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Chimeric antigen receptor (CAR) technology has revolutionized cancer treatment,

particularly in malignant hematological tumors. Currently, the BCMA-targeted

second-generation CAR-T cells have showed impressive efficacy in the treatment

of refractory/relapsed multiple myeloma (R/R MM), but up to 50% relapse remains to be

addressed urgently. Here we constructed the BCMA-targeted fourth-generation CAR-T

cells expressing IL-7 and CCL19 (i.e., BCMA-7×19 CAR-T cells), and demonstrated

that BCMA-7×19 CAR-T cells exhibited superior expansion, differentiation, migration

and cytotoxicity. Furthermore, we have been carrying out the first-in-human clinical trial

for therapy of R/R MM by use of BCMA-7×19 CAR-T cells (ClinicalTrials.gov Identifier:

NCT03778346), which preliminarily showed promising safety and efficacy in first two

enrolled patients. The two patients achieved a CR and VGPR with Grade 1 cytokine

release syndrome only 1 month after one dose of CAR-T cell infusion, and the responses

lasted more than 12-month. Taken together, BCMA-7×19 CAR-T cells were safe

and effective against refractory/relapsed multiple myeloma and thus warranted further

clinical study.

Keywords: multiple myeloma, CAR-T, BCMA, IL-7, CCL19

INTRODUCTION

Multiple myeloma (MM) is characterized by the abnormal expansion of bone marrow plasma
cells (1). Despite the advent of new therapies such as monoclonal antibodies, immunomodulatory
drugs, and autologous stem cell transplant, MM remains incurable (2, 3). Treating patients
with refractory/relapsed multiple myeloma (R/R MM) is challenging, and new treatments are
critically needed.
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In recent years, chimeric antigen receptor (CAR)-T cell
immunotherapy has made outstanding advances in the
treatment of B-cell malignant hematological tumors (4–9). CARs
are synthetic fusion molecules, mostly single-chain fragment
variables (scFvs) derived from a monoclonal antibody (mAb)
(10). CAR-T cells can specifically recognize surface molecules
on target cells independent of major histocompatibility complex
(MHC)-peptide presentation and subsequently induce target
cell lysis through the release of perforin and granzyme B (11).
Fourth-generation CAR-T cells, known as armored CAR-T cells,
co-express key cytokines, such as interleukins and chemokines,
or suicide genes that can significantly enhance the efficacy and
safety of CAR-T therapy (1, 12, 13).

B-cell maturation antigen (BCMA) (14–16) is a cell surface
protein expressed in tumor cells and involved in the maturation
and differentiation of B cells into plasma cells. BCMA is highly
expressed in malignant MM plasma cells but rarely found in
normal tissue, except normal plasma cells (17, 18), whichmakes it
a promising target for BCMA-directed immunotherapy. Previous
clinical studies have shown efficacy against MM (19); however,
a lack of durable effector functions by conventional CAR-T
cells lead to up to 50% relapse (15, 20). Further studies have
to be conducted urgently to determine the optimal CARs for
treating MM.

To decrease MM relapse, we developed a fourth-generation
BCMA-targeted CAR-T secreting IL-7 and CCL19 for R/R
MM with superior long-term effector functions. Studies have
indicated that IL-7 and CCL19 play important roles in the
maintenance and formation of the T-zone in lymphoid organs
(21, 22). IL-7, a non-hematopoietic cell-derived cytokine critical
for the development of the immune system, is a major regulator
of proliferation and homeostasis of CD8 and CD4T cells (23–25).
CCL19, which is constitutively expressed by stromal cells in the
lymphoid T-zone (26, 27), is a chemotactic agent for dendritic
cells and T cells migrating to secondary lymphoid tissue and
plays an important role in the initiation of the adaptive immune
response (28).

Here we demonstrated that BCMA-7×19 CAR-T cells are
capable of eradicating MM cells both in vitro and in vivo
and showed preliminarily their promising safety and efficacy in
the first two enrolled patients of our ongoing first-in-human
clinical trial.

MATERIALS AND METHODS

Culture Conditions
MM1S, U266, and K562 cells, purchased from ATCC, were
maintained in RMPI-1640 medium (Sigma) and HEK-293T
cells were maintained in DMEM(Sigma) supplemented with
10% FBS (PAN), 1% sodium pyruvate (Gibco), 1% L-glutamine
(Gibco) and 1% Pen Strep (Gibco). All cells were cultured
under 5% CO2 at 37◦C and were routinely tested for
mycoplasma contamination.

Isolation and Transduction of T Cells
Peripheral blood mononuclear cells (PBMCs) were harvested
from healthy donors or patients and isolated by density

gradient centrifugation. T cells were enriched and activated
by anti-CD3/CD28 coated beads (Invitrogen) and cultured in
X-VIVO serum-free medium (Lonza, 04-744Q) supplemented
with 5% AB serum (Sigma), 10% nonessential amino acids
(Corning), 0.01% recombinant human IL-2, and 0.05% IL-7
and IL-15 (PeproTech). Transduction was performed with CAR-
encoding lentiviral vector after 24 h of stimulation, and lentiviral
transduction efficiency was assessed 7 days after transduction by
flow cytometry.

Flow Cytometry
FITC-labeled BCMA protein (ACRO) and PE-conjugated anti-
BCMA antibody were used to detect lentiviral transduction
efficiency and verify expression of the target antigen on tumor
cells. For intracellular staining, we used the Cytofix/Cytoperm
Kit (BD Biosciences) to fix and permeabilize cells, then labeled
the cells with APC-conjugated anti-IFN-γ antibody and APC-
conjugated anti-IL-2 antibody. Anti-CD62L antibody (PE), anti-
CCR7 antibody (PerCP-Cy5.5), anti-CD45RO antibody (FITC),
anti-CD45RA antibody (APC), anti-CD8α antibody (PE-Cy7),
and anti-CD4 antibody (APC-Cy7) were used to stain surface
markers on T cells. All antibodies of brands not mentioned above
were from BioLegend. Data were acquired with a BD FACS AriaII
(BD Biosciences) and analyzed with FlowJo X (FlowJo).

Cytokine Assays
Enzyme-linked immunosorbent assay (ELISA) was performed
to detect and quantify concentrations of soluble cytokine and
chemokine proteins. The culture supernatant of CAR-T cells
was retained 3 and 5 days after transduction, and levels of IL-
7 and CCL19 were analyzed with an IL-7 ELISA kit (R&D
Systems) and CCL19 ELISA kit (NeoBioscience), respectively.
Effector cells were co-cultured with MM1S (1 × 105 cells/well)
at a 1:1 ratio. After 24 h, a GM-CSF ELISA kit (BD Biosciences)
was used to measure the concentration of GM-CSF in the
culture supernatant.

Transwell Migration Assay
Chemotaxis on T cells was measured with a transwell (Corning)
with a 5µm pore permeable membrane insert. The transwell
chamber was placed in a 24-well plate (BIOFIL). CFSE-labeled
T cells were seeded in the upper chamber, and the 5-day
supernatant of the CAR-T cell culture was added to the lower
chamber. The cells were incubated at 37◦C and 5% CO2, and
the number of cells that migrated from the upper to the lower
chamber was evaluated under a fluorescence microscope.

Cellular Cytotoxicity Assays
Bioluminescence assays of luciferase were performed to
determine cytotoxic activity of CAR-T cells against BCMA-
expressing target cells. 1 × 104 target cells were co-incubated in
a flat-bottomed 96-well tissue culture plate (BIOFIL) for 4 h with
CAR-T cells at various E:T ratios. Untransduced cells served
as a negative control. One group in which only target cells and
RPMI1640 medium were added was set as the maximum value
(Max), and another group that contained target cells and ddH2O
was set as the minimum background value (Min). Each group
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FIGURE 1 | Efficient expression of CAR on lentiviral-transduced T cells and functional verification of IL-7 and CCL19. (A) Schematic representation of BCMA-hBBz

CAR and BCMA-7x19 CAR. (B) CAR expressions of CAR-T cells were analyzed by flow cytometry. The numbers in scatter plots represent the percentages of

positively stained cells. (C) The expression rates of BCMA CAR and BCMA-7x19 CAR. Data are means± SD obtained from seven donors. MOI = 80. P-value was

calculated by two-tailed student t-test. ns, not statistically significant (P > 0.05). (D) Quantitative detection of IL-7 (left) and CCL19 (right) secretion by ELISA.

(E) Number fold change of BCMA-hBBz and 7 × 19 CAR-T cells at the indicated time-points. ****P < 0.0001 by two-way ANOVA. (F) The count of migrating T cells

(N = 3). ****P < 0.0001 was calculated by two-tailed student t-test. ***P < 0.001.
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consisted of three auxiliary holes. Specific lysis was calculated as
follows: lysis (%)= (Max – V)/(Max – Min)× 100%.

In vivo Analysis of CAR-T Activity
NSG mice were purchased from GemPharmatech and injected
intravenously with 4× 106 BCMA-K562-Luc-GFP cells on day 0.
Mice were randomly divided into two cohorts (n= 3 per cohort).
Then 6 × 106 BCMA-7×19 CAR-T cells (experimental group)
and mock-T cells (control group) were injected intravenously
on day 7. Tumor burden was measured by intraperitoneal
injection of 150 mg/kg D-luciferin and imaging 2min later with
an exposure time of 30 s by the IVIS R© Spectrum BL. Living
Image was used to assess bioluminescence for each mouse as
photons/s/cm2/sr. Imaging was performed on days 7, 10, 17, and
24 to monitor tumor progression. All reagents and instruments
not annotated above were from PerkinElmer.

Statistical Analysis
All statistical analyses were performed with GraphPad Prism
v6.0. The data are shown as the mean ± SD (N = 3). Two-
way analysis of variance (ANOVA) by multiple comparisons test
and the two-tailed unpaired t-test were used for comparison of
3 or 2 groups, respectively. Differences at P-values < 0.05 were
considered significant.

Study Design and Participants
This study reports early clinical experience from the Sixth
Affiliated Hospital of WenzhouMedical University. The protocol
is included in Figure 4B. Enrolled patients were 18–80 years
old with a confirmed diagnosis of R/R MM as defined by
International MyelomaWorking Group criteria (29). All patients
provided written informed consent before treatment. The study
was approved by the Ethics Committee of the Sixth Affiliated
Hospital of Wenzhou Medical University.

Assessments
AEs were identified and graded according to the Common
Terminology Criteria for Adverse Events (CTCAE) v5.0. CRS
was assessed with the modified criteria proposed by Lee et al.
(30). We assessed CR and VGPR according to International
Myeloma Working Group (IMWG) updated diagnostic criteria
for multiple myeloma in this clinical trial (31, 32)

RESULTS

Generation and Characterization of
BCMA-7×19 CAR-T Cells
We constructed the plasmids carrying the second-generation
CAR (BCMA-hBBz), which contained the anti-BCMA scFv,

FIGURE 2 | Phenotype of CAR-T cell. (A) Expression of CD45RA and CD45RO on CAR-T cells subsets in CD62L+ cells by flow cytometry. Tcm

(CD62L+CD45RO+CD45RA−), Tscm (CD62L+CD45RO−CD45RA+). (B) Statistical chart of subset distribution. (C) CD4/CD8 ratios of CAR-T cells were analyzed by

flow cytometry. (D) Change of Tscm ratio at the indicated time-points. P-value was calculated by two-way ANOVA. *P < 0.05, ****P < 0.0001.
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FIGURE 3 | Cytotoxicity analysis of BCMA-hBBz and 7×19 CAR-T cells in vitro and in vivo. (A) MM1S-Luc-GFP, U266-Luc-GFP and BCMA-K562 cell lines stably

expressing BCMA and luciferase. (B) CAR-T cells and target tumor cells were co-incubated for 4 h at the indicated E:T ratios. Cytotoxicity assay with BCMA-K562

(Continued)
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FIGURE 3 | (left), MM1S-Luc-GFP (middle) and U266-Luc-GFP cells as targets (right). Differences between groups were determined using two-way ANOVA. Mean ±

SD, ****p < 0.0001. (C) Cytokine release by CAR-T cells in response to multiple myeloma cell lines. CAR-T or mock-T cells were incubated with MM1S-Luc-GFP cells

at 1:1 for 24 h, IL2 (left), IFN-γ (middle) and GM-CSF (right) were analyzed by intracellular staining or ELISA. P-value was calculated by two-tailed student t-test. ***P <

0.001. ns, not statistically significant (P > 0.05). (D) Flow chart of animal experimentation. (E). On day 0, NSG mice were injected intravenously with 4 × 106

BCMA-K562 cells. On day 7, mice received 6 × 106 BCMA-7×19 CAR-T cells (n = 3), BCMA-hBBz CAR-T cells (n = 3) or mock-T cells (n = 3). Luciferase

bioluminescent imaging analysis on days 7, 10, 17, and 24. (F) Average bioluminescent signal for each group in different days [mean radiance (p/s/cm2/sr)] ±SD.

the CD8 transmembrane region, and the intracellular signaling
domains of human 4-1BB and the CD3ζ motif in tandem.
A 2A linker sequence was inserted directly downstream of
CARs followed by IL-7 and CCL19 molecules for equal molar
expression, designated BCMA-7×19 CAR (Figure 1A). Flow
cytometric data showed high transduction efficiency in both
BCMA-hBBz CAR-T and BCMA-7×19 CAR-T on day 5 after
transduction (Figures 1B,C).

We next validated the functional secretion of IL-7 and
CCL19 separately. As shown in Figure 1D, significantly
increased concentrations of IL-7 and CCL19 were observed in
BCMA-7×19 CAR-T cells compared to mock-T and BCMA-
hBBz CAR-T cells on days 3 and 5. In line with the facts
that IL-7 enhances the proliferation of T cells and CCL19
is a chemoattractant for CCR7+ T cells (23, 24, 28, 33), we
examined the absolute number of cells and performed transwell
migration assay. The results demonstrated that IL-7 secreted
by BCMA-7×19 CAR-T cells enhanced the proliferation and
survival of CAR-T cells, and CCL19 promoted lymphocyte
migration and recruitment of peripheral T lymphocytes
(Figures 1E,F).

An Extraordinarily High Proportion of Stem
Cell-Like Memory T cells (Tscm)
Naïve T cells differentiate into Tscm, central memory T cells
(Tcm), effector memory T cells (Tem), and effector T cells
(Teff). Preclinical models revealed that Tscm—defined by the
expression of CD45RA, CD45RO, and CD62L—had greater
potential for self-renewal and pluripotent differentiation, longer
persistence and greater anti-tumor activity compared to Tcm
(34–36). BCMA-7×19 CAR-T cells showed a higher Tscm
ratio by flow cytometry due to delayed terminal differentiation
(Figures 2A,B). The CD4/CD8 ratio showed no significant
difference (Figure 2C). We also monitored changes in the Tscm
ratio at 5, 7, and 9 days after transduction. Results showed that
the durable and effectiveness of BCMA-7×19 CAR-Tscm vs. Tcm
was time-independent, indicating that it probably had a higher
and longer anti-tumor potential (Figure 2D).

Cytotoxicity of BCMA-7×19 CAR-T Cells in
vitro and in vivo
To determine the anti-tumor activity of BCMA-7×19 CAR-
T cells in vitro, we generated U266-Luc-GFP, MM1S-Luc-GFP,
and BCMA-K562-Luc-GFP cells, which could simultaneously
express the target antigen and luciferase (Figure 3A). We next
determined cytotoxicity by co-culturing T cells with the three
target cells. BCMA-hBBz CAR-T and BCMA-7×19 CAR-T cells
specially and effectively lysed the BCMA-expressing cell lines,
whereas mock-T cells showed a background killing at various

TABLE 1 | Baseline characteristics.

Characteristic Patient

1 2

Age (years) 69 62

Sex Male female

ECOG 1 0

Prior therapies (1) VAD (1) VAD

(2) PAD (2) PAD

(3) PID (3) VMD

(4) Len+ DXM

(5) Len+ DXM+ CTX

Prior lines of therapy 3 5

Relapsed/refractory status Refractory second or

higher line of therapy

Refractory third line of

therapy

Primary diagnosis/sub-type MM IgD-λ MM IgA-κ

Durie-Salmon IIIA IA

VAD, vincristine, doxorubicin, dexamethasone; PAD, bortezomib, doxorubicin,

dexamethasone; PID, bortezomib, idarubicin, dexamethasone; CTX, Cyclophosphamide;

Len, lenalidomide.

effector-to-target cell (E:T) ratios. It needs to be emphasized
that BCMA-7×19 CAR-T cells showed significantly stronger
cytotoxicity compared to BCMA-hBBz CAR-T cells at low E:T
ratios (Figure 3B). Moreover, we verified similar levels of IL-2,
IFN-γ, and GM-CSF released by CAR-T cells after specific killing,
which were strongly associated with neurotoxicity and cytokine
release syndrome (CRS; Figure 3C).

Subsequently, we assessed the anti-tumor effects of
BCMA-7×19 CAR-T cells in vivo (Figure 3D). NSG mice
were inoculated with 4 × 106 BCMA-K562-Luc-GFP cells
intravenously on day 0 as a xenogeneic model of MM. On day 7,
the xenogeneic mice were treated with an intravenous injection
of 6 × 106 BCMA-7×19 CAR-T cells, BCMA-hBBz CAR-T
cells or untransduced mock-T cells. As shown in Figures 3E,F,
the mice treated with BCMA-7×19 CAR-T cells displayed a
significant decrease in systemic tumor burden as evidenced by
signal intensity 17 days after cell infusion. By contrast, luciferase
activity rapidly and steadily increased in mice injected with the
mock-T cells. Taken together, our data showed that BCMA-7×19
CAR-T cells efficiently andmarkedly lysed tumor cells expressing
BCMA on the surface in vivo and ex vivo.

Demographics and Baseline
Characteristics
We obtained the following results from two R/R MM patients
showing the safety and efficacy of BCMA-7×19 CAR-T cell
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therapy. The patients had received three to five prior lines
of treatment but eventually developed R/R MM. The clinical
baseline characteristics of the two subjects were summarized
in Table 1. Patient 1, a 69-year-old man, presented with a
soft tissue mass in the left fourth rib about 72 × 110mm
and progressive extramedullary recurrence of IgD-λ-R/R MM.
Patient 2 had been diagnosed with IgA-κ MM for 9 years;
classic proteasome inhibitors and immunomodulators combined
with traditional chemotherapy regimens had been used for
many courses, but efficacy was poor and adverse drug reactions
were unbearable. Patient 1 received a single injection of 4
× 106/kg BCMA-7×19 CAR-T cells, and Patient 2 received

a single injection of 3 × 106/kg BCMA-7×19 CAR-T cells.
The treatment scheme for the two patients was detailed in
Figure 4B. The manufacturing of clinical grade CAR-T cells
was successful in the two patients; the characterization of
CAR-T cells, including phenotype and specific cytotoxicity,
were shown in Table 2, Supplementary Figures 1, 2. The
subjects received no other chemotherapy since enrolling in
the study.

Safety and Adverse Events (AEs)
AEs attributable to any cause occurring within 46 days of BCMA-
7×19 CAR-T cell infusion were graded and evaluated according

FIGURE 4 | Clinical efficacy after BCMA-7×19 CAR-T infusion. (A) Duration of response and survival after BCMA-7X19 CAR-T cell infusion. (B) Scheme for CAR-T

preparation and treatment. (C) Patient 1, serum immunoglobulin IgG, IgA, IgM are in the normal range, both before and after infusion. (D) Patient 1, representative CT

scans at different baselines (baseline1: First extramedullary recurrence of multiple myeloma; 1 year after Len and DXM induction therapy shown in baseline 2:

progression of extramedullary recurrence; baseline 3: 1 month before BCMA-7X19 CAR-T infusion); and CT scans post-CAR-T cell infusion 1, 4, and 10 months.

Scale bars, 1 cm. (E) Patient 2, monitoring of urine light chain protein and (F) Serum immunoglobulin IgG, Ig A, Ig M levels before and after treatment. (G) Serum

kinetics of a panel of cytokines in patients who received infusions with high doses of CAR-T cells, as determined by Luminex multiplex assay (R&D Systems)

Horizontal lines denote mean values.
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TABLE 2 | Characteristics of CAR-T products.

Specification Patient 1 Patient 2

Mycoplasma Negative Negative Negative

Sterility (bacterial)a Negative Negative Negative

Endotoxin (EU/mL)a <3.5 <0.1 <0.1

CD3+% >90% 99% 97.00%

CAR+ in CD3+% >20% 71.20% 46.60%

CD4+ in CAR-T% N/A 58.90% 26.80%

CD8+ in CAR-T% N/A 39.00% 70.00%

TSCM in CAR-T% N/A <0.1% 58.09%

TCM in CAR-T% N/A 97.40% 18.60%

CAR T cells/kg × 106 N/A 4 3

CD8/CD4 CAR-T cell ratio N/A 0.68 2.7

T cell expansion fold N/A 350 500

Cancer cell killing activity E: T = 5:1 92 ± 2.9% 92 ± 2.3%

Cell viability before transfection >90% 97 ± 0.3% 98 ± 0.5%

Cell viability after transfection >90% 98 ± 0.5% 96 ± 0.67%

Manufacturing time (days) N/A 11 10

aResults were not available at the time of infusion. E: T effect cell (CAR-T/Mock T): target

cell (MM1S).

TABLE 3 | Adverse event grading based on CTCAE v5.0.

Events Patient 1 Patient 2

Any AE within 30 days of CAR-T infusion

Febrile neutropenia 0 1

Neutropenia 3 3

Anemia 2 2

Chest tightness 0 1

Thrombocytopenia 2 3

AST increased 1 0

Gastrointestinal bleeding 1 1

Low albumin 1 2

Fatigue 0 2

Hypocalcemia 1 1

Hyponatremia 1 1

Hypophosphatemia 1 1

Hypotension 1 0

Fever 2 0

Hypertension 0 2

Hyperglycemia 0 1

Appetite 0 1

AST, Aspartate-aminotransferase; GGT, glutamyl-transpeptidase.

to CTCAE v5.0 (Table 3). Both patients received scheduled doses,
and there was no dose-limiting toxicity. No serious adverse effects
(>grade 3 AEs) were noted in either patient. AEs included
maximum grade 2 and grade 1 events in patient 1 and patient
2, respectively, and neither patient experienced neurological
symptoms (Table 3, Supplementary Table 1). Grade 1 CRS
occurred in the two patients, according to Lee’s (30) CRS grading

criteria. The most common AEs related to BCMA-7×19 CAR-
T cell infusion were neutropenia, thrombocytopenia, anemia,
and fever. In addition to adverse hematological symptoms,
both patients experienced grade 1 gastrointestinal bleeding and
grade 1–2 hypoproteinemia. All AEs ranged from grade 1 to
grade 3 in severity and resolved without special treatment.
It is important to point out that AEs were self-limiting and
reversible. Immunotherapy-induced changes in vital signs and
kidney indicators, such as blood pressure, pulse, heart rate,
respiration, CRP, uric acid and creatinine, were within the
normal range and controllable (Supplementary Figure 3). Based
on the safety profile of the two assessable DLT patients
in phase 0, this regimen was deemed safe for study in
phase 1.

Clinical Response and Persistence
The two patients had an objective response within 1 month after
BCMA-7×19 CAR-T cell infusion, with patient 1 achieving a
VGPR of extramedullary recurrence and patient 2 attaining a
CR (Figure 4A). As of April 12, 2020, the length of follow-up
was 14 and 12 months of patient 1 and patient 2, respectively.
Patient 1 was treated with lenalidomide plus dexamethasone
for 11 months after diagnosis of extramedullary recurrence.
A soft tissue mass on the fourth left rib progressed from 34
× 45mm to 51 × 81mm. Even after five courses of multi-
drug chemotherapy, the soft tissue expanded to 72 × 110mm
(Figure 4D). A representative computed tomography (CT) scan
showed a significant reduction in the size of the plasma cell tumor
mass that maintained for more than 14 months (Figure 4D).
Serum IgA, IgD, and IgM concentrations were within the normal
range (Figure 4C). Patient 2 had undergone multiple courses of
chemotherapy with poor efficacy, intolerable adverse reactions,
and aggravation of thigh pain dependent on painkillers. After
2 months of CAR-T treatment, blood and urine concentrations
of IgA and light chain protein decreased to regular base levels
(Figures 4E,F).

Wemonitored plasma levels of seven cytokines before BCMA-
7×19 CAR-T cell infusions and at multiple time-points after
infusions. The peak fold increases over the baseline level were
calculated for each cytokine for each patient (Figure 4G). The
cytokines with the largest median fold increases were interferon-
γ, IL-6 and IL-10. The cytokines with high peak blood levels
are associated with CRS (35), and peripheral CAR+ cell levels
are associated with anti-tumor responses in patients treated with
CAR-T cells (37, 38). Ultimately, these data have demonstrated
that BCMA-7×19 CAR-T cell therapy has potential clinical
efficacy and durability with good safety.

DISCUSSION

To the best of our knowledge, this is the first preclinical and
clinical study of anti-BCMA CAR-T cell secreting of IL-7 and
CCL19 to treat R/R MM patients. The results are promising.
First, 7×19 CAR-T cells targeting BCMA exhibited superior
expansion, survival, accumulation of Tscm cells, migration and
cytotoxicity compared to their traditional second-generation
CAR-T counterpart. Second, the conditioning regimen of
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cyclophosphamide and fludarabine (day−4) followed by BCMA-
7×19 CAR-T cells (day 0) at a dose of 4 × 106 cells/kg was
safe for further study and the toxicity was manageable. Finally,
patients with R/R MM who received an infusion of BCMA-
7×19 CAR-T cells responded effectively within 1 month and
experienced no relapse inmore than 12months. The encouraging
results facilitated the pivotal ongoing BCMA-7×19 phase
1 trial.

CAR-T cell immunotherapy is a significant milestone in
modern cancer treatment. In the past 5 years, 125 clinical trials
of CAR-T for R/R MM have been listed at https://clinicaltrials.
gov, including 72 ones targeting BCMA. BB2121, a CAR-T
cell therapy targeting BCMA, has received FDA breakthrough
therapy approval and European Medicines Agency (EMA)
priority approval. Neither VGPR nor CR was achieved in a low-
dose group (50 × 106 cells, n = 3); When the number of CAR-T
cells increased to≥150× 106 cells, the efficacy reached up to 94%,
but this was accompanied by toxic hematological effects mostly
of grade 3 or higher (39–41). It was recently reported that 6 of 15
patients who achieved complete remission experienced a relapse
in just 6months of follow-up (42). Overall, further improvements
of CAR-T cell therapy in MM will be needed: optimizing the
persistence and survival of CAR-T cells, decreasing the toxicity
associated with CAR-T cell therapy, specifically targeting tumor
cells and minimizing off-target toxicities.

Improving CAR persistence will rely heavily on understanding
the biology of CAR-T cells and on the functionality and
subsequent optimization of designs (43). Preclinical and clinical
reports have indicated that 4-1BB co-stimulatory domain-
containing CARs tend to persist better than those containing a
CD28 co-stimulatory domain (44–48). Our BCMA-7×19 CAR
vector contained a binding domain that recognizes BCMA,
a CD8 transmembrane region, an intracellular 4-1BB co-
stimulatory molecule, and a CD3ζ T cell signaling domain. IL-7
regulates the proliferation of T cells and maintains the stability of
the intracellular environment (25), and CCL19 is a chemotactic
agent for recruiting CCR7+ T cells and dendritic cells (22, 28,
49, 50). We showed the superiority of our BCMA-7×19 CAR-
T cells in terms of proliferation and chemotaxis by calculating
absolute cell counts and performing transwell migration assay,
which provided a good start-up for solving the problems such
as CAR-T cell proliferation, infiltration and accumulation in the
tumor microenvironment.

Tscm are distinguishable from Tcm and Tem in phenotype,
functional capacity to expand extensively, self-renewal, and
differentiation potential (51–53). Several clinical studies have
shown that the modifications to induce differentiation toward
a Tcm/Tscm profile improve CAR-T cell response in subjects
(54, 55). We confirmed a significant increase in the frequency
of Tscm in BCMA-7×19 CAR-T cells by multiple cell surface
marker analyses, which may be related to IL-7 in retaining the
subpopulation of Tscm, compared to BCMA-hBBz CAR-T cells
(56). In contrast, there was no difference in the frequencies
of CD4+ and CD8+ CAR cells. Moreover, we successfully
manufactured BCMA-7×19 CAR-T cells (Tscm + Tcm > 75%)
for the first enrolled R/R MM patients, with one patient’s Tscm
up to 58%.

We have initiated a clinical trial to evaluate the safety and
efficacy of BCMA-7×19 CAR-T cells in R/R MM patients.
The first two enrolled and heavily treated R/R MM patients
received autologous CAR-T cells (3–4 × 106/kg) following
lymphodepletion chemotherapy with cyclophosphamide (300
mg/m2 for 4 days) and fludarabine (30 mg/m2 for 4
days). Clinically significant toxicity was not observed, and
most AEs were grade 1 or 2. Only two AEs (neutropenia
and nausea) were grade 3 and were most likely related
to cyclophosphamide/fludarabine. No high-grade AEs were
recorded. None of the subjects experienced a DLT, and thus
a maximum tolerated dose of CAR-T cells has not been
determined yet.

In conclusion, this work preliminarily suggests that BCMA-
7×19 CAR-T cells have substantial anti-MM activity and
safety, although the small number of patients enrolled is
a weakness of this study. Our study may help pave the
way toward clinical application of BCMA-targeted fourth-
generation CAR-T cells and thus highlight a potential strategy
for dealing with malignancies of BCMA overexpression such as
Waldenstrommacroglobulinemia and glioblastoma/astrocytoma
(57, 58).
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