 h after food removal with insulin challenge at 0.55 IU/kg of body weight (i.p.). GTT was performed in overnight fasted
mice with glucose challenge at 2.0 g/kg of body weight (i.p.). Data are means 6 SE (n = 5–6). #P,0.05, ##P,0.01 vs saline treatment.
doi:10.1371/journal.pone.0051217.g006

Nicotine Enhances Insulin Sensitivity

PLOS ONE | www.plosone.org 7 December 2012 | Volume 7 | Issue 12 | e51217



pellet in their studies. Thus, the above factors may explain the

different outcome of nicotine on insulin sensitivity.

As majority of nicotine effects are mediated through nAChRs,

we tried to identify specific nAChR subtype involved in insulin

sensitizing effect of nicotine in this study. Our results from

hexamethonium treatment ruled out the involvement of peripheral

nAChRs, except for a7-nAChR, in the effect of nicotine. Further

study with a7-nAChR2/2 mice provided evidence that the insulin

sensitizing effect of nicotine was dependent on a7-nAChR. More

importantly, the in vivo study using a7 selective nicotinic receptor

agonist PNU-282987 soundly confirmed that activation of a7-

nAChR could enhance insulin sensitivity.

We also noted that nicotine treatment can reduce body weight

and blood triglyceride, but they did not seem to be involved in the

insulin sensitizing mechanism of nicotine considering our animal

models. Body weight reduction is associated with decreased food

intake and increased energy expenditure. Recent findings dem-

onstrate that nicotine decreases food intake and bodyweight

through activating a3b4-nAChR [49]. Activation of STAT3 may

mimic leptin signal in the brain to control food intake and energy

expenditure [50]. Moreover, nicotine can enhance metabolic rate

and activate uncoupling protein 1 in white and brown adipose

tissue, a molecule which is important for adaptive thermogenesis

and energy expenditure [51,52]. However, in our experiment,

deletion of a7-nAChR in mice abolished the insulin sensitizing

effect of nicotine but not the bodyweight reducing effect of

nicotine. a7-nAChR selective agonist improved insulin sensitivity

not only in normal mice but also in insulin resistant AMPKa22/2

mice without significantly reducing their bodyweight. Therefore,

results from our study suggest that bodyweight loss is not a key

contributor for nicotine induced insulin sensitization considering

our animal models. Blood triglyceride reduction may also be the

result of nicotine-induced increase in the metabolic rate and the fat

tissue loss. Our previous study showed that fat tissue especially

visceral fat tissue weight reduced a lot during nicotine treatment

[16]. Besides, pretreatment of rats with hexamethonium reversed

the triglyceride lowering effect of nicotine but had no effect on the

insulin sensitizing effect, indicating that reduction of triglyceride

may not involved in the insulin sensitizing effect of nicotine.

Figure 7. Selective a7-nAChR agonist, PNU-282987, enhances insulin sensitivity through activating STAT3. Western blots in (A) skeletal
muscle, (B) visceral adipose and (C) liver in wild type mice after six weeks of saline or PNU-282987 treatment. Data are means 6 SE (n = 5–6). *P,0.05
vs Saline. (D) Western blots of a7-nAChR protein in C2C12 myotubes. (E) PNU-282987 enhances glucose uptake in C2C12 myotubes, and this effect
requires STAT3. Data are means 6 SE (n = 4). *P,0.05 vs Control. (F) Proposed mechanism for nicotine-induced insulin sensitizing effect.
doi:10.1371/journal.pone.0051217.g007
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We further investigated a7-nAChR downstream molecule that

may be involved in regulating insulin sensitivity. Results showed

that STAT3 rather than AMPKa2 contributed to this pathway.

We found that PNU-282987 treatment improved insulin sensitivity

in AMPKa22/2 mice, an animal model of insulin resistance.

Although AMPKa2 plays critical role in controlling whole-body

insulin sensitivity, and several insulin sensitizers, including

thiazolidinediones and metformin, have been reported to activate

AMPK [37,38], our study provided evidence that it is not

necessary for a7-nAChR activation to enhance insulin sensitivity.

Moreover, it has been reported that a7-nAChR agonist, TC-7020,

improved metabolic parameters in db/db mice, a model of obese

type 2 diabetes. However, insulin sensitivity was not examined in

that study [53]. Our current study demonstrated for the first time

that a7-nAChR agonist had insulin sensitizing action not only in

normal mice, but also in insulin resistant mice, i.e., AMPKa22/2

mice, a model with no sign of inflammation and obesity, which is

different from db/db mice [42].

STAT3 plays an important role in the regulation of insulin

signaling pathway. It has been reported that inactivation of

STAT3 contributes significantly to the pathogenesis of insulin

resistance. STAT3 sensitizes the insulin signaling through

suppression of glycogen synthase kinase-3b [39], a negative

regulator of insulin signaling pathway. Our study showed that

treatment of normal mice with a7-nAChR selective agonist PNU-

282987 enhanced STAT3 phosphorylation in skeletal muscle,

adipose tissue and liver. Moreover, the in vitro tests in C2C12

myotubes provide evidence that STAT3 is important for the

insulin sensitizing effect of a7-nAChR. It should be noted that

activating a7-nAChR has direct insulin sensitization effect in

C2C12 myotubes. However, more evidence is needed to be

provided on insulin target tissues. As GLUT4 plays an important

role in insulin-stimulated glucose uptake [54], observing GLUT4

in C2C12 myotubes and the above animal models may contribute

to understanding the mechanism of this effect.

Wang et al reported that nicotine ameliorates obesity-induced

insulin resistance through suppressing inflammation in adipose

tissue by activating cholinergic antiinflammatory pathway [44].

However, our results on non-obese animals did not associate with

inflammation. Our gene chip assay showed that the mRNA

expression of inflammatory cytokines in adipose tissue or muscle,

such as TNFa, IL-6, IL-1b, iNOS and c-IFN, are very low and

shared no difference between nicotine treated and non-treated

group (unpublished observations), and our previous studies showed

that a7-nAChR2/2 mice express very low level of inflammatory

cytokines [20]. No evidence indicates inflammation in

AMPKa22/2 mice, either [43].

Although the potential use of nicotine as therapeutic agent

against insulin resistance is limited by its collateral toxicity, the

application of a7-nAChR as a new target may be prospective. It

will exert more specific effect while eluding collateral toxicity.

Activating a7-nAChR may not only reduce obesity related insulin

resistance by anti-inflammation mechanism [44,53], but also

ameliorate non-obese or low inflammation related insulin resis-

tance through STAT3 related direct or indirect pathway. Besides,

activating a7-nAChR has been demonstrated to benefit for

treating many inflammation related diseases, such as arthritis,

shock, stroke, myocardial infarction and Alzheimer’s disease

[17,55–58], which will also contribute to the prevention and

treatment of diabetic complications.

In conclusion, our study revealed that nicotine exerts its insulin

sensitizing effect through a7-nAChR-STAT3 pathway which is

independent of its anti-inflammatory effect (Fig. 7F). Developing

new therapeutic method against insulin resistance based on a7-

nAChR is worth further investigation in future.
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