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Integrated single-cell multiomics analysis reveals
novel candidate markers for prognosis in human
pancreatic ductal adenocarcinoma
Xiaoying Fan1,2, Ping Lu1, Hongwei Wang3, Shuhui Bian 1,4,5, Xinglong Wu 1,6, Yu Zhang1,4, Yang Liu3, Danqi Fu3,
Lu Wen1, Jihui Hao3✉ and Fuchou Tang 1,4,7✉

Abstract
The epigenomic abnormality of pancreatic ductal adenocarcinoma (PDAC) has rarely been investigated due to its strong
heterogeneity. Here, we used single-cell multiomics sequencing to simultaneously analyze the DNA methylome, chromatin
accessibility and transcriptome in individual tumor cells of PDAC patients. We identified normal epithelial cells in the tumor
lesion, which have euploid genomes, normal patterns of DNA methylation, and chromatin accessibility. Using all these
normal epithelial cells as controls, we determined that DNA demethylation in the cancer genome was strongly enriched in
heterochromatin regions but depleted in euchromatin regions. There were stronger negative correlations between RNA
expression and promoter DNA methylation in cancer cells compared to those in normal epithelial cells. Through in-depth
integrated analyses, a set of novel candidate biomarkers were identified, including ZNF667 and ZNF667-AS1, whose
expressions were linked to a better prognosis for PDAC patients by affecting the proliferation of cancer cells. Our work
systematically revealed the critical epigenomic features of cancer cells in PDAC patients at the single-cell level.

Introduction
Pancreatic cancer, which is named the king of cancers,

is highly lethal with extremely poor prognosis1,2. Pan-
creatic ductal adenocarcinoma (PDAC) is the most
common type of pancreatic cancer, and surgical resection
is the only chance for the cure; however, no more than
20% of PDAC patients are eligible for this treatment
strategy3. Whole-genome analyses of PDAC tissues have
uncovered key driver mutations, pathways, and sub-
types4–7, and the DNA methylation analysis at bulk level
revealed frequent hypomethylation of multiple genes,
including the HOX cluster and histone core proteins8,9.

Meanwhile, more genes are hypermethylated, such as
SMAD4, STAT4, zinc finger proteins, and the SLIT-
ROBO signaling pathway genes9,10, indicating extremely
complicated regulation mechanisms. Single-cell sequen-
cing studies have largely revealed intratumoral hetero-
geneity by gene expression profiles11–13. Especially, these
studies demonstrated the characteristics of different types
of cells in the tumor microenvironment, offering clues on
the molecular changes of epithelial cells during cancer
progression. A recent study explored the enhancer net-
work in mouse pancreatic cancer model14, where they also
included scATAC-seq data from a PDAC patient to show
the difference in the chromatin status between normal
and cancer cells. These single-cell epigenetic data from
patients were quite limited for comprehensive analysis,
especially for identifying the global features of PDAC
cells. The epigenetic characteristics of PDAC cells remain
largely elusive due to their extremely high intratumoral
stromal content15.
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Here, we improved our single-cell multiomics sequen-
cing method16, integrating modified STRT-seq17 with
scCOOL-seq18 to simultaneously assess the genome (copy
number variations), DNA methylome, chromatin acces-
sibility, and transcriptome in the same individual cell (see
“Materials and methods” section). The integration of
multiomics data set was performed through correlation
analysis between every two modalities with exactly the
same cell IDs19. We applied the technique to characterize
epithelial cells inside the primary tumor tissues (Pris) and
adjacent normal tissues (Adjs). We performed multi-
regional sampling for a total of 13 PDAC patients (stages I
and II), generating 1295 high-quality single-cell multio-
mics profiles to fully investigate how multiple omics
coordinate with each other to determine the hetero-
geneity of PDAC cells.

Results
Characterizing epigenome of normal epithelial cells in the
primary tumor tissue
Single-cell multiomics sequencing technology was

applied to epithelial cells in multiple regions of Pris and
Adjs of 13 PDAC patients (Supplementary Figs. S1 and
S2). To precisely analyze the cancer cells without being
confounded by other types of cells, we first refined the
epithelial cells by dimension reduction and cell clustering
based on the gene expression profiles. Then we chose the
corresponding nuclear fractions of these epithelial cells to
perform scCOOL-seq one by one, generating high cover-
age data for each individual cell (Supplementary Fig. S1b, c
and Table S1). Totally 3225 single cells from all patients
were obtained for dimension reduction and cell clustering
after quality control. The majority (89%) of the cells were
confirmed to be epithelial cells, which were allocated into
11 clusters with most of the clusters showing patient-
specific features, indicating strong inter-patient hetero-
geneity in the PDAC cells (Supplementary Fig. S3a). The
remaining small part of the cells were non-epithelial cell
types which were identified as macrophages, T cells and
fibroblasts, showing consistent gene expression features
among different patients as expected (Supplementary
Fig. S3b, c). To reveal the genomic heterogeneity of cancer
cells, we further performed subclustering of the epithelial
cells in each patient (Fig. 1a and Supplementary Fig. S4).
Interestingly, we observed that 29.6% (24 out of 81) and
8.4% (37 out of 438) of the epithelial cells from primary
tumor tissues of P07 and P11, respectively, clustered
together with those from adjacent normal tissues of the
corresponding patients, indicating that primary tumor
tissues may contain a significant proportion of non-cancer
epithelial cells (Norm_epi) (Fig. 1b and Supplementary
Fig. S4a, c). We further analyzed the somatic copy number
alteration (SCNA) pattern in each individual cell and
confirmed that these normal epithelial cells from Pri have

euploid genomes, clearly different from the cancer cells
with abundant SCNAs in the same patients (Fig. 1b and
Supplementary Fig. S4).
From 8 out of these 13 patients, we obtained a sig-

nificant proportion of Norm_epi cells with euploid
genomes in the primary tumor lesions (Fig. 1b and
Supplementary Figs. S4, S5, Table S1), and we named
them Norm_epi_Pri cells. In addition, 88% (21 out of
24) and 41% (15 out of 37) of Norm_epi_Pri cells were
clustered together with Norm_epi_Adj cells in P07 and
P11, respectively, while the remaining cells were
similar to cancer cells in gene expression. We further
evaluated the DNA methylome and chromatin acces-
sibility in these cells. We obtained scCOOL-seq data
from Norm_epi_Adj in P07 and P11, and found com-
parable DNA methylation patterns and chromatin
accessibility patterns between Norm_epi_Pri cells and
Norm_epi_Adj cells (Fig. 1c). The cancer cells showed
globally lower DNA methylation levels (5%–20% lower)
than the Norm_epi cells in each patient except P05 in
our data set (Fig. 1c). The chromatin accessibility was
not uniformly increased for different patients (Fig. 1c).
Using multidimensional scaling (MDS) of the DNA
methylation levels at gene promoter regions, the Nor-
m_epi_Pri cells clustered together with Norm_epi_Adj
cells in all patients, indicating comparable promoter
methylation patterns between these two types of cells.
The cancer cells in different patients exhibited differ-
ent DNA methylation patterns of promoter regions
according to the rather dispersed distributions of these
cells on the MDS map (Fig. 1d and Supplementary Fig.
S6a). With regard to chromatin accessibility, although
the global level in cancer cells varied for different
patients (Fig. 1c), the Norm_epi_Adj and Norm_epi_-
Pri cells were clustered together but separated from the
cancer cells based on the GCH methylation level in
promoter regions, indicating comparable chromatin
states between the Norm_epi_Adj and Norm_epi_Pri
cells in gene promoter regions (Fig. 1e and Supple-
mentary Fig. S6b).
To validate that the Norm_epi_Pri cells truly existed in

tumor tissues but did not result from the potential experi-
mental contaminations, we compared the gene expressions
of the Norm_epi cells and the cancer cells within individual
patients, and identified the specifically expressed genes in the
Norm_epi cells (Supplementary Fig. S7a). Two genes were
chosen to be general Norm_epi cell markers. One is CTRB2,
which was reported to be associated with pancreas digestion
function20,21 and the other gene REG1A could promote the
acinar-to-ductal metaplasia (ADM) process22–24. We further
did immunohistochemical staining of these two proteins in
the tumor tissues of the patients we analyzed. Indeed, most
of the patients’ tumor tissues contained REG1A- and CTRB2-
positive cells, just around the cancer cells (Supplementary
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Fig. S7b). Previous studies also implied the existence of the
relatively normal ductal cells (ductal 1 cells) in the tumor
tissues of PDAC patients11. To reveal whether the Nor-
m_epi_Pri cells identified by our single-cell multiomics
analysis were similar to those normal ductal cells identified
by the previous study, we compared these cell subsets
according to their gene expression patterns (Supplementary
Fig. S7c). Some of the Norm_epi_Pri cells clustered with
Norm_epi_Adj cells whereas the remaining ones were more
similar to cancer cells in gene expression, indicating that the

Norm_epi_Pri cells are genetically euploid and epigenetically
normal epithelial cells. Some of them showed normal RNA
expression patterns, while the remaining ones showed RNA
expression patterns more similar to their neighboring cancer
cells, probably due to their cancer microenvironment.

Aberrant DNA methylation in the gene body and promoter
regions in the cancer cells
Since the Norm_epi_Pri cells showed consistent sig-

natures with the Norm_epi_Adj cells for the genome,

Fig. 1 Normal epithelial cells were identified in the primary PDAC tissues. a Unsupervised UMAP showing the clustering of epithelial cells using
the transcriptome of P11. The red dashed line indicates epithelial cells in primary tumor tissue in the same cluster as those in adjacent tissue. b SCNA
map showing the high frequency of subchromosome-scale SCNAs in P11. The red dashed line indicates that a significant proportion of epithelial cells
in the primary tissue regions have euploid genomes and show similarity to epithelial cells in the adjacent tissue in RNA expression patterns. Other
patients are shown in Supplementary Fig. S4. The bar plot on the right shows the heterogeneity of the global DNA methylation level among the cells.
c Violin plot showing the global DNA methylation level and chromatin accessibility in the Norm_epi_Pri cells, Norm_epi_Adj cells and cancer cells of
each patient. The statistical test was carried out using the Wilcoxon rank-sum test. n.s., no significance; *P < 0.05; **P < 0.01; ***P < 0.001; ****P <
0.0001. Only patients with each type of epithelial cells >10 were shown. d MDS analysis of promoter DNA methylation levels for all epithelial cells
(1295 cells) from all 13 patients. The shadow in the dashed line indicates the relatively uniform promoter DNA methylation pattern for the Norm_epi
cells from both adjacent tissues and primary tumor tissues. e MDS analysis of promoter chromatin accessibility for all epithelial cells (1295 cells) from
all 13 patients. The shadow in the dashed line indicates the differences between cancer cells and the two types of Norm_epi cells.
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DNA methylome, chromatin accessibility, and for the
majority of the cases, we could not obtain the matched
Adjs, we set these cells as Norm_epi cell controls. When
analyzing the cross-omics relations, we found that the
positive correlation between RNA expression and cor-
responding gene body DNA methylation was clearly
stronger in cancer cells than that in normal epithelial
cells (Fig. 2a and Supplementary Fig. S8a). We further
explored the DNA methylation changes in gene body

regions for the genes with different expression levels. By
dividing genes into four groups according to their
expression levels in the Norm_epi cells, we found that
genes with lower expression levels showed stronger DNA
demethylation in gene body regions in the cancer cells
(Supplementary Fig. S8b, c). These results indicate that
the DNA hypomethylation of gene body regions may play
potential roles in tumorigenesis in PDAC patients. We
also found that the negative correlations between RNA

Fig. 2 DNA methylation shows a stronger correlation with RNA expression in cancer cells. a Spearman correlations between DNA methylation
levels across gene bodies (including 15 kb flanking regions) and corresponding RNA expression levels in each cell type in representative patients. The
boxplots at the bottom show the statistical test results between cancer cells and Norm_epi cells using the Wilcoxon rank-sum test. The promoter
regions are from –1 to +0.5 kb around the transcription start site (TSS), and the gene body regions are +2 kb from the TSS to the transcription end
site (TES). *P < 0.05; **P < 0.01; ****P < 0.0001. b Cancer cells have more genes with increased promoter DNA methylation. Representative genes
across multiple patients are labeled. c Overlap of higher methylated promoters across all patients. The purple lines indicate shared genes, and the
blue lines represent the same Gene Ontology terms. d Heatmap showing the top enriched biological terms of the cancer cell hypermethylated
promoters in each patient. e Example genes show a reversed pattern between the promoter DNA methylation level and RNA expression level. The
statistical test was carried out using the Wilcoxon rank-sum test. ****P < 0.0001.
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expression and promoter DNA methylation of corre-
sponding genes were much stronger in cancer cells than
in Norm_epi cells, indicating that the hypermethylation
of promoter regions may play role in tumorigenesis of
PDAC (Fig. 2a and Supplementary Fig. S8a). We sought
to identify the differentially methylated promoters
between Norm_epi cells and cancer cells in each patient
via stringent filtering criterion (see “Materials and
methods” and Supplementary Table S2). All 13 patients
showed more genes with increased promoter DNA
methylation than genes with decreased promoter DNA
methylation in cancer cells (Fig. 2b and Supplementary
Fig. S9a), consistent with the global hypermethylation of
promoter regions and CpG islands (CGIs) in PDAC
patients10. Many of the hypermethylated gene promoters
were shared across different patients, and they were
enriched for genes related to the neural system by Gene
Ontology (GO) analysis (Fig. 2c, d). This is consistent
with the report that GO terms of genome aberrations
and DNA methylation changes were largely enriched
with the axon guidance pathway genes7,10, and dysregu-
lation of these genes plays a role in tumor initiation and
progression25,26. Although there were only 13–152 genes
showing significantly lower promoter methylation levels
in each patient, these genes were usually consistent
across multiple patients (Supplementary Fig. S9b), indi-
cating consistent demethylation mechanisms for these
genes in cancer cells. A total of 53 genes were promoter
hypomethylated in cancer cells of at least 3 PDAC
patients, and these genes were enriched in GO terms
such as transporting organic acids and metal ions, epi-
thelial cell development, and negative regulation of
endopeptidase activity (Supplementary Fig. S9c). The
differentially methylated genes shared by all patients are
labeled in Fig. 2b and Supplementary Table S2, and these
genes could be potential DNA methylation biomarkers
for PDAC. A subset of 77 differentially methylated pro-
moters showed a clear negative correlation between
promoter DNA methylation and gene expression in the
cancer cells we analyzed (Supplementary Table S2). We
further compared these candidate biomarkers to those
reported by the previous studies based on abnormal
DNA methylation levels8–10,27,28. A subset of genes was
newly identified in our data set of integrated omics
information (Supplementary Table S2). We confirmed
that the DNA methylation of PDAC survival-associated
genes such as the voltage-gated calcium channel gene
CACNA1B was aberrantly regulated (Supplementary
Fig. S9d). XKR4 was also identified as a novel candidate
marker for PDAC (Supplementary Fig. S9d). Further-
more, ZNF667 and ZNF667-AS1, which were recently
reported in laryngeal squamous cell carcinoma29, were
identified as novel candidate markers for PDAC patients
(Fig. 2e and Supplementary Fig. S9e).

ZNF667 and ZNF667-AS1 as candidate novel markers for
prognosis in PDAC
ZNF667 and ZNF667-AS1 are head-to-head with each

other on chromosome 19, shared a large fraction of the
promoter region, but have no overlaps between these two
transcripts (Supplementary Fig. S10a). To further inves-
tigate whether these two genes are potential markers for
PDAC, we firstly did survival analysis using tissue
microarrays with ZNF667 antibody on 98 PDAC patients
and they showed heterogeneity of the protein abundance
(Fig. 3a). As expected, both overall (from diagnosis to
death) and progression-free (from surgery to relapse)
survival time were significantly longer in patients with
higher expression levels of ZNF667 (Fig. 3b), suggesting
ZNF667 as an effective marker in prognosis diagnosis of
PDAC. Moreover, the ZNF667 protein level was higher in
normal pancreas tissue than in the PDAC tissue (Sup-
plementary Fig. S10b), indicative of efficient biomarkers
for PDAC detection.
Next, we interrogated whether ZNF667 and ZNF667-

AS1 have functions in suppressing PDAC. We examined
the expression levels of these two genes in multiple pan-
creatic cancer cell lines. Compared to the normal cell line
of the human pancreas HPDE6-C7, all the pancreatic
cancer cell lines we analyzed showed much lower RNA
expression levels of ZNF667 and ZNF667-AS1, except for
L3.7, the cell line from a liver metastasis of pancreatic
cancer (Fig. 3c). As a control, the decrease of RNA expres-
sion of these two genes was not observed in HEK293T, a
human fetal kidney cell line (Fig. 3c). The ZNF667 protein
was also less abundant in the pancreas cancer cell lines
compared to that in control cell lines (Fig. 3d). Although the
pancreatic cancer cell lines also showed significantly lower
expression levels of these two genes, the methylation levels
of their promoter regions in these cell lines in vitro were
quite low, which was different from those we detected in the
patients in vivo (Supplementary Fig. S10c, d). On the other
hand, the promoter of these two genes in in vivo tumor
tissues was verified as highly methylated by bisulfite PCR-
coupled Sanger sequencing (Supplementary Fig. S10e),
suggesting different regulation mechanisms of these two
genes between in vitro cultured cell lines and in vivo cancer
cells in patients.
To investigate the potential functions of ZNF667 and

ZNF667-AS1 in suppressing pancreas tumorigenesis, we
separately overexpressed these two genes in two cancer cell
lines, PANC-1 and SW1990 (Fig. 3e–g). These two genes
showed inter-dependent expressions (Supplementary
Fig. S11a). By analyzing the CCK8-positive cell ratios, we
found that when overexpressing either ZNF667 or ZNF667-
AS1, the proliferation of both cell lines were slowed down
(Fig. 3h, i). This suggested that both of these two genes
suppress the proliferation of pancreas cancer cells. In addi-
tion, we calculated the correlation between the expression
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Fig. 3 ZNF667 and ZNF667-AS1 as novel markers for prognosis in PDAC. a Immunohistochemistry of ZNF667 shows variations of abundance
across patients using the tissue microarray analysis. b Overall survival and progression-free survival of self-collected PDAC patients grouped by the
abundance of ZNF667. c Relative abundance of ZNF667 and ZNF667-AS1 to ACTB mRNA in normal pancreas cells (HPDE6-C7), human embryonic
kidney cells (HEK293T), liver metastasis pancreas cancer cells (L3.7), and the pancreas cancer cells detected by RT-qPCR. All pancreas cancer cells
showed a decreased level of ZNF667 and ZNF667-AS1. *P < 0.05; **P < 0.01. d Immunoblot showing the decreased abundance of ZNF667 in multiple
pancreas cancer cell lines. The abundance was calculated at the bottom. e, f Validation of ZNF667 and ZNF667-AS1 overexpression (OE) in two
pancreas cancer cell lines. **P < 0.01; ****P < 0.0001. g Immunoblot showing the abundance of ZNF667 in PANC-1 and SW1990 cells before and after
overexpression. h, i Proliferation evaluation (CCK8-positive cell ratio) after ZNF667 and ZNF667-AS1 overexpression in two pancreas cancer cell lines.
n = 3 for each time point. **P < 0.001; ****P < 0.00001. j Evaluation of cellular apoptosis after ZNF667-AS1 overexpression in two pancreas cancer cell
lines. n.s., no significance.
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levels of these two genes and the cell cycle genes in pancreas
cancer bulk samples in TCGA. Both genes were negatively
correlated with the cell cycle genes in expression levels
(Supplementary Fig. S11b). On the other hand, we also
evaluated apoptosis after overexpressing ZNF667 and
ZNF667-AS1 in both cancer cell lines (Supplementary Fig.
S11c, d). In both cell lines, neither genes affected apoptosis in
general (Fig. 3j). Together, these results indicated that
ZNF667 and ZNF667-AS1 both suppress tumorigenesis of
PDAC via suppressing proliferation but not via promoting
apoptosis of cancer cells.

Subclones exist within PDAC primary tissue and global
DNA demethylation is enriched in heterochromatin
regions
The different SCNA patterns in the cancer cells could

indicate the emergence of subclones that occur during
tumorigenesis16,30. We then investigated the subclones in
patients with over 200 individual cancer cells sequenced
using SCNA clustering. The globally similar SCNAs in all
cells indicated a common genetic origin for cancer cells in
the same patient. A total of 289 cancer cells in P11 could
be clearly clustered into 3 subclones (Supplementary Fig.
S12a, b). We observed several subclonal SCNAs that also
appeared in some cancer cells belonging to other sub-
clones, indicating that reversible or convergent changes of
SCNAs may occur in the genomic regions during
tumorigenesis, making it difficult to trace the cancer cell
lineage derivation (Supplementary Fig. 12a). This phe-
nomenon was also observed in the cancer cells of P05
(Supplementary Fig. S12d, e), indicating the extremely
unstable genome in PDAC cells. As expected, the same
tumor regions contain cancer cells from different sub-
clones, but just with variable proportions, indicating
potential intratumoral migration and mixing between
different cancer subclones (Supplementary Fig. S12c).
Since the cancer cells from P11 exhibited highly het-

erogeneous DNA hypomethylation (Fig. 1b), we further
investigated whether the heterogeneity of DNA methyla-
tion was mainly between different subclones or within the
same subclone. Indeed, the cells in subclone1 and
subclone3 showed 10% lower DNA methylation levels
than those in subclone2 (Fig. 4a). Therefore, in PDAC, the
DNA methylation levels of cancer cells within the same
subclone are usually similar but can be quite different
between different subclones (Fig. 4b). The changes of
DNA methylation levels were not correlated with the
SCNAs in each subclone (Supplementary Fig. S13), indi-
cating that SCNA changes do not seem to affect the DNA
methylation of corresponding genomic regions.
In general, the PDAC cells in the same patient experi-

enced variable degrees of genome-wide DNA demethyla-
tion compared to the Norm_epi cells (except for P05 in the
study) (Figs. 1c and 4b). Since the repeat element long

interspersed element-1 (LINE-1) contributes ~17% of the
genome31, it is reasonable that it showed the decreased
methylation levels consistent with the whole-genome pat-
terns. On the contrary, the genomic regions such as CGIs,
promoters, and exon regions tend to have increased levels
of DNA methylation (Supplementary Fig. S14). Importantly,
the DNA demethylation levels in cancer cells were posi-
tively correlated with the densities of LINE-1 but negatively
correlated with densities of H3K4me3, H3K27Ac and
H3K36me3 (Fig. 4c), indicating that the DNA demethyla-
tion in PDAC cells was strongly enriched in the hetero-
chromatin regions (LINE-1-enriched regions), but depleted
in the euchromatin regions (H3K4me3-, H3K27Ac-, or
H3K36me3-marked regions)32. These results suggested that
PDAC tumorigenesis might involve the heterochromatin
disorganization, including their prevalent DNA demethy-
lation, similar to the situation in colorectal cancer, as we
previously showed16.

Open chromatin regions and corresponding transcription
factors (TFs) in PDAC tumorigenesis
As we obtained the pairwise chromatin accessibility

(GCH methylation level), we examined how this epige-
netic regulation affected gene expression levels. As
expected, the extent of open chromatin states in promoter
regions clearly positively correlated with the RNA
expression levels of the corresponding genes in all cell
types we analyzed (Fig. 5a). Despite the disparity in the
cell numbers of the Norm_epi cell group and the cancer
cell group, we used the same cutoff (detected in at least 11
individual cells in each group) and identified 64,339 and
265,213 nucleosome-depleted regions (NDRs, the geno-
mic regions with local open chromatin features) in Nor-
m_epi cells and cancer cells, respectively (Supplementary
Fig. S15a; see “Materials and methods”). Then we also
identified the shared open chromatin regions between
different patients by analyzing NDRs shared by at least
one-third of the cells in each group, and identified 64,339
and 47,622 NDRs in Norm_epi cells and cancer cells,
respectively, of which ~70% were shared by both groups
(Fig. 5b). This indicated that the majority of the cancer-
specific NDRs were individual patient-specific and only a
small percentage of the cancer-specific NDRs were shared
between different patients. A previous study has per-
formed scATAC-seq in limited PDAC patient samples14.
To evaluate the accuracy of our data, we compared the
open chromatin sites identified in normal and cancer cells
between both studies. With a much-enlarged sample size
and a more sensitive detection method, we captured many
more open chromatin sites in each cell type (Supple-
mentary Fig. S15b). Furthermore, 95.6% of the open
chromatin sites identified in the scATAC-seq of cancer
cells were the same as those in our scCOOL-seq of cancer
cells. 88.8% of the open chromatin sites identified in the

Fan et al. Cell Discovery            (2022) 8:13 Page 7 of 16



scATAC-seq of normal epithelial cells were the same as
those in our scCOOL-seq of normal epithelial cells
(Supplementary Fig. S15b). These results proved the
reliability of our data with higher sensitivity. We further
did GO analysis of the top 200 cell type-specific NDR-
related genes (Supplementary Fig. S15c, d). Interestingly,
the neural-related terms, which showed significant
enrichment in the cancer hypermethylated genes, were
enriched in the open chromatin sites of Norm_epi cells,
revealing that their mis-regulation on different omic lay-
ers was potentially involved in tumorigenesis of PDAC.
Cis-regulatory elements are important in maintaining

cell identities due to their typical binding with TFs33. We
further searched for significantly enriched TF binding

motifs using cancer-specific and Norm_epi-specific NDRs
separately and identified candidate regulatory TFs
potentially promoting or suppressing PDAC tumors
(Fig. 5c and Supplementary Table S3). Enrichment of TFs
proved important to drive PDAC progression, such as AP-
1 factors and E2F TFs14, was also observed in our data set
(Supplementary Table S3). The motifs of the Kruppel-like
factor subfamily genes such as KLF1/3/4/5/6/14 were
specifically enriched in the NDRs in the cancer cells34.
Some of the TFs with specifically enriched motifs in the
NDRs in cancer or Norm_epi cells also showed sig-
nificantly higher levels of RNA expression or promoter
chromatin accessibility, or lower levels of promoter
methylation in the corresponding cells (Fig. 5c, d and

Fig. 4 Genome-wide DNA demethylation in cancer cells is strongly enriched in heterochromatin regions. a Global DNA methylation levels
(1 kb tile) of single cells in each subclone of P11. b Genome-wide DNA demethylation heatmap (10 Mb window) of cancer cells compared to all
Norm_epi cells in P11. c Spearman correlations between DNA demethylation levels and the densities of genomic landmarks under different
resolutions in each patient.
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Supplementary Table S3). Moreover, their corresponding
RNA expression showed clear positive correlations in
both Norm_epi and cancer cells (Fig. 5d). Expressions of a
couple of cell type-specific TFs were further validated in
additional 6 sample pairs of PDAC patients by RT-qPCR
(Supplementary Fig. S15e). These genes, such as KLF335,
FOSL1, and FOSL236 (Fig. 5c and Supplementary Table

S3), might play regulatory roles in PDAC progression.
FOSL2, which showed higher RNA expression in cancer
cells, was also significantly correlated with the poorer
overall survival of the patients (Fig. 5d, e). Only less than
half of these TFs showed expression profiles matching the
DNA methylation changes at their promoter regions
(Fig. 5d and Supplementary Table S3), implying the

Fig. 5 NDRs and TF motif enrichment in PDAC. a Spearman correlations between chromatin accessibility across gene bodies (including 15 kb
flanking regions) and corresponding RNA expression levels in each cell type. b Venn diagram indicating the NDR numbers in cancer cells and
Norm_epi cells. NDRs in two types of cells are defined as a shared NDR when they have at least a 100-bp overlap. Merged NDRs in two types of cells
were defined with two standards: (1) NDRs were merged when they had at least a 100-bp overlap; (2) each merged NDR was detected in at least
11 cells in Norm_epi cell group and 53 cells in the cancer cell group. c Representative cancer-specific and Norm_epi-specific motifs and corresponding
candidate TFs. d RNA expression levels, chromatin accessibility, and DNA methylation levels in the promoter regions of each candidate TF. The
statistical test was carried out using the Wilcoxon rank-sum test. n.s., no significance; *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001. e, f Overall
survival of PDAC patients grouped by two representative genes. The survival data were obtained from the TCGA database.
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presence of regulation layers other than DNA methylation
to regulate expressions of these TFs in PDAC patients.
Notably, the neural development-related TFs, which

showed consistent promoter hypermethylation in cancer
cells of all patients (Fig. 2d and Supplementary Table S2),
also enriched binding motifs in the normal cells, such as
ASCL1, CUX1/2, DLX1/2/3/5, NEUROD1, NKX6-1,
NEUROG2 (Fig. 5c and Supplementary Fig. S15c, Table
S3), suggesting that dysregulation of these TFs may be
involved in tumorigenesis of PDAC. More importantly,
due to low expressions of these genes, we did not detect
significant RNA expression changes according to the
single-cell transcriptome data (Fig. 5d), indicating the
importance of deducing gene functions in tumorigenesis
according to their epigenetic features. Consistent with the
inference, we observed longer overall survival of patients
with higher expression of ASCL1 although we did not
detect differences in RNA levels between normal and
cancer cells (Fig. 5f). Thus, we offered multiple layers of
information to systematically search candidate genes
associated with PDAC tumorigenesis.

Discussion
There are strong heterogeneities of cancer cells in

PDAC patients regarding the genome, epigenome, and
transcriptome. More importantly, the heterogeneity
within one omics layer may have complex relationships
with the heterogeneity within another omics layer. For
example, in the tumor of a PDAC patient, one genetic
subclone may contain several different transcriptome
subclusters with different gene expression features. Thus,
the joint profiling of multiple omics in the same individual
cell allows us to precisely elucidate the characteristics and
relationships between these omics layers in tumors. We
could interpret the epigenomic heterogeneities in differ-
ent genetic subclones inferred by the SCNA patterns. In
general, the SCNAs were not correlated with the DNA
methylation changes, indicating that SCNA changes do
not seem to affect DNA methylation of corresponding
genomic regions in PDAC patients. At the same time, the
transcriptome of the cells was used as the functional
readout of the epigenome, including both DNA methy-
lome and chromatin accessibility.
Different from previous studies that only determine

normal cells by RNA expressions11,14, we used multiomics
data to precisely define the non-cancer epithelial cells. In
this way, we obtained significant proportions of cells as
“normal epithelial cells” inside the PDAC tumor lesions,
which exhibited normal diploid genome and DNA
methylation and chromatin accessibility features com-
parable to those of normal epithelial cells in the tumor-
adjacent tissues. However, the transcriptome statuses of
these cells were quite diverse, ranging from similar to
normal cells to similar to cancer cells. Thus, some of these

cells were somehow different from those normal ductal
cells identified in previous studies11,14, which represent
normal epithelial cells with their transcriptome probably
affected by their neighboring cancer cells, resulting in
ADM characters. According to the immunohistochemical
staining of normal cell-specific genes CTRB1 and REG1A,
these cells showed rather gathered patterns adjacent to
cancer cells within the tumor lesions, and their distribu-
tions varied between different patients. Some of these
normal cells also showed ADM characters. Due to the
limited sample size for all the Norm_epi cells, it is
inadequate to determine and analyze their subclusters.
Future studies can focus on this issue and this may help to
illustrate how the normal cells transformed into cancer
cells in multiomics scale.
Although the gene expressions and SCNA patterns

showed dynamic changes for different patients, the DNA
methylation levels in CGIs and gene promoter regions
were generally elevated in cancer cells in all the PDAC
patients. The general features of PDAC cancer cells across
multiple patients would be more valuable for clinical
applications. All the patients showed elevated DNA
methylation in promoter regions of the genes related to
the neuronal system. Consistent with this, the promoter
regions of such genes were in a closed chromatin state in
the cancer cells. We believe that these interesting findings
are meaningful for a deeper understanding of the mole-
cular regulations in PDAC progression. However, this
data set is limited in revealing additional mechanisms
regarding PDAC tumorigenesis, and further investigations
are needed to uncover the detailed mechanisms initiating
these molecular progresses. It is interesting that the tumor
subclones showed distinct DNA methylation patterns and
their distribution within the tumor exhibited regional
enrichment. However, we collected a relatively large
number of cancer cells from each tumor region of only
two patients in this cohort for analysis. Thus, the con-
clusions shall be confirmed with larger data set in the
future.
The DNA methylation exhibited consistent global

decreases in the majority of the PDAC patients, which was
also implied by a series of studies in recent years8,9,27,28,37.
Except for the focus on differentially methylated region
analysis, we directly showed the global changes of DNA
methylation precisely in each individual cell within each
PDAC patient. We examined the DNA methylation and
the correlated density of the hallmarks of chromatin state
in the same individual cells, which gave us a more accu-
rate and more comprehensive landscape of DNA methy-
lation changes in PDAC cells.
With an integrated comparison of promoter methyla-

tion, chromatin accessibility, and RNA expression, we
identified a couple of known and novel prognosis markers
for PDAC, in which ZNF667 and ZNF667-AS1 were
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proved to play important roles in suppressing the pro-
liferation of PDAC cells. Nevertheless, these two genes
could only be regarded as candidate biomarkers as the
verification of biomarkers needs more comprehensive
data collection in a larger cohort, and tens of patients in
our study could only be a clue to support further studies.
On the other hand, the DNA methylation levels in gene
body regions were decreased in the cancer cells, and the
demethylation was stronger for lower expressed genes,
enhancing the positive correlations between gene
expression and gene body methylation in PDAC cells.
Moreover, during tumor progression in both PDAC and
colorectal cancer types, aberrant DNA demethylation
favorably happened in heterochromatin regions, reflecting
the heterochromatin disorganization also as an important
feature of PDAC tumorigenesis.
In summary, our work offers novel insights into the

molecular characteristics of PDAC tumorigenesis, and
identifies candidate marker genes for the prognosis of
PDAC through integrated single-cell multiomics analyses
of PDAC patients.

Materials and methods
Processing of human tumor samples
This research was approved by the Ethics Committee of

Tianjin Medical University Cancer Institute & Hospital
(License# Ek2017141). Informed consent was obtained
from all of the patients before surgery and chemotherapy.
All of the patients in the study had not been treated before
the surgery. Two to three separated regions from each
resected pancreatic tumor were collected. Tumors and
adjacent tissue were immediately processed in half an
hour after resection. After being stripped of fat tissue, the
tumors and adjacent tissue were cut into small pieces with
sterile scissors and then digested using 1mg/mL each of
collagenase type II (Gibco, Cat# 17101015) and col-
lagenase type IV (Gibco, Cat# 17104019). The digested
content was passed through 40 μm cell strainers
(CORNING Falcon, Cat# 352340). The epithelial cells
from pancreatic cancer tissues and tumor-adjacent tissues
were isolated by magnetic-activated cell sorting (MACS)
(CD326 EpCAM MicroBeads, human, Cat# 130-061-101).

Single-cell in vitro methylation
After collecting suspensions of EpCAM-positive cells

isolated by MACS, we prepared a 2.5 µL cell lysis and
in vitro methylation (IVM) mixture containing 4 U
RNase inhibitor (Takara, Cat# 2313B), 0.25% IGEPAL
CA-630 (Sigma, Cat# I3021), 1× GC reaction buffer
and 2 U M.CviPI (NEB, Cat# M0227L). An individual
cell was placed into the 2.5 µL IVM mixture and then
gently vortexed for 10 s before running the IVM reac-
tion on the thermocycler at 37 °C for 20 min and then
at 65 °C for 25 min. Then, the cell lysate could be

directly processed for RNA/DNA separation or stored
at −80 °C.

Single-cell RNA–DNA separation and cDNA library
construction
We prepared a 3 µL nuclear separation mixture for each

cell, containing 0.2 µL of Dynabeads Myone Carboxylic
Acid (Invitrogen, Cat# 65011), 4 U RNase inhibitor, 0.2%
Tween-20 (Sigma, Cat# P1379), 1% Triton X-100 (Sigma,
Cat# T8787), 50 mM DTT and 2 µL of 5× Superscript II
first-strand buffer (Invitrogen, Cat# 18064071). We added
the mixture to the 2.5 µL cell lysate, mixed by vortexing,
briefly centrifuged the tubes, and placed the tubes on an
ice-cold 0.2 mL magnetic rack. The cell nuclei would be
wrapped in the magnetic beads and attracted on the side
of the tube, while the RNA is in the supernatant. We
transferred the supernatant into a 4.5 µL reverse tran-
scription (RT) mixture containing 4 U RNase inhibitor,
100 U SuperScript II reverse transcriptase (Invitrogen,
Cat# 18064071), 1 mM dNTPs (Takara, Cat# 4019),
60 mM MgCl2, 3 µM RT primer with a 6-bp barcode and
10 µM TSO primer17. The RT reaction was directly car-
ried out by incubation at 25 °C for 5 min, 42 °C for 60min,
50 °C for 30min, and 70 °C for 10min in a thermocycler.
Then, we performed cDNA amplification as previously
reported38,39, but in a doubled volume of reaction. The
cDNAs of different barcode sequences were pooled for
downstream library construction and sequencing with the
same method as described in previous studies38,39.

Single-cell DNA library construction and sequencing
Only epithelial cells confirmed by transcriptome ana-

lysis were further selected for DNA library construction.
We used 5 µL of protein lysis buffer containing 2.5 µL of
M-digestion buffer (Zymo, Cat# D5044) and 0.5 µL of
protease K (NEB, Cat# P8107S) to resuspend the bead-
trapped nuclei. The genomic DNA in each cell was
released after incubation at 50 °C for 1 h. Then, the
genomic DNA lysates were stored at −80 °C, and we
selected the genomic DNA of cells that were classified as
epithelial cells through transcriptome analysis to perform
DNA amplification. In brief, bisulfite conversion was
carried out using the EZ-96 DNA Methylation-Direct™
Mag Prep Kit (Zymo, Cat# D5044). Specifically, we added
only 32.5 µL of CT conversion reagent to 5 µL of single-
cell genomic DNA lysate. We followed the steps of the
single-cell whole-genome bisulfite sequencing workflow40

with minor modifications, including (1) We used random
primers containing N6 sequences. (2) We performed a
total of 4 rounds of olig1 tagging and skipped the Exo I
digestion; instead, we removed the free primers by pur-
ification with 0.8 volume of Ampure XP beads (Beckman,
Cat# A63882). Finally, we performed 16 cycles of the
indexing PCR program at 98 °C for 15 s, 65 °C for 30 s, and
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72 °C for 1 min. The DNA library for each cell was
sequenced for 2 Gb (~0.6×) on the Illumina HiSeq 4000
platform.

Processing of the single-cell RNA-seq data from multiomics
sequencing
We used UMI-tools (version 0.5.5)41 to extract the

single-cell information from the raw sequencing data of
each library, including the cell barcodes (8 bp, 96 barcodes
in total) followed by UMIs (8 bp random nucleotides) at
the beginning of Read 2. Afterward, we used fastp (version
0.19.8)42 with default parameters and custom scripts to
trim low-quality bases, adaptors, poly (A), and TSO
sequences (AAGCAGTGGTATCAACGCAGAGTAC) in
Read 1. The reads after trimming were further mapped to
the human genome (hg19 in UCSC) using STAR (version
2.6.1d)43. Then, we used featureCounts from subread
(version 1.6.3)44 to align the reads to RefSeq genes. UMI-
tools (version 0.5.5) was used to count the UMI numbers
of each gene with the parameter “-per-gene -gene-
tag=XT -per-cell -wide-format-cell-counts”.
We filtered out single cells with <1500 detected genes or

>9000 detected genes or 400,000 UMIs. A total of 3225
cells were retained for further analysis using Seurat
(v3.0.0)45 to identify cell clusters, with the parameter
“dims=1:15”. The cell types of each cluster were identified
according to cluster-specific gene expression and the
following known markers: AIF1, CSF1R, CD86, and CD68
for macrophages; PTPRC (also known as CD45), CD3D,
CD69, and CXCR4 for T cells; THY1, DCN, COL1A1,
FN1, and LUM for fibroblasts; and EPCAM, KRT19, and
MUC1 for epithelial cells11. A total of 11 clusters highly
expressed the epithelial marker genes. We defined cells in
the 11 clusters as epithelial cells. These cells were used for
further analyses.

Processing of single-cell DNA methylation data from
multiomics sequencing
We used Trim Galore (version 0.4.4) (http://www.

bioinformatics.babraham.ac.uk/projects/trim_galore/) to
trim low-quality bases and random primers (6 bp) with
the parameter “-quality 20 -stringency 3 -length 50
-clip_R1 6 -clip_R2 6 -paired -trim1 -phred33 -gzip”.
Then, the clean data were mapped to the human genome
(hg19, UCSC) as well as the lambda DNA genome refer-
ence using Bismark (version 0.7.6)46. The duplicate reads
were removed using SAMtools (version 0.1.18)47. The
cells that did not pass the strict quality control criteria
(whole-genome coverage ratio ≥ 4%; number of WCG
sites ≥ 800,000; number of GCH sites ≥ 5,000,000; map-
ping ratio ≥ 5%; and CT conversion rate ≥ 98%) were
filtered out.
The methylation levels of WCG sites represent the

endogenous DNA methylation levels. The in vitro DNA

methylation levels of GCH sites represent chromatin
accessibility. Only WCG sites with methylation levels >0.9
or <0.1 and GCH sites with methylation levels >0.9 or
<0.1 were used. Promoters are defined as the upstream
1-kb regions and downstream 0.5-kb regions of the TSSs.
We downloaded the annotation of repeat elements from
the UCSC genome browser (http://genome.ucsc.edu/).
When we calculated the DNA methylation levels or
chromatin accessibility of genomic elements and 1-kb
consecutive tiles, only the windows covered by ≥3 WCG
or ≥3 GCH sites were used. To evaluate the whole-
genome DNA methylation levels and chromatin accessi-
bility of individual cells, we calculated the mean methy-
lation levels for WCG or GCH sites in each 1-kb tile and
used the averaged levels of the tiles to represent the global
levels. The chromatin accessibility of the genomic ele-
ments (including promoters, CGIs, repeat elements, etc.)
of each individual cell was further normalized by its global
chromatin accessibility.
We performed classical MDS analysis using the DNA

methylation levels and chromatin accessibility of gene
promoters respectively with the R function “cmdscale” in
R. Only the promoters covered by ≥3 WCG sites (for
DNA methylation data) or ≥3 GCH sites (for chromatin
accessibility data) were used in each individual cell. The
MDS analysis finally used promoters covered in at least
50% of the cells that were used in this analysis.
To find the differentially methylated promoters between

normal epithelial cells and cancer cells, the promoters
covered (with ≥3 WCG sites) in <30% cells were filtered
out. Then, we used strict criteria to reduce the number of
false positives: P-value < 0.05 (Wilcoxon rank-sum test),
fold change >2 or <0.5, absolute methylation differences
between two groups >0.5, and stand deviation within each
group <0.25.

SCNA estimation using DNA sequencing data from single-
cell multiomics sequencing
We deduced the copy number profiles in each indivi-

dual cell using the Ginkgo tool48, as previously reported
for colorectal cancer16. Briefly, the genome was binned
into 2706 variable-length intervals with a median length
of 1Mb. A total of 72 normal epithelial cells from the
male patients were used as controls for normalization.
Under normal conditions, a male cell contains one copy of
the X chromosome and one copy of the Y chromosome.
Thus, we divided the values of the X and Y chromosomes
of cells from both male and female patients by 2. Speci-
fically, for visualization purposes, in the heatmaps of
single-cell SCNA profiles, the colors represented states
compared with normal conditions. Red represents
amplifications, whereas blue represents deletions com-
pared with normal conditions. For example, for cells from
male patients, having one copy of the X chromosome is
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normal and therefore shown in white. The sex informa-
tion for each patient is shown in Supplementary Table S1.
Epithelial cells from the tumor lesions with obvious
SCNA were defined as cancer cells, while the normal_-
epithelial cells showed a normal diploid pattern.

Correlation calculation between RNA expression, DNA
methylation, and chromatin accessibility
Each gene was divided into 20 equal-size windows from

the TSS to the TES. The upstream 15-kb regions of the TSS
were divided into 5 windows, and the downstream 15-kb
regions of the TES were divided into 5 windows. For every
window of each gene in every individual cell, we calculated
the pairwise Spearman correlation between the RNA
expression value and WCG methylation level, the RNA
expression value and GCH methylation level, and the WCG
methylation level and GCH methylation level. In addition,
we also calculated these three types of Spearman correla-
tions in whole promoter regions and the major gene body
regions (from downstream 2-kb regions of TSSs to TESs).
During this process, we filtered out the genes <2.5 kb.

Immunohistochemistry and survival analysis for tissue
microarray
The tumor tissues of 98 PDAC patients were affirmed by

a pathologist from Tianjin Medical University Cancer
Institute & Hospital and used to manufacture tissue
microarray. Immunohistochemistry was performed
according to the standard protocol. Briefly, antigen was
retrieved by citrate sodium antigen retrieval buffer in high
pressure and high-temperature condition after dewaxing.
Tissue Microarrays (TMAs) were incubated with ZNF667
antibody (Novus, NBP1-77357), and then the sections were
incubated with an immunohistochemistry kit from ZSGB-
bio, and staining was detected. H-score was used for
assessing protein expression by intensity and area of stain-
ing. The patients with H-scores of 6–9 were defined as
ZNF667-high group, and those with H-scores of 0–4 were
ZNF667-low group. After this step, the clinical survival data
of different groups of patients were extracted and SPSS 26.0
was used to analyze the survival curve of the patients.

Plasmid construction
We extracted the total RNA from the pancreas tissue using

the QIAGEN RNeasy kit according to the manufacturer’s
instructions. ZNF667-AS1 was amplified by RT-PCR (for-
ward primer: CCCTCGAGCGGTGTTGCGCCTGCGTAG
CCG; reverse primer: GGAATTCGTCATGAGAAGGTGA
TTTATTGGAAAGT), and then XhoI (NEB, R0416) and
EcoRI (NEB, R0101) were used to clone the cDNA fragments
into the pEGFP-C1 backbone (Clonetech). ZNF667 was
amplified by PCR (forward primer: GCTCTAGAGCCACC
ATGCCTTCTGCACGGGGGAA, reverse primer: CGACG
CGTTTAGGCTTTTTCTTCAGAATGT), and then XbaI

(NEB, R0415) and MluI (NEB, R0198) were used to clone
cDNA fragments into the pLV-MCS-bsd backbone (Bio-
settia). The reconstructed plasmids were extracted following
the kit manufacturer’s instructions and were validated by
Sanger sequencing.

Culture and transfection of pancreatic cancer cell lines
PANC-1 and SW1990 cell lines are both ordered from

ATCC. PANC-1 cells were cultured in DMEM supple-
mented with FBS to a final concentration of 10%. SW1990
cells were cultured in RPMI 1640 medium supplemented
with FBS to a final concentration of 10%. For transfec-
tions, the PANC-1 or SW1990 cells were seeded at a
density of 8 × 105 cells per well in 6-well plates. After
adherence, 2 μg plasmid of pEGFP-C1-CTRL or pEGFP-
C1-ZNF667-AS1 together with 5 μL of lipofectamine 2000
(Thermo Fisher, 11668027) were added into each well,
and the supernatants were replaced by DMEM or RMPI
1640 containing 10% FBS after 4 h. The transfected cells
at different time points were digested using 0.05% trypsin
for the following experiments.

RT-qPCR
Total RNAs of the cell lines and the pancreas tissues

were extracted using TRIZOL following the manu-
facturer’s instructions and cDNAs were obtained using
PrimeScript RT Master Mix. RT-qPCR was performed
using TB Green Premix Ex Taq in triplicate in three
independent experiments on the Bio-Rad CFX Connect
PCR system. ACTB was used as an endogenous normal-
ization control. The qPCR primers are: ZNF667: forward-
TTGGAGAATTACCGGAACCT, reverse-TCTTCTTAC
TGGCTCTACCAT; ZNF667-AS1: forward-CATCACTA
CCATCCATCACTA, reverse-CCAGGCAGAGAAGGA
TAA; ACTB: forward-TGGCACCACACCTTCTACAA,
reverse-CCAGAGGCGTACAGGGATAG.

Immunoblotting
Cells were lysed using 10% SDS lysis buffer with Protease

Inhibitor Cocktail (Merck, P8340) and protein concentra-
tion was determined using Pierce BCA Protein Assay Kit
(Thermo, 23225). 20 μg proteins were subjected to SDS-
PAGE and transferred to the PVDF membrane according
to standard protocols. After being blocked by nonfat milk,
membranes were immunoblotted with antibodies against
ZNF667 (Novus, NBP1-77357) and GAPDH (Proteintech,
10494-1-AP) overnight, and then incubated with ECL IgG
Rabbit second antibodies (Proteintech, SA00002-2) before
Bio-Rad Gel Doc XR+ system was used for imaging.

Detection of apoptosis and cell viability in pancreas cancer
cells
PANC-1 and SW1990 cells were seeded at a density of

4000 cells per well in a 96-well plate after being
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transfected with pEGFP-C1-ZNF667 or pEGFP-C1-
ZNF667-AS1. The medium was refreshed every other
day, and then the relative viable cell counts were deter-
mined by the CCK8 assay (Bimake, B34304) every 24 h.
The apoptosis rate of cells was detected using FITC

Annexin V Apoptosis Detection Kit (BD 556547) from BD
Biosciences following the manufacturer’s instructions.
Briefly, cells transfected with pEGFP-C1-CTRL, pEGFP-
C1-ZNF667, or pEGFP-C1-ZNF667-AS1 were washed
twice with cold PBS. 1 × 105 cells were transferred to
another culture tube and incubated with 5 μL of FITC
Annexin V and PI in dark. Fluorescence cell sorting was
performed using Mindray BriCyte E6 system and the
results were analyzed using Flowjo V10.

Correlations between DNA demethylation and histone
modifications and LINE-1 density
We downloaded the ChIP-seq peak files of a 34-year-

old male adult from the ENCODE website (https://
www.encodeproject.org/), including data of H3K4me3
(ENCFF340YEE), H3K27Ac (ENCFF583QFI), and
H3K36me3 (ENCFF544VYY). The genomic coordi-
nates were cut into windows of equal length at different
resolutions (0.25–10 Mb). For each type of window, the
densities of genomic features (including histone mod-
ifications and LINE-1) were calculated as the length of
overlap between the window and genomic features
divided by window length; the DNA methylation level
was calculated based on the DNA methylation level in
normal and cancer cells. Because a subgroup of normal
cells in P05 showed extremely low DNA methylation
levels, we calculated the relative DNA methylation
degree (R_DMeD) of cancer cell i in genomic tile j
(R_DMeDi,j) by dividing the DNA methylation levels of
cancer cell i in tile j by the median DNA methylation
levels of the normal cells in tile j. The DNA deme-
thylation degree (DDemeD) of cancer cell i in tile j
(DDemeDi,j) was defined as:

DDemeDi;j ¼ 1� R DMeDi;j

We calculated the Spearman correlation coefficients
between the DNA demethylation degree and the dis-
tribution densities of histone modifications and LINE-1
and in individual cancer cells across a range of resolutions
(0.25–10Mb).

NDR calling and TF motif enrichment analysis
First, we searched for single-cell NDRs (scNDRs) in

individual cells following the methods of a previous
study18. In brief, we used a 100-bp sliding window with a
step length of 20 bp. The χ2 test was performed to find the
enrichment of significantly higher chromatin accessibility
than the genome-wide background. Only windows with

P-value < 1.0E−15, length > 140 bp and covered GCH
sites ≥5 were considered NDRs. Then, we used BEDtools
(version 2.17.0)49 with the parameter “-d -100” to merge
the scNDRs within normal epithelial cells and cancer cells
separately. By doing so, scNDRs with >100 bp of overlap
in different cells would be merged as a merged NDR
(mNDR). Then, we filtered out the mNDRs covered by
<11 cells in each group for heterogeneity of each patient
or 5% cells in each cell group (11/218 cells in Norm_epi
cell group and 53/1077 cells in the cancer cell group) for
homogeneity in all patients. Since the GCH site coverage
is 14.8%, the standard of “5% cells” mentioned above
actually meant “33% cells” that each GCH site may be
detected in 53 cells out of 159 cancer cells (1077 cells
* 14.8% = 159 cells). The remaining mNDRs in the two
cell groups were compared, and the group-specific
mNDRs were defined as those that only occurred in one
group and did not overlap with the mNDRs of the other
group. Next, we used Homer (version 4.11)50 to search for
TF motif enrichment in the group-specific mNDRs with
default parameters. Only known motifs with P-value < 1E
−10 were considered significantly enriched.

Gene ontology enrichment analysis
We uploaded single or multiple gene lists onto the

website (http://www.metascape.org/) for online analysis.
For multiple gene list analysis, gene sets belonging to
different groups would be directly compared on both gene
contents and enriched items. Clustering of different
groups (Fig. 2d) of genes were automatically generated
according to similarities of their enriched items.

Comparison of gene expression with the published data
We extracted UMI count matrix of Ductal 1 cells and

Ductal 2 cells from previously published data11. After
merging, we obtained a count matrix of 22,927 cells with
17,340 genes which were normalized to a TPM matrix
subsequently. We used Seurat package in R to integrate
these two datasets. Standard pre-processing was per-
formed with 2000 highly variable genes and top 30 PCs.
The integrated results were visualized by UMAP plot.

Comparison of chromatin open sites with the published
data
The peak matrix of normal cells (Ductal 1) and cancer

cells (Ductal 2) were extracted from previous single-cell
ATAC-seq data of PDAC14. After filtering peaks present
in <5% of cells in corresponding cell types, we obtained
18,664 and 11,466 peaks from normal cells and cancer
cells, respectively. Then, we used “bedtools intersect”
command to find the overlap region between these peaks
and the NDRs of our study. 16,573 and 10,957 peaks from
normal cells and cancer cells, respectively, were found to
overlap with our NDRs.
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Correlations between DNA methylation and genome copy
number
To explore the relationship between copy number var-

iations and methylation levels in subclones, we calculated
the DNA methylation levels with the same 2706 variable-
length windows as used in the calculation of SCNA. The
DNA methylation levels and copy number levels were first
averaged across cells in the same subclone. Then we
calculated the Pearson correlation coefficients between
the DNA methylation level and copy number level across
the genomic windows.

Overall survival analysis
The overall survival analyses of TCGA PAAD (pan-

creatic adenocarcinoma) were performed using a website
server (http://gepia2.cancer-pku.cn/). The high and low
expression groups were selected using quartile as the
group cutoff.
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