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Abstract: Experiments from flight- and ground-based model systems suggest that unexpected
alterations of the human lymphoblastoid cell line Jurkat, as well as effects on cell growth, metabolism,
and apoptosis, can occur in altered gravity conditions. Using a desktop random positioning
machine (RPM), we investigated the effects of simulated microgravity on Jurkat cells and their
multidrug-resistant subline, Jurkat/A4 cells. The viability of Jurkat/A4 cells decreased after simulated
microgravity in contrast with the Jurkat cells. At the same time, the viability between the experimental
Jurkat cells and control Jurkat cells was not significantly different. Of note, Jurkat cells appeared as
less susceptible to apoptosis than their multidrug-resistant clone Jurkat/A4 cells, whereas cell-cycle
analysis showed that the percentage of Jurkat/A4 cells in the S-phase was increased after 72 and
96 h of RPM-simulated microgravity relative to their static counterparts. The differences in Jurkat
cells at all phases between static and simulated microgravity were not significant. The surface
expression of the intercellular adhesion molecule 3 (ICAM-3)—also known as cluster of differentiation
(CD)50—protein was changed for Jurkat/A4 cells following exposure to the RPM. Changes in cell
morphology were observed in the Jurkat/A4 cells after 96 h of RPM-simulated microgravity. Thus,
we concluded that Jurkat/A4 cells are more sensitive to RPM-simulated microgravity as compared
with the parental Jurkat cell line. We also suggest that intercellular adhesion molecule 3 may be an
important adhesion molecule involved in the induction of leukocyte apoptosis. The Jurkat/A4 cells
with an acquired multidrug resistance phenotype could be a useful model for studying the effects of
simulated microgravity and testing anticancer drugs.
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1. Introduction

Space experiments are of great value for the study of various physiological characteristics of the
human body; health problems; and, in particular, cancer [1–3]. Microgravity allows one to explore the
molecular and cellular mechanisms of the biological effects on cellular stress and the transformation of
normal and tumor cells with a change in gravity [4–6].

Many reports have indicated that simulated microgravity affects cellular morphology, proliferation,
apoptosis, invasion, and migration while inhibiting cancerous cell growth and invasion [6–13]. After
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simulated-microgravity exposure, apoptosis has been observed in glial cells [7], endothelial cells [8],
thyroid cancer cells [9], and Jurkat cells [5]. Both real and simulated microgravity induces early
alterations of the cytoskeleton in thyroid cancer cells [10], endothelial cells [11], glial cells [12], and
human breast cancer cells MCF-7 [13]. In a suspension cell culture, conditions similar to microgravity
can be established using different equipment such as a rotating wall bioreactor, a clinostat, a random
positioning machine (RPM), and even magnets (magnetic levitation) [14].

The human leukemic T-cell line Jurkat is a stable cellular model that is easily able to be managed
and is sensitive to real and simulated microgravity [15–18]. The changes in the expression and secretion
of genes as well as proteins involved in cancer cell proliferation, metastasis, and survival shift the cells
toward a less aggressive phenotype. For example, on chondrocyte cultures, microgravity led to an
increase in the expressions of apoptotic proteins Fas/apoptosis antigen-1, p53, and Bax, and a decrease
in the antiapoptotic protein Bcl-2 [4]. Interestingly, the increased expression of the Fas protein in the
Jurkat human T-cell lymphoblastoid line was also noted during the space shuttle flights STS-80 and
STS-95. It was concluded that changes in the cytoskeleton and lymphocyte metabolism, as well growth
retardation during space flight, are associated with an increase in apoptosis and with the temporary
overexpression of the apoptotic Fas/apoptosis antigen-1 protein [5].

Recently, in vitro microgravity has been of particular interest as a system for both studying cancer
mechanisms and for testing anticancer drugs [6,19,20]. Multicellular spheroids are a model for studying
the mechanisms of angiogenesis and pharmacological testing of chemotherapeutic agents [21–23].

Jurkat T-cells have a high proliferation rate, are moderately sensitive to most anticancer drugs
and ionizing radiation, and do not express the p53 protein [24,25]. A multiresistant cell line, Jurkat/A4,
which is a stable subline of Jurkat cells with an acquired multidrug resistance phenotype, constitutes
a useful model for studying apoptotic resistance [26,27]. Jurkat/A4 cells retain the morphology of
Jurkat, initially expressing low levels of FasR (cluster of differentiation (CD)95) and intercellular
adhesion molecule 3 (ICAM-3) (CD50) on their cell surface. However, little is known about the effects
of simulated microgravity on cells with a multidrug resistance phenotype.

To our knowledge, the effects of reduced gravity on the cellular responses and physiological
effects of Jurkat/A4 have not yet been investigated. Therefore, in the present study, we investigated the
effects of simulated microgravity on Jurkat cells and their multidrug-resistant subline, Jurkat/A4 cells.

2. Results

2.1. Effect of Simulated Microgravity on Cell Viability of Jurkat/A4 Cells

The analysis of cell viability was performed using the vital dye trypan blue. The viability of
Jurkat/A4 cells decreased after exposure to simulated microgravity in contrast with the Jurkat cells.
After 96 h, the percentage of Jurkat/A4 alive cells had decreased under RPM-simulated microgravity
conditions (76.0% ± 4.2%) relative to the static control cells (90.2% ± 4.2%) (n = 7; p < 0.05). At the
same time, the viability profile between the experimental Jurkat cells and control Jurkat cells was not
significant (Figure 1).
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Figure 1. The effect of random positioning machine (RPM)-simulated microgravity on cell viability of
Jurkat (a), and Jurkat/A4 cells (b). Cell viability was evaluated with a trypan blue exclusion assay. The
results are expressed as means ± standard deviations. * p < 0.05, as compared with the static controls
(n = 7).

2.2. Simulated Microgravity Induced Apoptosis of Jurkat/A4 Cells

To detect apoptotic cells, we used annexin V conjugated to fluorescein isothiocyanate (FITC) and
flow cytometry. After 96 h, the percentage of total apoptotic cells was higher among the Jurkat/A4 cells
in the RPM group (19.2% ± 4.2%) than in the static control group (10.1% ± 2.3%) (n = 3; p < 0.05). In
contrast with the Jurkat/A4 cells, the percentage of total apoptotic cells was higher in the static control
group (27.7% ± 5.2%) than in the RPM group (12.1% ± 2.3%) (n = 3; p < 0.05). Figure 2 shows the
representative results of apoptosis analyzed by flow cytometry and the quantitative comparison results.

Figure 2. Apoptosis in Jurkat and Jurkat/A4 cells under simulated microgravity (96 h). Cells were
stained with annexin V, conjugated, and evaluated for apoptosis as described in the Materials and
Methods section. (a,c) Flow cytometric analysis of cells to assess apoptosis using annexin V labelling.
Results are shown as percentages of viable cells (annexin V−/propidium-iodide (PI)−), early apoptotic
cells (annexin V+/PI−), late apoptotic cells (annexin V+/PI+), and dead cells (annexin V−/PI+). The
apoptosis rates were statistically evaluated. (b,d) Quantitative comparison of apoptosis between the
static control and RPM groups. The results are expressed as means ± standard deviations. *p < 0.05, as
compared with the static controls (n = 3).
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2.3. Simulated Microgravity Disturbed Cell Cycle of Jurkat/A4 Cells

Flow cytometry analysis showed that the percentages of Jurkat/A4 cells in the G0/G1-phase were
42.0% ± 1.6% in the RPM group and 55.3% ± 2.1% in the static control group, after 72 h of culturing
(n = 5; p < 0.05). The number of Jurkat/A4 cells in the DNA synthesis-phase (S-phase) of the RPM
group was significantly higher than that in the static control group (53.2% ± 1.6% vs. 41.3% ± 2.2%;
n = 5; p < 0.05) (Figure 3). Additionally, the percentage of cells in the G0/G1-phase was 40.7% ± 1.1% in
the RPM group in comparison with 45.1% ± 0.4 % in the static control group after 96 h (n = 5; p < 0.05).
Further, the number of cells in the S-phase of the RPM group was higher than in the static control group
after 96 h (54.3% ± 1.9% vs. 49.2% ± 0.3%; n = 5; p < 0.05). These results suggest that microgravity
inhibited cell-cycle progression, arrested the cells at the S-phase of the cell cycle, and induced apoptosis
in Jurkat/A4 cells. We observed no difference in the cell cycle between the experimental and control
Jurkat cells.

Figure 3. Cont.
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Figure 3. Effects of RPM-simulated microgravity on the cell cycle of Jurkat (a) and Jurkat/A4 cells
(b). Cell cycle measurements were performed as described in the Materials and Methods section.
Representative histograms are shown. Data are presented as a histogram, with cell number (y-axis)
plotted against DNA content (x-axis). The first peak contains cells with diploid DNA in the G0/G1-phase.
The cells in the second peak, with double PI-fluorescence intensity, were tetraploid in the G2-phase. The
area between the two peaks represents cells in the S-phase. The number of cells gated in the G0/G1-, S-,
or G2-phases is presented as a percentage of total cells (%). (c,d) Quantitative comparison of apoptosis
between the static control and RPM groups of Jurkat and Jurkat/A4 cells. Percentages of populations
in each cell cycle were averaged from five parallel experiments (at each time point). The results are
expressed as means ± standard deviations. * p < 0.05, as compared with the static controls (n = 5).

2.4. Simulated Microgravity Changed the Expression of the Surface Marker ICAM-3 in Jurkat/A4 Cells

We examined the expression of the surface marker ICAM-3 for Jurkat cells vs. Jurkat/A4 cells.
Normally, approximately 80% (Mean fluorescence intensity (MFI): 57.8) of the Jurkat cells showed
expression of ICAM-3, as measured by flow cytometry. After 96 h of simulated microgravity there was
no difference in the percentage of ICAM-3 on Jurkat cells between the RPM group and static control
group. At the same time, the expression of the ICAM-3 surface marker on the RPM group Jurkat/A4
cells was lower (MFI: 7.2) than that among the static control cells (MFI: 13.7) (n = 5; p < 0.05) (Figure 4).
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Figure 4. The effect of simulated microgravity on the expressions of intercellular adhesion molecule
3 (ICAM-3) also known as cluster of differentiation (CD)50 in Jurkat (a) and Jurkat/A4 cells (b) The
expression of surface antigens was assessed by flow cytometry. The total number of cells expressing
surface antigens on their cell surface was assessed by determining the (MFI) (c). Mouse IgG1-fluorescein
isothiocyanate (FITC) was used as the isotype-matched control to exclude any nonspecific staining. The
results are expressed as means ± standard deviations. * p < 0.05, as compared with the static controls
(n = 5).

2.5. The Effect of Simulated Microgravity on the Morphology and Cytoskeleton of Jurkat/A4 Cells

Simulated microgravity had no significant effect on the morphology of either Jurkat or Jurkat/A4
cells after 24 or 72 h, demonstrating that cells grown under static culture conditions and under
microgravity conditions show the typical morphology of Jurkat cells. However, after 96 h of RPM
exposure, the size and shape of the majority of Jurkat/A4 cells had changed relative to the static control
group cells (Figure 5).

Figure 5. Morphological changes between Jurkat cells (a,b) and Jurkat/A4 cells (c,d). The smear results
of cells stained with Giemsa solution can be seen. Morphological changes between the static control
groups (a,c) and RPM groups (b,d) are apparent (96 h). As compared with the Jurkat static control cells,
the size of the Jurkat/A4 cells increased after 96 h of RPM exposure. Photomicrographic images were
obtained using an Olympus BX51 microscope equipped with an Olympus XM31 camera and software
(Olympus, Tokyo, Japan). The original magnification was × 600. The scale bars indicate 100 µm.
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The immunocytochemical staining of tubulin-containing structures showed differences between
the expression of beta-tubulin in the control group and the RPM group of Jurkat/A4 cells after 96 h. The
expression level of beta-tubulin was reduced in Jurkat/A4 cells after 96 h of RPM exposure (Figure 6).

Figure 6. The effect of simulated microgravity on Jurkat/A4 cell microtubule cytoskeletons.
The immunostaining of cells with beta-tubulin after paraformaldehyde fixation and saponin
permeabilisation. (a,b) Static control group, 96 h; (c,d) RPM group, 96 h. Original magnification, ×400.
The scale bars indicate 20 µm.

2.6. The Effect of Simulated Microgravity on Certain Apoptotic Proteins of Jurkat/A4 Cells

To analyze apoptotic proteins, we examined the expression levels of Bcl-2, Fas, and HSP-70 in
both Jurkat/A4 and Jurkat cells using Western blotting. Of note, the expressions levels of Bcl-2, Fas, and
HSP-70 were higher in the Jurkat static control group than among the control Jurkat/A4 cells. However,
the expressions levels of Bcl-2, Fas, and HSP-70 in these two kinds of cells under RPM-simulated
microgravity conditions remained unchanged (Figure 7).

Figure 7. Jurkat cells and Jurkat/A4 cells, Western blotted with antibodies to anti-Bcl2, anti-HSP-70,
anti- human Fas, and β-tubulin. The results are representative of three experiments.

3. Discussion

Experiments performed under microgravity conditions have recently attracted increasing interest
in many areas of biomedicine, such as oncology, cardiology, immunology, pharmacology, and
regenerative medicine.

Most studies indicated that cells of the immune system are highly sensitive to altered gravity [16–18].
Jurkat cells are stable cellular models easily able to be managed, and lymphocytes can be considered
as biosensors of the whole-body response and of adaptation to environmental conditions [16,28]. As
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reviewed by Morabito et al., shear stress during rotation, and the use of a depleted medium that cannot
be renewed, impacts the outcomes of exposure lasting longer than 96 h [16]. According to the results
of the gene expression profile, after the first 24 h of exposure to stimulated microgravity, proliferating
Jurkat cells adapted to the new environmental condition, showing a healthy status [29].

In this study, we investigated the effects of simulated microgravity on Jurkat cells and their
multidrug-resistant subline Jurkat/A4 cells. Our experiments indicated that the percentage of trypan
blue-stained dead Jurkat/A4 cells increased under RPM-simulated microgravity conditions, relative
to static Jurkat/A4 cells. Confirmation of dead Jurkat/A4 cells was achieved by viewing the flow
cytometry and annexin V, which showed that after 96 h, the percentage of total apoptotic cells was
higher among the RPM-treated Jurkat/A4 cells than in the static Jurkat/A4 group.

Some researchers have reported that microgravity exposure changes the morphological phenotype,
cell cycle, and cell adhesion, and has an impact on cell survival that is highly dependent upon the cell
type, as well as on the duration of exposure [30,31]. Long-term RPM exposure of human endothelial
cells induced the formation of three-dimensional tubular structures and spheroids [32]. Previous
reports have shown that simulated microgravity induced partial arrest in the G2/M-phase of the MCF-7
cells and normal murine vascular smooth muscle cells, and also slowed down the cell cycle progression
of myoblasts [33].

However, exposure of malignant glioma cells to simulated microgravity for 3 days did not cause
cell-cycle arrest or a change between the control and clinostat groups [34]. In our earlier study, we
reported that simulated microgravity inhibited proliferation, induced apoptosis, and changed the
morphology of MEG-01 megakaryoblastic cells [35]. In the present study, we demonstrated that
the percentage of Jurkat/A4 cells in the G0/G1-phase decreased after 72 and 96 h. At the same time,
the percentage of cells in the S-phase increased in the RPM group in comparison with in the static
control group. These data indicate that microgravity inhibits the cell-cycle progression of human
multidrug-resistant Jurkat/A4 cells.

ICAMs are transmembrane proteins that are expressed on epithelial cells, endothelial cells,
and cells of the immune system, including T-cells and macrophages. ICAM-1 can be considered
as a rapid-reacting and sustained gravity-regulated molecule in mammalian cells [36,37]. TNBC
(triple-negative breast cancer) cells exposed to short-term microgravity obtained by parabolic flight
maneuvers kept all signs of a more aggressive phenotype, as elevations of ICAM1 and Vascular cell
adhesion protein 1 (VCAM1) proteins occurred quickly.

ICAM-1 expression was heightened in macrophage-like differentiated human U937 cells during the
microgravity phase of parabolic flights and in long-term microgravity provided by a two-dimensional
clinostat or during the orbital SIMBOX/Shenzhou-8 mission [32,36]. Disturbed immune function
in microgravity could be a consequence of ICAM-1 modulation in the monocyte/macrophage
system, which, in turn, could have a strong impact on the cells’ interaction with T-lymphocytes
and migration [36].

Short-term microgravity led to an increased synthesis of ICAM-1 and VCAM-1 proteins in
MDA-MB-231 breast cancer cells during a parabolic flight campaign [31]. Modulation of the expression
of surface adhesion molecules such as ICAM-1 has been reported as a consequence of long-term
microgravity of cultured human endothelial cells [38,39].

Intercellular adhesion molecule 3 (ICAM-3, also known as CD50), a human leukocyte-restricted
immunoglobulin super-family (IgSF) member, has previously been implicated in apoptotic cell clearance.
ICAM-3 can function as a phagocytic marker of apoptotic leukocytes, on which it acquires altered
macrophage receptor-binding activity. ICAM-3 also inhibits lymphocyte survival through the induction
of apoptosis and promotion of adhesion of apoptotic leukocytes to phagocytic macrophages [40].

An apoptosis-associated reduction in ICAM-3 results from the release of ICAM-3 within
microparticles that potently attract macrophages to apoptotic cells. Taken together, these data suggest
that apoptotic cell-derived microparticles, bearing ICAM-3, promote macrophage chemoattraction
to sites of leukocyte cell death, and that ICAM-3 mediates subsequent cell corpse tethering to
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macrophages. The defined function of ICAM-3 in these processes, and profound defect in chemotaxis
noted to ICAM-3-deficient microparticles, suggest that ICAM-3 may be an important adhesion molecule
involved in chemotaxis to apoptotic human leukocytes [41].

Though our results showed a slight decrease of the expression of the ICAM-3 surface marker on the
RPM group in Jurkat/A4 cells, in comparison to the control, we conclude that ICAM-3 also may be an
important adhesion molecule involved in the induction of leukocyte apoptosis and the functions of cell
growth behavior in microgravity conditions. As demonstrated recently, the transitory effects induced
by stimulated microgravity on cell shape and proliferation are accompanied by metabolic changes
that are, above all, related to mitochondrial activity [16]. The modification of external forces caused
by stimulated microgravity conditions induced transient modifications in cell shape and intracellular
density in Jurkat cells, accompanied by transient changes in the expression levels of some cytoskeletal
proteins such as actin, tubulin, and vimentin, which are not only structural proteins but also the main
functional milestones in cytoskeleton dynamics [42,43].

Notably, that morphological differences between Jurkat cells and Jurkat/A4 cells were observed
after 96 h of microgravity exposure, whereas the size of Jurkat/A4 cells increased and their cellular
shape was changed in the RPM group. Interestingly, as seen in vials of Jurkat/A4 cells after microgravity
exposure, the cells were no longer grouped (Figure 8). Additionally, the expression level of beta-tubulin
was reduced in Jurkat/A4 cells after 96 h of RPM exposure, as shown by immunofluorescence analysis.
These experiments support the conclusion that simulated microgravity has different effects depending
upon the cell type.

There are numerous studies regarding the effects of microgravity on T-cells, encompassing a
large variability in cell models and environmental conditions. Many variations in the experimental
plan also exist even when selecting the studies covering only Jurkat cells (e.g., different media
composition, exposure to real or simulated microgravity, and time of exposure) [15]. Apoptotic
signaling is enhanced in cancer cells subjected to microgravity. Recently, it was demonstrated that
simulated microgravity altered the cytoskeleton and nuclear positioning, leading to enhanced cell
apoptosis via suppressing the focal adhesion kinase (FAK)/RhoA-controlled mammalian target of
rapamycin complex 1 (mTORC1)/nuclear factor-kappa B (NF-κB) and extracellular signal-regulated
kinase1 (ERK1/2) pathways [44]. Elsewhere, microgravity altered cis–diamminedichloride platinum
(II) (CDDP) sensitivity through the activation of caspase-3 by a p53-independent mechanism in the
hepatoblastoma cell line, HepG2 [20]. Microgravity decreased the levels of mTOR and increased the
microtubule-associated protein light chain 3-II/I ratio (LC3), suggesting the activation of autophagy.
Disturbed immune function in microgravity could be a consequence of ICAM-1 modulation in the
monocyte/macrophage system, which, in turn, could have a strong impact on the cells’ interaction
with T-lymphocytes and migration [20].

Simulated microgravity can also induce the nuclear translocation of Bax and Bcl-2 in glial cultured
C6 cells [45]. Simulated microgravity altered the cytoskeletons and promoted cell apoptosis through
suppressing the NF-κB pathway, leading to up- and down-regulated pro-apoptosis (caspases 3, 7, and
8) and anti-apoptosis (Bcl-2 and Bnip3) molecules, respectively [44].

We did not observe a change in the expression levels of Bcl-2, Fas, HSP-70, or beta-tubulin in either
Jurkat or Jurkat/A4 cells under RPM-simulated microgravity conditions. However, the expressions of
Bcl-2, Fas, and HSP-70 were higher in the Jurkat static control group than among the control Jurkat/A4
cells, corresponding with the findings of our previous studies [26,27].

Therefore, our data demonstrated for the first time that the Jurkat/A4 cells with an acquired
multidrug resistance phenotype are more sensitive to RPM microgravity, possibly due to the fact that
Jurkat cells are a cancer p53-deficient cell line [46]. In our previous work, the results suggested that
CD73 is one component of a complex nonspecific antiapoptotic program, which was, in our case,
upregulated during selection for Fas resistance [27]. This could be important in order to understand
the role of the expression factors associated with NF-κB and MAPK signaling pathways. We can also
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speculate about the precise mechanism; perhaps Jurkat/A4 has its own mechanism of death similar to
anoikis [47].

Scientists search for new ways to identify targets for novel drugs, and some of them have considered
using experimentation in altered gravity conditions [19,48–50]. The microgravity environment might
also be useful for enhancing the development of complex tissues composed of multiple cell types [51].
The unique combination of a 3D microfluidic tissue chip and a microgravity environment can provide
unique insights into disease models and therapeutic targets. For example, the development of a
biomimetic kidney organoid has been the focus of intense investigation [52].

In summary, we revealed morphological changes, changes in the surface expression of intercellular
adhesion molecule 3, changes in the induction of apoptosis, and changes in the inhibition of cell-cycle
progression, for human multidrug-resistant Jurkat/A4 cells exposed to a random positioning machine.

4. Materials and Methods

4.1. Cell Culture

The Jurkat cell line (clone EG-1) was obtained from the American Type Culture Collection
(Manassas, VA, USA). A multiresistant cell line (Jurkat/A4) was prepared from this Jurkat cell line
by serial treatment with apoptosis-inducing anti-CD95 monoclonal antibody [26]. The cells were
maintained at 37 ◦C in an atmosphere of 95% air and 5% CO2 as suspension cultures in RPMI 1640
medium supplemented with 10% fetal bovine serum (FBS) and 5 µg/mL of gentamicin (all reagents
from Life Technologies, USA).

Figure 8. Bright-field images of Jurkat cells and Jurkat/A4 cells using the Carl Zeiss Axiovert 40 CFL
microscope (Carl Zeiss AG, Oberkochen, Germany) at ×100 magnification. Jurkat cells are shown (a)
before seeding in the flask, (b) as static controls (96 h), and (c) in the RPM group (96 h). Jurkat/A4 cells
are shown (d) before seeding in the flask, (e) as static controls (96 h), and (f) in the RPM group (96 h).

4.2. RPM

Microgravity conditions were simulated using an RPM (Dutch Space; Astrium EADS, Leiden,
the Netherlands) [14]. To start an RPM experiment, Jurkat and Jurkat/A4 cells with a density of
2 × 106 cells/mL were seeded in T12.5 flasks (Jet Biofil) completely filled with culture medium to avoid
air bubbles and to minimize liquid flow, and were cultured at 37 ◦C in a humidified atmosphere of 95%
air and 5% CO2. The culture flasks were fixed onto the desktop RPM at the center of the platform,
which was rotated at a speed of 60◦/s. The static culture flasks (1 g control) were placed in the same
culture incubator.

4.3. Cell Viability Analysis

Cell viability was assessed by vital dye exclusion (trypan blue; Invitrogen, Carlsbad, CA, USA).
After incubation for indicated times (24, 48, 72, and 96 h), cells were removed from the culture flasks
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and an aliquot of the suspension (20 µL) from each sample was mixed with an equal amount of 0.4%
(w/v) trypan blue dye and placed on the surface of the working slide for analysis on an automated
cell counter (Countess; Invitrogen, Carlsbad, CA, USA). Each test sample of the cells was counted
in duplicate.

4.4. Cell-Cycle Analysis

The cell-cycle distribution of cells was analyzed by Propidium-iodide (PI) staining of the cellular
DNA content and the percentages of cell population in the G0/G1-, S-, or G2/M-phases were calculated
from histograms created by the CellQuest software (BD Biosciences, Franklin Lakes, NJ, USA). After
incubation for the indicated times (48, 72, and 96 h), cells were removed from the culture flasks, washed
in phosphate-buffered saline (PBS), gently fixed in ice-cold 70% ethanol, and kept for 24 h at 4 ◦C.

The detection method was based on the use of a commercial kit (BD Biosciences, Franklin Lakes,
NJ, USA). Briefly, following fixation, the cells were washed twice with PBS and resuspended in the
staining buffer containing PI and RNase. The samples were incubated for 30 min in a dark place
at room temperature (RT). Cell-cycle analysis was performed with the flow cytometer FACSCalibur
(Becton Dickinson, Franklin Lakes, NJ, USA) with an air-cooled argon laser (wavelength: 488 nm).
A minimum of 25,000 events were analyzed for each sample. Each test (time point) sample of cells
was counted in duplicate. Flow cytometric data files were collected and analyzed using the CellQuest
software. Histograms generated by FACSCalibur were analyzed using the ModFit Cell Cycle Analysis
Software V2.0 (Verity, Topsham, ME, USA) to determine the percentage of cells in each phase (G0/G1, S,
and G2).

4.5. Apoptosis Analysis

Cell apoptosis analysis was performed using an annexin V-FITC apoptosis detection kit I (BD
Biosciences, Franklin Lakes, NJ, USA) according to the manufacturer’s instructions. Briefly, 1 × 106 cells
were washed once with cold PBS, suspended in 100 µL of binding buffer containing FITC-conjugated
annexin V and PI, and incubated for 15 min on ice and in the dark, per sample. The samples were
analyzed by flow cytometry with FACSCalibur. A minimum of 15,000 events were analyzed for each
experimental sample.

4.6. Flow Cytometry Immunophenotyping

The expression of ICAM-3 was analyzed using fluorochrome-coupled monoclonal human antibody:
FITC-coupled anti-CD50-FITC (BD Biosciences, Franklin Lakes, NJ, USA). A mouse immunoglobulin
G isotype-matched control conjugated to FITC was used to exclude nonspecific binding. Antibodies
were prediluted for use at the recommended volume per test.

The cells were removed from the flasks, twice washed in PBS, and incubated for 30 min at RT in the
dark with monoclonal antibodies and isotype-matched controls. In each test, monoclonal antibodies
were added to 0.5 to 1 × 106 cells in a 100 µL experimental sample. All samples were analyzed using
flow cytometry. At least 10,000 events were acquired for each experimental sample. The positive
analysis region was determined using the negative isotype control. The MFI and the percentage of
cells expressing CD50 were then determined.

4.7. Observation of Morphological Changes

The cells were collected on different days of culture and washed with PBS, fixed with 100%
methanol, and then stained with Giemsa solution for five minutes. Morphological changes in the
samples were analyzed using an Olympus microscope BX51 equipped with an Olympus DP71 camera,
60/1.35 oil Apolens, and the cellSens version 2.1 image analysis program (all Olympus, Tokyo, Japan).
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4.8. Western Blotting

Cells were collected, washed with PBS twice, and were lysed in radioimmunoprecipitation
assay buffer (50 mM of Tris, 150 mM of NaCl, 0.5% sodium deoxycholic acid, 1% (v/v) Nonyl
Phenoxypolyethoxylethanol-40 (NP-40), 0.1% (w/v) sodium-dodecyl sulfate (SDS); pH: 7.4). Protein
concentrations were determined using the Bradford method, using a NanoDrop 1000 spectrophotometer
(Thermo Fisher Scientific, Waltham, MA, USA). Next, 10 to 20 µg of total protein per sample was used
for 12% to 15% sodium-dodecyl sulfate–polyacrylamide gel electrophoresis and semidry transfer to a
0.45 µm polyvinylidene difluoride membrane (Immobilon-P Transfer Membran; Millipore, Burlington,
MA, USA). Membranes were blocked by 5% milk (blotting-grade blocker; Bio-Rad Laboratories,
Hercules, CA, USA) in TBST buffer at RT for 1 h and then treated overnight at 4 ◦C with working
dilutions of respective primary antibodies in the presence of 5% milk with 0.06% NaN3 in TBST buffer.

Membranes were hybridized with a mouse monoclonal antihuman Bcl-2 (1:500 dilution; BD
Biosciences, Franklin Lakes, NJ, USA), mouse monoclonal anti–beta-tubulin (1:1000 dilution; Abcam,
Cambridge, UK), mouse monoclonal anti-Hsp-70 (1:5000 dilution; Abcam, Cambridge, UK), mouse
monoclonal anti-human Fas (1:1000 dilution; MBL, Tokyo, Japan), mouse monoclonal anti–beta-tubulin
(1:1000 dilution, Abcam, Cambridge, UK), and mouse monoclonal anti-actin Ab-5 (1:10,000 dilution;
BD Biosciences, Franklin Lakes, NJ, USA) separately.

Following incubation with primary antibodies, the membranes were washed with TBST for
10 min, four times, and were then incubated with secondary horseradish peroxidase-conjugated goat
antimouse immunoglobulin G (1:2000 dilution; Thermo Fisher Scientific, Waltham, MA, USA) at RT
for one hour with subsequent washing in TBST for 10 min, four times. The detection of bands was
implemented using the Kodak 440CF image station and Amersham ECL Western blotting detection kit
(GE Healthcare, Chicago, IL, USA) according to the manufacturer’s instructions. A mouse monoclonal
anti-actin Ab-5 antibody (1:1000 dilution; BD Biosciences, Frankin Lakes, NJ, USA) was used as a
loading control.

4.9. Immunocytochemistry

For immunostaining, the cells were washed in PBS, fixed in 4% paraformaldehyde for 10 min, and
permeabilized with 0.5% saponin for 15 min according to the antibody protocol. After washing with
PBS, the cells were incubated in blocking buffer (10% FBS) for two hours. Following a further wash
with PBS, the cells were incubated with anti-beta-tubulin (1:1000 dilution; Abcam, Cambridge, United
Kingdom) overnight at 4 ◦C. The cells were washed three times with PBS and incubated for 15 min with
4′,6-diamidino-2-phenylindole (DAPI) at RT. Then, the cells were washed three times with PBS and
mounted on glass slides using a mounting medium (Thermo Fisher, Scientific, Denmark). Fluorescence
was visualized using a BX51 microscope equipped with an Olympus DP71 camera, 60/1.35 oil Apolens,
and the cellSens version 2.1 image analysis program (all Olympus, Tokyo, Japan).

4.10. Statistical Analyses

Data are presented as means ± standard deviations of at least three independent experiments.
Differences between groups were assessed using Student’s t-test and the Mann–Whitney U test. Values
of p < 0.05 were considered as statistically significant.

5. Conclusions

With this research, we conclude that Jurkat/A4 cells are more sensitive to RPM-simulated
microgravity in comparison with the parental Jurkat cell line. We suggest that intercellular adhesion
molecule 3 also may be an important adhesion molecule involved in the induction of leukocyte
apoptosis. In addition, our results are consistent with other studies, in that the using different cell
cultures under simulated microgravity will help both for the discovery of molecular mechanisms of
cancer and for in vitro therapeutic screening [48–52].
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It is, therefore, the case that Jurkat/A4 cells with an acquired multidrug resistance phenotype
could be a useful model for studying the effects of simulated microgravity and testing anticancer drugs.
Future studies on the mechanisms and physiological implications of this phenomenon are currently
under construction.
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Abbreviations

3D Three-dimensional
Abs Antibodies
BCL2 B-cell lymphoma 2
BNIP3 BCL2 interacting protein 3
CD50 ICAM-3 also known as cluster of differentiation (CD)50
CD95 Apo-1/Fas (CD95), a receptor of the TNF Receptor (TNFR) family
CDDP cis-diamminedichloridoplatinum(II)
Con-A Concavalin A
DAPI 4′,6-diamidino-2-phenylindole
ERK1 Extracellular signal-regulated kinase1
FAK Focal adhesion kinase
FAS FS-7-associated surface antigen, also known as apoptosis antigen 1 (APO-1)
FBS Fetal bovine serum
FITC Fluorescein isothiocyanate
ICAM-3 Inter-cellular adhesion molecule 3
LC3 Microtubule-associated protein light chain 3-II/I ratio
MAPK Mitogen-activated protein kinase
MEG-01 megakaryoblastic cells
MFI Mean fluorescence intensity
MCS Multicellular spheroid
mTORC1 Mammalian target of rapamycin Complex 1
NF-κB Nuclear factor-kappa B
NP-40 Nonyl Phenoxypolyethoxylethanol-40
PBS Phosphate-buffered saline
PI Propidium-iodide
RhoA Ras homolog family member A
RPM Random positioning machine
RT Room temperature
SDS Sodium-dodecyl sulfate
SDS-PAGE SDS -polyacrylamide gel electrophoresis
TBST Tris-buffered saline buffer with Tween 20
VCAM1 Vascular cell adhesion protein 1
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