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Abstract

Craniopharyngioma is a rare tumor in adults. Although histologically benign, it can be locally 

aggressive and may require additional therapeutic modalities to surgical resection. Analyses 

including next generation sequencing, chromogenic and in situ hybridization, 

immunohistochemistry, and gene amplification were used to profile craniopharyngiomas (n=6) for 

frequently altered therapeutic targets. Four of six patients had the BRAFV600E missense mutation, 

frequent in the papillary craniopharyngioma subtype. One patient had a missense mutation in the 

WNT pathway, specifically CTNNB1, often associated with the adamantinomatous subtype. 

Craniopharyngiomas lacked microsatellite instability, had low tumor mutational burden, but did 

express PD-L1 protein, indicating potential therapeutic value for immune checkpoint inhibition. 

We identified mutations not previously described, including an E318K missense mutation in the 

MITF gene, an R1407 frameshift in the SETD2 gene of the PIK3CA pathway, R462H in the NF2 
gene, and a I463V mutation in TSC2. Two patients testing positive for EGFR expression were 
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negative for the EGFRvIII variant. Herein, we identified several alterations such as those in 

BRAFV600E and PD-L1, which may be considered as targets for combination therapy of residual 

craniopharygiomas.
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Introduction

Craniopharyngioma is a rare, benign but heterogeneous tumor of the pituitary stalk, 

comprising 1–3% of all brain tumors [1]. It is the most common childhood suprasellar 

tumor; however, it has a bimodal age distribution and may be observed in adults between age 

50 and the late 70s, who are the focus of this manuscript [2]. Two theories have been 

debated regarding the etiology of craniopharyngioma. The first one proposes that 

craniopharyngiomas develop from the transformation of oral ectodermal embryologic 

remnants of the Rathke pouch, whereas the other hypothesis argues that this tumor originates 

from metaplasia of the primordial adenohypophysis cells [3, 4]. These tumors are typically 

treated with surgery; however, residual tumor and recurrence can pose a treatment quandary 

because little is known about the genetic landscape of these tumors beyond two defining 

mutations: BRAF V600E and CTNNB1 [5, 6].

Papillary craniopharyngioma, primarily seen in adults, is associated with BRAF V600E 
mutation whereas the adamantinomatous type, which is more common in children, is linked 

to mutations in the ß-catenin gene or a mediator of the Wnt pathway CTNNB1; however, 

both subtypes have been described in adults. Craniopharyngiomas are not histologically 

malignant, but they often are locally aggressive and can thus cause debilitating visual, 

endocrine, and neurologic symptoms and a decrease in survival. There are two treatment 

options available, either attempting an aggressive complete resection, or performing a more 

conservative resection in preparation for adjuvant radiation therapy. Both options have 

potential complications, including cerebrovascular injury, neurocognitive decline, and 

metabolic alterations, including frequent panhypopituitarism [7–10]. Furthermore, the partial 

resection and radiation therapy combination leaves remnants of the tumor, which can lead to 

recurrence and repetitive surgical risks, exposes patients to a higher risk of radiation-induced 

secondary malignancy, and multiple recurrences are associated with malignant 

transformation [11–13]. Consequently, genetic profiling may provide insight into new 

therapeutic strategies and a better understanding of the etiology, development and 

progression of these tumors. As such, we hypothesized that sequencing for cancer hotspot 

mutations may reveal novel therapeutic targets that could be considered in scenarios where 

patients have sub totally resected or unresectable craniopharygioma.
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Materials and methods

Study population

Multiplatform analysis covering the tumor mutational burden (TMB), microsatellite 

instability (MSI), high-throughput sequencing, in situ hybridization, and 

immunohistochemical study was performed on six craniopharyngioma tumors in adults and 

identified in the Caris Life Sciences database. The purpose of the database is to provide a 

genetic profiling record, but annotation of clinical data is limited. As such, the history, 

treatment, and survivorship outcomes of patients are not included. The histologic diagnosis 

is based on WHO guidelines (ICD10–2016).

Genetic analysis

Genomic DNA was extracted from formalin-fixed paraffin-embedded (FFPE) tumor blocks 

using the QIAamp DNA FFPE DNA Extraction Kit (Qiagen Sciences, Germantown, MD 

20874). Genes of interest, cited in Supplementary Table 1, were amplified using the Illumina 

TruSEQ amplicon cancer hotspot (47 genes; n=1)(Illumina, San Diego, CA) or the Agilent 

customized pan-cancer panel (592 genes; n=4)(Agilent Technologies, Santa Clara, CA) 

depending on the availability of both tissue and sequencing panels, with an overlap of the 

genes in both panels regardless of the size, and sequenced with the Illumina MiSEQ and 

Illumina NextSEQ platforms, respectively, out of a total of 1.4 megabases of DNA. The 

analysis focused on the TMB, MSI, and specific gene mutations and their transcriptional 

effect. TMB was measured by counting all non-synonymous missense mutations found per 

tumor that had not been previously described as germline alterations, the threshold used for 

TMB was 17 mutations/megabase based on concordance data with MSI in colorectal cancer. 

MSI was examined using over 7,000 target microsatellite loci and compared to the reference 

genome hg19 from the University of California, Santa Cruz (UCSC) Genome Browser 

database. The threshold to determine MSI by NGS was 46 or more loci with insertions or 

deletions to generate a sensitivity of > 95% and specificity of > 99%. Variants were detected 

with a >99% confidence interval based on the frequency of identified mutations and 

amplicon coverage, with an average coverage of > 500 and an analytic sensitivity of 5%.

Gene amplification and expression

Both fluorescent and chromogenic in situ hybridization were used to detect amplifications in 

cMET, Her2 and cMET amplifications, respectively, as well as gene fusion of ALK. 

Analysis by immunohistochemistry (IHC) was performed on full FFPE sections to assess the 

expression of EGFR, Her2/Neu, cMET, PD-L1 and ALK chosen based on the relevance in 

cancer. Slides were stained using automated techniques, per the manufacturer’s instructions, 

and were optimized and validated per Clinical Laboratory Improvement Amendments 

CLIA/CAO and international Organization for Standardization (ISO) requirements. Staining 

was scored for intensity (0 = no staining; 1+ = weak staining; 2+ = moderate staining; 3+ = 

strong staining) and staining percentage (0–100%). Results were categorized as positive or 

negative by defined thresholds specific to each marker based on published clinical literature 

that associates biomarker status with patient responses to therapeutic agents. For PD-L1, the 

primary antibody used was SP142 (Spring Biosciences). The staining was regarded as 

positive if its intensity on the membrane of the tumor cells was >=2+ and the percentage of 
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positively stained cells was >5%. A board-certified pathologist evaluated all IHC results 

independently. For gene fusion detection, anchored multiplex PCR was performed for 

targeted RNA sequencing using the ArcherDx fusion assay (Archer FusionPlex Solid Tumor 

panel). The formalin-fixed paraffin-embedded tumor samples were microdissected to enrich 

the sample to ≥20% tumor nuclei, and mRNA was isolated, and reverse transcribed into 

complementary DNA (cDNA). Unidirectional gene-specific primers were used to enrich for 

target regions, followed by Next-Generation sequencing (Illumina MiSeq platform). Targets 

included 52 genes, and the full list can be found at http://archerdx.com/fusionplex-assays/

solid-tumor.

Results

Demographics

The study cohort included six adult patients who were diagnosed with craniopharyngioma. 

The patients’ ages ranged from 33 to 78 years, with the median age being 54.5 years. Four 

patients presented with a newly diagnosed craniopharyngioma, and the disease was 

metastatic in one patient. The mass was in the parasellar in one, in the suprasellar region in 

two, in the Rathke pouch in one, in the frontal lobe (recurrent) in one, and in an unspecified 

location in another. Based on histology, three of the tumors were papillary, one 

adamantinomatous, and two were undefined because of the distorted architecture that does 

not fall in any of the predefined subtypes implying a possibility of a mixed subtypes or a 

new distinct phenotype (Table 1).

Craniopharyngiomas are genomically stable but express PD-L1

To clarify whether craniopharygiomas expressed biomarkers associated with a potential 

response to immune checkpoint inhibitors, the tumors were assessed for both MSI and TMB. 

Of the patients tested (n=4), none showed MSI and all showed a relatively low TMB 

including the recurrent case (Table 2). No mutations in the DNA repair genes (MLH1, 

MSH2, MSH6, PMS2) were detected (data not shown). Tumors in four of the five patients 

profiled were positive for PD-L1 expression, as assayed by IHC at a cut point of 2+ staining 

intensity of at least 5% cells (Figure 1). All tumors demonstrated some PD-L1 staining.

Craniopharyngiomas express a variety of mutations with known pathogenic effects

Pathogenic mutations known for craniopharyngiomas are summarized in (Table 2). Four out 

of six patients had mutations in BRAF, specifically the V600E missense mutation known to 

be expressed in the papillary subtype of craniopharyngioma. One patient had a mutation in 

the WNT pathway, specifically a missense mutation in CTNNB1 typically associated with 

adamantinomatous craniopharyngiomas. The same patient with mutation in CTNNB1 also 

had a mutation in the NF2 gene—specifically an R462H mutation of unknown significance 

that may act as a driver. Novel mutations not previously described included an E318K 
missense mutation in the MITF gene and an R1407 frameshift in the SETD2 gene. One 

patient had a kinase domain mutation in exon 20 (H1047R) in PIK3CA gene that’s been 

reported to activate the PI3K/Akt/mTOR pathway.
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Craniopharyngiomas overexpress EGFR

Using fluorescent and chromogenic in situ hybridization, we evaluated for amplifications of 

cMET (n=2) and Her2 (n=3) and no amplifications were seen. ALK FISH was tested on one 

tumor and no gene fusion was detected. RNA sequencing was done on another two tumors 

and no gene fusion was detected of the 52 genes interrogated. Gene copy number alteration 

was also evaluated on 442 of the 592 genes sequenced on the four tumors and no 

amplification event was seen. Immunohistochemistry on EGFR was done in two tumors and 

showed overexpression on both (2/2).

Discussion

To date, there has not been comprehensive sequencing information or extensive immune 

profiling reported on craniopharyngiomas. Previous craniopharyngioma sequencing studies 

have only focused on either codon hotspot mutations in BRAF and CTNNB1 or evaluations 

that were limited to 23- or 46-gene panels [5, 14–17]. Immune profiling is limited to few 

previous studies [18, 19]. Whole exome sequencing was previously performed on 

craniopharyngioma, however this does not detect hotspot genes that are directly implicated 

in cancer [5]. As such, we performed genetic sequencing of 592 genes, gene amplification 

assessments, and immune profiling analysis on craniopharyngiomas to study the TMB, MSI, 

and genetic alterations that could be further explored as therapeutic targets. Consistent with 

prior reports, our study found that the BRAFV600E mutation was the most common mutation 

in craniopharygiomas, and we also identified another tumor with a CTNNB1 mutation with 

a G34E substitution [15]. These two unique mutations have been previously described to 

occur exclusively in the papillary (BRAFV600E) and adamantinomatous (CTNNB1) 

subtypes, respectively, and were proposed to be driver mutations of their correspondent 

subtypes; however, their single driver oncogenic potential has been questioned [20, 21]. 

Despite the relatively low mutational burden seen in craniopharyngiomas, we found several 

unique mutations, including one in the melanocyte-inducing transcription factor (MITF) 

gene (E318K) and another in the SET Domain Containing 2 gene (SETD2) (R1407 
frameshift). These two mutations have not been previously described in craniopharyngiomas 

but are associated with other types of tumors. MITF (E318K) mutation has been associated 

with neural crest-derived tumors, melanomas, and renal cell carcinomas, whereas the 

SETD2 frameshift mutation was previously described in gastrointestinal tumors [22–24]. 

Histone deacetylase (HDAC)-inhibitor drugs could be considered for treatment in the 

clinical scenario of upregulated MITF and SETD2 inhibitors are currently being investigated 

in the treatment of leukemia [25, 26].

The higher the tumor mutational burden is, the more the immune system recognizes the cell 

as non-self and attacks it. In our study, the levels of TMB and MSI (a condition known as 

genetic hypermutation) were low, there were no alterations in DNA repair genes, but we did 

observe expression of the PD-L1 in most samples regardless of the tumor subtype. The 

utility of a given biomarker such as TMB, MSI, or PD-L1 to correlate with therapeutic 

response to immune checkpoint inhibitors is lineage dependent and it is unknown if these 

types of agents would be efficacious for craniopharyngiomas. PD-L1 expression in the 

stromal fibrovascular core in the papillary subtypes of craniopharygiomas and on the cystic 
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lining in the adamantinomatous subtypes has been previously described [19]. In an attempt 

to find treatment strategies, Coy et al., specifically looked at overlap between PD-L1 

expression and genetic alterations such as BRAF papillary and CTNNB1 mutations. With 

such substantial overlap between BRAF mutations and PD-L1 expression, our combined 

findings would support consideration of a clinical trial using BRAF/MEK inhibitors in 

combination with immune checkpoint inhibitors in craniopharyngioma patients with 

refractory or residual disease and in the neoadjuvant setting prior to radiation therapy. This 

combination is currently being evaluated for safety and efficacy in melanoma patients ().

Craniopharyngiomas could result from a loss-of-function mutation in a tumor suppressor 

gene or a gain of function in an oncogene. For loss-of-function mutations, both alleles of a 

tumor suppressor gene must be lost in order to induce a tumor, unlike the case in oncogenes 

in which only one allele needs to be mutated. In the current study, we found losses of the 

neurofibromatosis (NF) type 2 (R462H) gene and the tuberous sclerosis type 2 (I463V) 

gene, which have not been previously described. NF2 alterations have been previously 

shown to be associated with schwannoma, ependymoma, and meningioma, and tuberous 

sclerosis with ependymoma [27, 28]. It is unclear what role these two genes may play in the 

underlying development of craniopharyngioma, including in the rare instance of familial 

craniopharyngioma, but this is an area for future investigation [29, 30]. Our molecular 

profiling also showed that the phosphoinositide-3-kinase, catalytic, alpha polypeptide 

(PIK3CA) gene, which is involved in cellular proliferation and inhibition of apoptosis, was 

mutated in one case. Somatic mutations of PIK3CA are common in a variety of primary 

tumors such as those of the colon, breast, and stomach [31]. Phosphatidylinositol 3-kinase 

(PIK3) is known to regulate the tuberous sclerosis (TSC) tumor suppressor gene [32]. Both 

the PIK3CA and the TSC2 mutations were observed in two patients in our study, suggesting 

that the roles of PIK3CA and TSC2 merit further investigation as to their contributions to the 

etiology of craniopharyngioma. mTOR inhibitors could be considered for those patients with 

TSC2 mutations [33]. The only FDA-approved pan-PIK3 inhibitor is Copanlisib, but it is 

nonspecific and may have unacceptable toxicity due to off-target effect [34]. Specific PIK3 

inhibitors are being employed in clinical trials of advanced stage cancers, and the positive 

overall response rates and progression-free survival rates being observed for PIK3CA-

mutant tumors may make this a useful therapeutic strategy for a subset of 

craniopharygiomas [35, 36].

The epidermal growth factor receptor (EGFR), but not the EGFRvIII variant, is expressed in 

craniopharygiomas as validated by the IHC, and EGFR upregulation is implicated in cell 

differentiation, proliferation, apoptosis, and migration of these tumors [37]. Furthermore, 

EGFR expression has been reported in craniopoharyngioma and EGFR phosphorylation has 

been shown to enhance adamantinomatous craniopharyngioma cell migration and has been 

proposed as an escape mechanism for radiation therapy [38, 39]. EGFR inhibitors such 

gefitinib, erlotinib, and lapatinib are now routine treatments in non-small cell lung cancer 

and breast cancer and could be considered for off-label use in craniopharygiomas. The 

response to BRAF inhibitors in papillary craniopharyngioma has shown promise, but the 

tumor recurs shortly after treatment interruption in most cases [40]. Subsequently, BRAF 

inhibition combined with the MEK inhibitor trametinib has shown a decrease in proliferation 

of tumor cells in vitro and in preclinical xenograft models and produced a dramatic response 
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in a refractory papillary craniopharyngioma case [41, 42]. This is not entirely surprising 

because this is an established combination strategy for the treatment of melanoma [43]. 

However, it is unclear whether the genetic variability that underlies each subtype would 

uniformly demonstrate clinical benefit, but based on the aforementioned data, a clinical trial 

of this combination would be justified in the adult craniopharygioma patient population.

We would have liked to profile many more of these cases, as further exploration of several 

mutations in a larger population is warranted. This is likely to require multicenter efforts and 

commitment to increase the sample size and increase the power of such extensive 

sequencing. Another limitation of the current study is that the sequencing was done from 

FFPE blocks, resulting in low coverage for some of the genes in the panel sequenced, and 

thereby their exclusion. We also are unable to associate the genetic findings with prognosis 

nor to conclude whether their roles are as driver mutations. Moreover, we note that many 

studies currently focus on the adamantinomatous subtype, taking for granted the high 

frequency of the BRAFV600E mutation and the availability of BRAF and MEK inhibitors, 

which have demonstrated marked antitumor activity within the CNS [44]. As such, the 

current study provides additional justification for the triple combination of BRAF and MEK 

inhibitors plus immune checkpoint inhibitors.
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Figure 1: 
Representative immunohistochemical analysis of (a) the epidermal growth factor receptor 

(EGFR), (b) Her2, (c) ALK, (d) PDL1 in tumor cells from patient #2. Staining was positive 

for expression of both the EGFR and PD-L1, but not for Her2 or ALK. (Magnification = 

20X in a through d.)
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Table 1

Craniopharyngioma study demographics

Number of patients (n) 6

Age

Median, years (range) 54.5(33–78)

Sex

Male, n (%) 3 (50%)

Female, n (%) 3 (50%)

Primary, n (%) 4 (66.6%)

Recurrent, n (%) 1 (16.7%)

NOS, n (%) 1 (16.7%)

Craniopharyngioma subtype

 Papillary, n (%) 3 (50%)

 Adamantinomatous, n (%) 1 (16.7%)

 Undefined, n (%) 2 (33.3%)

Location

 Parasellar, n (%) 1 (16.7%)

 Suprasellar, n (%) 2 (33.3%)

 Rathke pouch, n (%) 1 (16.7%)

 Frontal lobe, n (%) 1 (16.7%)

 NOS, n (%) 1 (16.7%)
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