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Abstract
Type III effectors (T3E) are key virulence proteins that are injected by bacterial pathogens

inside the cells of their host to subvert cellular processes and contribute to disease. The

budding yeast Saccharomyces cerevisiae represents an important heterologous system for

the functional characterisation of T3E proteins in a eukaryotic environment. Importantly,

yeast contains eukaryotic processes with low redundancy and are devoid of immunity

mechanisms that counteract T3Es and mask their function. Expression in yeast of effectors

from both plant and animal pathogens that perturb conserved cellular processes often

resulted in robust phenotypes that were exploited to elucidate effector functions, biochemi-

cal properties, and host targets. The genetic tractability of yeast and its amenability for high-

throughput functional studies contributed to the success of this system that, in recent years,

has been used to study over 100 effectors. Here, we provide a critical view on this body of

work and describe advantages and limitations inherent to the use of yeast in T3E research.

“Favourite” targets of T3Es in yeast are cytoskeleton components and small GTPases of

the Rho family. We describe how mitogen-activated protein kinase (MAPK) signalling, vesi-

cle trafficking, membrane structures, and programmed cell death are also often altered by

T3Es in yeast and how this reflects their function in the natural host. We describe how effec-

tor structure–function studies and analysis of candidate targeted processes or pathways

can be carried out in yeast. We critically analyse technologies that have been used in yeast

to assign biochemical functions to T3Es, including transcriptomics and proteomics, as well

as suppressor, gain-of-function, or synthetic lethality screens. We also describe how yeast

can be used to select for molecules that block T3E function in search of new antibacterial

drugs with medical applications. Finally, we provide our opinion on the limitations of S. cere-
visiae as a model system and its most promising future applications.

Introduction

Bacterial type III effectors: key interactors with eukaryotic hosts
The type III secretion system is a specialised molecular machinery that directly injects effector
proteins inside host cells, constituting the main virulence determinant of many gram-negative
bacteria [1]. Type III effectors (T3E) are of special interest in the context of host–pathogen
interactions since they target key cellular processes [2,3] and are often multifunctional proteins
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with a wide array of activities [4]. The number of T3Es with a specific assigned function is still
low, especially for those of plant-associated bacteria [5–7]. In addition, although the biochemi-
cal activity of several T3Es is already known, their role in infection often remains obscure.

The study of T3Es is particularly complex, as these proteins are usually part of large reper-
toires that feature internal redundancy and jointly contribute to disease development [8,9].
Thus, in most cases, genetic deletion of an individual T3E has no effect on virulence [10–12].
In addition, overexpression of T3Es is often toxic in the context of the natural host and, as
such, hinders monitoring of the intracellular events they trigger [13–15].

Why choose yeast for a T3E study?
The budding yeast has been used as a model organism for studying eukaryotic processes for
more than 50 years [16]. Based on the premise that T3Es target key cellular processes conserved
among eukaryotes, heterologous expression in Saccharomyces cerevisiae emerged as a promis-
ing strategy to investigate their function [17]. Yeast provides powerful genetic, genomic, and
proteomic technologies that can be exploited to investigate subcellular localization, biochemi-
cal activity, or cellular targets of T3Es [18,19]. For instance, collections of deletion mutants
[20] and gene overexpressing strains [21,22], protein chips [23], and synthetic genetic arrays
[24] are available. In addition, work with this organism is facilitated by the availability of
unique databases and resources comprising genetic and phenotypic information on more than
6,000 functionally annotated genes [25,26]. Finally, yeast is a suitable alternative for gain-of-
function analyses of T3E that are naturally delivered into plant cells, since yeast lack the plant
immune receptors that recognise effectors—or their virulence activities—and trigger the hyper-
sensitive response (HR), a programmed cell death associated with plant defence [27].

Here, we exhaustively review studies involving the characterisation of T3E function by het-
erologous expression in S. cerevisiae. We describe, first, the different methodologies that have
been used and, second, the precise biochemical processes altered by T3Es in this heterologous
system, highlighting the parallelisms with their function in the original animal or plant
context.

Methodological Approaches for T3E Characterisation in Yeast
Amain challenge in the study of T3Es is not only the elucidation of their biological function
but also the identification of their physiological targets. As for other proteins, yeast two-hybrid
screens have been widely used to determine T3E protein partners inside the host cells [28].
However, toxicity of the effectors has in some cases hindered the use of this methodology (C.
Popa, personal communication) [29,30]. Below, we comprehensively describe methodological
approaches used so far to characterise T3Es in budding yeast, excluding yeast two-hybrid
assays.

Systems for heterologous expression of T3Es in yeast
The strong GAL1/10 promoter, which is induced by galactose and repressed by glucose addi-
tion, has been used in most studies to drive T3E expression in yeast. Inducibility avoids possi-
ble toxicity effects, although a certain level of background expression has been observed [31].
Treatments with varying amounts of repressor and inducer have been used in this system to
finely characterise effector activities [32]. To ensure low expression levels of the bacterial effec-
tors, two studies have used the weaker inducible promotersMET3 or CUP1 instead [33,34].
This was instrumental to guarantee optimal expression levels of ExoS in a drug inhibitor screen
[34]. Four recent studies have employed tetracycline-responsive promoters for controlled
expression of the highly toxic Erwinia DspA/E, Ralstonia solanacearum AWR5, and RipAY or
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Pseudomonas aeruginosa ExoS (C. Popa, personal communication) [35–37]. The main advan-
tage of these systems is the tight regulation of gene expression and the specificity of prokaryotic
tet regulators compared to induction by nutrient change that usually causes pleiotropic effects
[38].

Strategies to optimise gene expression have also included the use of different copy number
vectors. Low-copy centromeric origin plasmids (1–3 copies) have been required for highly sen-
sitive high-throughput screens [39,40] and co-localisation studies, in which low expression
allowed distinction of specific structures targeted by the effector [41]. On the other hand, high-
copy number plasmids (30–50 copies) using the 2-μ origin of replication have been preferred
for T3Es that are not efficiently produced in yeast. In only a few cases, targeted homologous
recombination was used to introduce a single effector gene copy and avoid the use of selective
media (C. Popa, personal communication) [29,36,42].

Assays to test effector molecular characteristics and related phenotypes
One of the obvious applications of T3E expression in budding yeast is to test their subcellular
location in eukaryotic cells by fusion to fluorescent proteins. Co-localisation studies are simpli-
fied by the availability of a comprehensive collection of chromosomally tagged green fluores-
cent protein (GFP) fusions representing 75% of the proteome, which can be also used for co-
immunoprecipitation assays [43].

Inhibition of yeast growth by bacterial effectors is easy to monitor and, thus, has been exten-
sively used as a first step in the search for effector function [39]. For instance, we have identi-
fied effectors from three different plant pathogens that inhibited growth in budding yeast (C.
Popa, personal communication) [15,40]. Interestingly, yeast growth in the presence of stress-
ors, such as high salt or osmolytes, can increase sensitivity to effectors and has helped in identi-
fying phenotypes caused by effectors that are not apparent under rich-media conditions but
are uncovered under different metabolic states.

A number of assays, detailed below, have been used to characterise the precise eukaryotic
process affected by T3Es that cause toxicity in yeast. Cell cycle arrest was monitored by flow
cytometry analyses or staining the spindle apparatus [42]. Effects on cytoskeleton dynamics
and cell polarity [44] have been visualized by using as reporters labelled septin structures and
fluorescent markers that associate with actin and actin-related structures [45]. Likewise, spe-
cific dyes have been useful to analyse the impact of T3Es on respiration and chitin biosynthesis
[45,46]. Kinase assays using specific antibodies or strains with a lacZ reporter for mitogen-acti-
vated protein kinase (MAPK)-responsive promoters have assisted in the identification of effec-
tors targeting components of MAPK signalling pathways [47,48]. Transcriptional reporters
responsive to endoplasmic reticulum (ER) stress and vacuolar and endosomal fluorescent dyes
have been successfully exploited to monitor interference with vesicle trafficking and endocyto-
sis [49,50]. The recent adaptation to budding yeast of the carboxypeptidase Y-invertase system
to monitor vesicle trafficking [51] holds promise for studies of T3Es modulating this process.
Finally, the biological functions of certain T3Es that manipulate Rho GTPase and ADP-ribosyl-
transferase activities of the host cell have been revealed by measuring bound GTP [33,41] and
incorporation of radioactive ADP-ribose [34], respectively.

Phenotype suppression screens
Collections of deletion mutants allow for assessing functional relationships between nonessen-
tial yeast genes and uncovering redundant activities [24]. Based on this, the collection of
approximately 5,000 viable yeast deletion mutants has been used to screen for mutants sup-
pressing or enhancing growth inhibition phenotypes caused by T3Es. This approach was
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termed pathogenic genetic array (PGA) analysis [29], and it was exploited to identify the cellu-
lar processes targeted by the effectors IpgB2, OspF, and DspA/E [29,35,52].

Conversely, available yeast overexpressing strain collections [21,22] have been useful in
multicopy suppressor screens. This approach relies on the hypothesis that high amounts of
effector targets should rescue T3E-triggered phenotypes such as growth inhibition. Remark-
ably, these screens have identified Rho GTPases as targets of YopT [30], small GTPases as
ExoS targets [34], and a MAPK kinase as a suppressor of SteC toxicity [53]. Similarly, using a
multicopy suppressor screen in yeast, three distinct genomic loci (two of them encoding small
molecular mass GTPases) were identified that suppressed IpaJ activity [54].

Synthetic lethality screens
Synthetic lethality interactions occur if a mutation in one gene combines with a mutation in
another gene to generate a lethal phenotype. Thus, inviable double-mutant progenies can show
functional relationships between genes, either by acting in the same pathway or in two parallel
pathways that are functionally interconnected [24,55]. Synthetic lethality screens have been
successfully utilized to detect T3E-targeted proteins or structures. These screens are based on
the assumption that the function of an effector on a cellular target simulates a knockout of that
gene, and, thus, expression of the effector in yeast can be regarded as a gene knockout. Func-
tional relationships between yeast genes and the function of a bacterial effector can be inferred
by screening for null alleles hypersensitive to its expression. The yeast synthetic lethality inter-
action network, which lists over 10,000 genetic interactions between 2,795 genes, has been
essential for this [55,56]. By this approach, it was found that OspF shares synthetic lethality
partners with genes altered in cell wall biogenesis [57]. Data mining of the 83 deletion strains
hypersensitive to OspF also identified cell wall biological processes as enriched [52]. More
recently, we have optimized synthetic lethality screens by proving that an array of 90 yeast dele-
tion strains covered the majority (69%) of the yeast interactions [49]. The array included nine
of 83 deletion strains hypersensitive to OspF [54] that were sufficient to identify 13 genes con-
gruent (sharing synthetic lethality interaction partners) to OspF and involved in cell wall bio-
genesis-related processes [51]. Screening of this array identified 12 genes congruent to XopE2
and related to the ER stress response [51].

Proteomic analyses
Interaction studies with T3Es have been hindered by the low concentration of these proteins
inside infected host cells. Heterologous expression in yeast oversteps this limitation. In a semi-
nal work, yeast proteins associated with Escherichia coli T3Es were isolated by affinity purifica-
tion and identified by mass spectrometry, providing important clues on their activities [58].
For instance, the EspG effector was found to bind to proteins regulating actin polarization and
nuclear division, while the Map effector copurified with a protein controlling vesicle trafficking
and a cell wall protein localizing to chitin-rich areas [58].

Screens for inhibitors of effector-mediated toxicity
Yeast may be used to identify compounds that inhibit T3Es’ activity and restore growth. This
chemical biology approach was applied to screen for small molecule inhibitors of Chlamydia
pneumoniae CopN and Pseudomonas aeruginosa ExoS [34,42]. Six potential inhibitors against
ExoS toxicity were identified. One of them also reduced the ExoS cytotoxic effect in mamma-
lian cells, and it was shown to act as a competitive inhibitor of ExoS ADP-ribosyltransferase
activity in vitro [34]. In the case of CopN, a library of more than 40,000 small molecules was
screened for restorers of growth, two of them being identified as specific CopN inhibitors [42].
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Transcriptomic analyses
Transcriptomic analyses in yeast have been exploited in some cases as genome-screening pro-
cedures to confirm T3E activities already identified by other techniques. mRNA profiling in
yeast cells expressing IpgB2 correlated to those expressing yeast Rho1, proving the proposed
IpgB2 GTPase activity [29]. Similarly, yeast transcriptional responses to OspF, which is known
to inhibit cell wall integrity MAPK signalling, resulted in downregulation of genes involved in
the cell wall integrity pathway [52].

mRNA profiling can also be used as a starting strategy in deciphering conserved processes
or molecular targets of T3Es that have unknown functions. The abundance and availability of
yeast transcriptomic profiles obtained from mutants in a panoply of environmental conditions
enormously facilitate this work [59,60]. In a recent study, we performed microarray and RNA-
seq analyses of yeast cells expressing the Ralstonia solanacearum AWR5 T3E and found a tran-
scriptomic profile reminiscent of that obtained upon TORC1 inhibition by rapamycin, suggest-
ing that AWR5 targets the TORC1 pathway (C. Popa, personal communication).

Conserved Cellular Processes Targeted by T3E in Yeast
Heterologous expression of T3Es in S. cerevisiae has resulted in perturbation of host cellular
processes, very often (84% of the cases) accompanied by growth inhibition phenotypes (Fig 1).

Inhibition of yeast growth seems to be highly specific to T3E, as it was only observed for 2%
to 8% of randomly selected bacterial genes [34,61]. On the contrary, toxicity is a common out-
put from T3Es when expressed in yeast, as, for instance, 26% of P. syringae effectors tested
inhibited yeast growth [14].

Growth inhibition phenotypes have been exploited to define effector functional domains
and biochemical activities. For instance, conserved amino acid residues of YopT, YopE, YopO,
YopJ, IpgB2, ExoT, IpaJ, XopE1, and XopE2 are required to cause similar phenotypes in yeast
and mammal or plant hosts [15,29,30,33,54,62–64]. Moreover, differential phenotypes in yeast
reflected functional differences between homologous T3Es [42,65].

Toxicity in yeast can be caused by alterations in a panoply of cellular activities. To narrow
down the precise yeast process targeted by bacterial effectors, a number of assays have been
performed, often tracing the cause of growth inhibition to a specific arrest in the cell cycle (Fig
1). In other cases, toxicity is the indirect result of effector interferences with the cytoskeleton,
organellar membranes, or specific signalling pathways (see below), so that other observable
phenotypes often accompany growth arrest (Table 1).

Disruption of the cytoskeleton
Disruption and/or rearrangement of the host cell cytoskeleton are the most common strategies
that bacterial T3Es employ to facilitate infection [81,82]. Precisely, 25% of the characterised
effectors target cytoskeletal structures (Figs 1 and 2). For instance, DspA/E caused defects in
cell polarization and endocytosis, two processes that depend on a functional actin cytoskeleton
[50]. The effect on actin is often mediated by direct targeting of Rho-GTPases through the gua-
nine nucleotide exchange factor activity of T3Es that share a WxxxE motif (as further discussed
below), such as EspD and Map [8]. On the contrary, DspA/E seems to act through downregula-
tion of sphingolipid biosynthesis, which hinders proper localization of actin regulators [50].

Other T3Es target the microtubule cytoskeleton, preventing normal functioning of the cell
cycle [83]. It was shown that CopN-expressing cells stalled at the G2/M transition and showed
abnormal microtubule spindle formation in both mammals and yeast [42]. Other T3Es, such
as ExoT or PheA, use the same strategy to redirect resources in the host cell to promote bacte-
rial multiplication [84,85]. Similarly, EspG was shown to disrupt microtubule structures and

PLOS Pathogens | DOI:10.1371/journal.ppat.1005360 February 25, 2016 5 / 17



perturb actin polarization in both mammals and yeast [45,75]. The double effect of EspG on
actin and microtubules is likely mediated by modulation of G protein signalling (see below)
[86].

Rho family of small GTPases: “favourite” targets of bacterial effector
proteins
Rho GTPases constitute the protein family most frequently targeted by T3Es in yeast (Table 1).
In fact, 11 effectors representing 20% of the T3E with a described target in yeast were found to
specifically manipulate these eukaryotic proteins. Interference with Rho GTPases has been
shown to facilitate bacterial invasion or to help bacteria escape phagocytosis and immune
responses triggered in their animal and plant hosts [87–89]. Rho-family GTPases function as
molecular switches regulating membrane trafficking, actin dynamics, cell cycles, or nuclear
import in response to extracellular stimuli [90]. These small G proteins are activated to a GTP-
bound state by guanine nucleotide exchange factors (GEFs) and inactivated by cytoplasmic
GTPase activating proteins (GAPs) to a GDP-bound state [91]. Bacterial T3Es modulate Rho
signalling by mimicking GAPs and GEFs, inhibiting or activating, respectively, small G protein
signalling events (Fig 2).

YopE was shown to cause loss of actin cytoskeletal polarity in yeast, blocking bud formation
and actin rings [41], in agreement with its GAP activity in mammalian cells [33]. However,
other bacterial T3Es, such as IpgB2, Map, SopE2, and SifA function as GEFs, activating Rho
GTPases both in yeast and mammalian systems [29,68], likely in order to promote lesion for-
mation [92]. Interestingly, effectors from plant-associated bacteria, such as WtsE and AvrE,
bear a WxxxE motif shared by GEF-acting T3Es [8] and require this conserved motif to pro-
mote disease [93]. Bacterial infection may involve sequential secretion of effectors with GEF
and GAP activities. In Salmonella, the GEF-like SopE2 effector is required in the initial stages
of infection for actin rearrangement and bacterial invasion, while the antagonizing GAP-like
SptP is injected later to allow cell recovery and completion of bacterial internalization [94–96].
In a different scenario, the effector YpkA/YopO functions by mimicking guanine nucleotide-

Fig 1. Most common phenotypes observed in S. cerevisiae upon T3E expression. Black bars indicate total number of effectors described for each
phenotype; gray bars, the number also causing growth inhibition.

doi:10.1371/journal.ppat.1005360.g001
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Table 1. List of bacterial T3Es studied in budding yeast. Ref. stands for references. Genera are abbreviated as follows: S. = Salmonella or Shigella, X. =
Xanthomonas, E. = Erwinia or Escherichia, P. = Pseudomonas or Pantoea, V. = Vibrio, C. = Chlamydia or Citrobacter.

Effector Organism Approaches used in characterisation Phenotypes in yeast Ref.

YopE Yersinia spp. GTPase assays, mutational analysis Growth inhibition, GAP activity [33]

YopE and SspA Yersinia spp./
Salmonella
typhimurium

Subcellular localization, flow cytometry, actin staining Growth inhibition, disruption of actin
cytoskeleton

[41]

YopM Y. pestis Subcellular localization Vesicle trafficking-dependent nucleus
accumulation

[66]

YopM Y. pestis Functional mutational analysis Identification of critical residues for nuclear
targeting

[67]

YopO/YpkA Yersinia. spp. Viability assays, actin staining, indirect
immunofluorescence

Growth inhibition/cytotoxicity, disruption of
actin cytoskeleton

[63]

YopJ Yersinia. spp. Phenotype suppression screen, acetylation assays,
yeast two-hybrid interactions

Growth arrest, inability to respond to the α
factor

[62]

YspM Y. enterocolitica Mutational analysis, phenotypic analysis of
homologues

Growth inhibition [65]

YopE, YopM,
YpkA, and SopE2,

Sptp, SigD

Y. enterocolitica and
S. typhimurium

CPY-Inv reporter system, Tet-off expression system Growth inhibition, perturbation of vesicle
trafficking

[51]

SopE2 and SptP S. typhimurium MAPK phosphorylation assays Growth inhibition, activation of MAPK
signalling

[68]

SigDR468A/
SopBR468A

S. typhimurium Fluorescence staining, functional domain analysis,
enzymatic assays

Growth inhibition, actin depolarization [69]

SigDR468A/
SopBR468A

S. typhimurium Subcellular localization, mutational analysis, indirect
immunofluorescence, enzymatic assays, MAPK

phosphorylation assays, protein affinity purification

Growth inhibition/growth arrest, disruption
of cytoskeleton, inhibition of MAPK

signalling, interaction with yeast Cdc42
G12V and Cdc24

[70]

SteC, SseF S. typhimurium Screen for effector-triggered phenotypes,
fluorescence staining, MAPK phosphorylation assays

Growth inhibition, disruption of actin
cytoskeleton

[61]

SigDR468A/
SopBR468A

S. typhimurium Fluorescence staining, functional mutational analysis,
co-immunoprecipitation, MAPK phosphorylation

assays

Growth inhibition, interaction with hCdc42
in yeast

[71]

SteC S. typhimurium Phenotype suppression screen, lacZ reporter assays,
co-immunoprecipitation assays, fluorescent staining

Growth inhibition, inhibition of MAPK
signalling, interaction with GEF Cdc24

[53]

SspH2 S. typhimurium Cell cycle functional assays No effect on cell viability or alteration of cell
cycle

[72]

ExoU P. aeruginosa Fluorescence staining, functional mutational analysis Growth inhibition /Cytotoxicity [32]

ExoU P. aeruginosa Fluorescence staining, thin-layer chromatography of
lipids, enzymatic assays

Growth inhibition/cytotoxicity, membrane
alteration, lipase activity

[73]

ExoT P. aeruginosa Functional domain analysis Growth inhibition [64]

ExoS P. aeruginosa Mutational analysis, fluorescence staining, flow
cytometry

Growth inhibition, disruption of actin
cytoskeleton, inhibition of DNA synthesis

[36]

ExoS P. aeruginosa Phenotype suppression screen, screen for inhibitors
of effector toxicity, functional mutational analysis,

enzymatic assays

Growth inhibition, modulation of Rho G
signalling, identification of exosin, a ExoS

inhibitor drug

[34]

VopA V. parahaemolyticus MAPK phosphorylation assays Growth inhibition/growth arrest, inhibition of
MAPK signalling

[74]

VopX V. cholerae Screen for effector-triggered phenotypes Growth inhibition, MAPK interference [48]

EspG E. coli/C. rodentium Actin staining, indirect immunofluorescence Disruption of microtubule structure [75]

EspF, G, H, D,
Map

E. coli Fluorescence staining, immunofluorescence,
activation of MAPK signalling

Growth inhibition, cell cycle alteration [45]

EspB, D, F, G, Map
and Tir

E. coli Protein affinity-purification, μLC-MS/MS Interaction of EspB, D, F, G, Map and Tir
with host proteins

[58]

34 effectors C. trachomatis Screen for effector-triggered phenotypes Growth inhibition [46]

(Continued)
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dissociation inhibitors, which sequester inactive Rho GTPases into the cytosol and inhibit their
signalling without altering the GDP/GTP exchange [97].

Besides Rho-GTPases, the activity of the other two GTPase subfamilies, Cdc42 and Rac, is
also modulated by T3Es [98]. For instance, SopE2 appears to alter the activity of both Rho1
and Cdc42 GTPases in yeast, stimulating signalling through both the filamentation and mating
pathway and the cell wall integrity pathway [68]. Targeting of multiple kinase pathways by
T3Es has also been observed in their natural context: YopE was shown to target RhoA, Rac,
and Cdc42 in human cells [33]. S. cerevisiae has been used to gain insight into the specificity of
T3Es toward the different GTPases. IpgB2 was shown to function as a GEF for Rho1, while
SopBR468A/SigDR468A interacted with yeast or human Cdc42 but not Rac1 when coexpressed in
S. cerevisiae [29,70,71]. Finally, SteC was shown to exert an indirect effect on GTPases by bind-
ing to the Cdc42 GEF from both yeast and human [53].

Inhibition of MAP kinase signalling
Inhibition of MAPK phosphorylation is also a common effect of the interaction of T3Es with
the eukaryotic cell signalling machinery (Table 1 and Fig 2). Effectors from both animal and
plant pathogens were shown to inhibit specific steps in the four best-characterized MAPK

Table 1. (Continued)

Effector Organism Approaches used in characterisation Phenotypes in yeast Ref.

CopN C. pneumoniae Screen for inhibitors of effector toxicity, FACS,
fluorescence staining, phenotypic analysis of

homologues

Growth inhibition/growth arrest, disruption
of microtubule structure, identification of

two inhibitor drugs

[42]

IpgB2 S. flexneri Phenotype suppression screen, mRNA profiling,
yeast two hybrid

Growth inhibition, modulation of Rho G
signalling

[29]

OspF S. flexneri Phenotype suppression screen, MAPK
phosphorylation assays, mRNA profiling

Inhibition of MAPK signalling [52]

IpaH9.8 S. flexneri Functional domain analysis, enzymatic assays E3 ubiquitin ligase for MAPKKK [76]

IpaJ S. flexneri Screen for effector-triggered phenotypes Growth inhibition [39]

IpaJ S. flexneri Phenotype suppression screen Growth inhibition, identification of IpaJ
substrates

[54]

AvrPtoB P. syringae Cell death assays Suppression of stress-induced cell death [77]

HopPtoE,
HopPtoF,
AvrPphE

P. syringae Viability assays Suppression of Bax-induced PCD [78]

27 effectors P. syringae Screen for effector-triggered phenotypes, cell viability
assays, indirect immunofluorescence, domain

analysis

Growth inhibition/cell death, loss of
respiration

[14]

HopAA1-1 P. syringae Functional domain analysis Growth inhibition /cell death [79]

29 effectors
/HopX1

P. syringae Screen for effector-triggered phenotypes, functional
mutational analysis, lacZ reporter assays, subcellular

localization

Growth inhibition under stress, inhibition of
MAPK signalling

[40]

WtsE P. stewartii Functional mutational analysis Growth inhibition [80]

21 effectors X. euvesicatoria Screen for effector-triggered phenotypes, functional
mutational analysis

Growth inhibition/growth arrest & cell
death, growth inhibition under stress

[15]

XopE2 X. euvesicatoria Synthetic lethality screen, lacZ reporter assays Perturbation of vesicle trafficking [49]

DspA/E E. amylovora Fluorescent staining, cell viability assays Growth inhibition, disruption of actin
cytoskeleton, perturbation of trafficking

[50]

DspA/E E. amylovora Phenotype suppression screen, actin staining, HPLC,
cell labelling and thin-layer chromatography,

phosphorylation assays

Disruption of cytoskeleton, down-regulation
of sphingolipid pathway

[35]

doi:10.1371/journal.ppat.1005360.t001
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signalling pathways in yeast [99], which have conserved components and cell surface receptors
shared among all eukaryotes [100].

Expression of HopX1 in yeast showed that it attenuated the activation of the high osmolar-
ity/glycerol (HOG) MAPK pathway under stress conditions, without alteration of expression
or nuclear dynamics of the Hog1 MAPK [40]. Yeast growth inhibition caused by this effector
and modulation of HOG signalling were dependent on its intact transglutaminase activity.
Interestingly, this activity is also essential for virulence as well as recognition by cellular defence
in plants [101]. It can be speculated that interaction with and modification of a plant MAPK
signalling component would drive HopX1 recognition in resistant hosts and may contribute to
virulence in susceptible hosts. Along the same line, Shigella flexneri OspF was shown to inhibit
MAPKs of the cell wall integrity, the HOG, the pheromone response, and the filamentous
growth pathways [52]. Importantly, HopX1 expression in yeast provided the first clues to its
activity, similarly to OspF, for which simultaneously independent research identified its enzy-
matic activity.

Other bacterial effectors operate directly on components of MAPK cascades. For instance,
IpaH9.8 acts as an E3 ubiquitin ligase causing proteasomal degradation of the MAP kinase
kinase (MAPKK) Ste7, reducing the phosphorylation level of its MAPK targets and inhibiting
the yeast pheromone response/mating MAPK pathway [76]. Likewise, YopJ inhibits both the
yeast pheromone response and HOGMAPK pathways by preventing the activation of the
equivalent MAPKK (Fig 1) [62]. Interestingly, the YopJ-like effector VopA inhibits the HOG

Fig 2. Yeast cellular processes targeted by bacterial T3Es. The key processes targeted are marked in yellow and their components separated by dotted
areas. Plant-associated effectors (green squares) and animal-associated effectors (red squares) are indicated next to the activities they modulate. Arrows
indicate activation and T symbols indicate inhibition. Abbreviations: UPR: unfolded protein response; SPT: serine palmitoyltransferase; LCB: long chain
bases; GSH: glutathione; Trxs: thioredoxins; P: phosphate group. Other common abbreviations are given in the text.

doi:10.1371/journal.ppat.1005360.g002
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MAPK pathway and the cell wall integrity pathway, by preventing phosphorylation of MAPKs
Hog1 and Mpk1, respectively [74]. However, unlike YopJ, VopA caused growth arrest in yeast,
indicating that the level at which the T3E exerts its inhibition is key for the final outcome. Sub-
sequent discoveries revealed that YopJ inhibits MAPKK by acetylation of two residues in its
activation loop while VopA acetylates both these two residues and a lysine required for ATP
binding, which explains the incongruent phenotypes observed in yeast. Lastly, VopX was pro-
posed to interact with components of the yeast cell wall integrity MAPK pathway [48].

Modulation of pathogen-triggered cell death
In plants, localized cell death at the site of infection is a typical defence outcome triggered by
the specific recognition of bacterial T3Es by the plant immune system, and it is referred to as
the hypersensitive response (HR). The HR is typically associated with plant disease resistance
and elicitation of additional defence responses. Consequently, several effectors from phyto-
pathogenic bacteria have been shown to function as inhibitors of programmed cell death.
Screening for P. syringaeHR suppressors identified four T3Es, including AvrPtoB, able to sup-
press Bax-induced cell death in both plants and yeast, indicating that their targets are likely
conserved across kingdoms [77,78]. In a similar screen, five Xanthomonas effectors suppressed
plant cell death, mediated by overexpression of components of immunity-associated MAP
kinase cascades [102]. Among them, AvrBs1 was also able to suppress activation of the HOG
MAPK pathway, suggesting that the target of this effector is conserved in eukaryotic organisms
[103]. On the other hand, by virtue of their virulence activity, certain T3Es may trigger cell
death when overexpressed in plants and yeast. For example, we found that XopX, AvrRxo1,
XopB, XopE1, and XopF2 from X. euvesicatoria caused cell death or chlorosis when expressed
in Nicotiana benthamiana and/or tomato plants [15]. In yeast, XopB and XopF2 attenuated
cell proliferation, while AvrRXo1, XopX, and XopE1 were cytotoxic. Interestingly, cytotoxicity
of XopX and AvrRXo1 was associated with cell-cycle arrest at G0/1 [15]. Similarly, P. syringae
HopAA1-1 leads to cell death in both yeast and plants [14]. Exploitation of the yeast model sys-
tem, where effector function can be studied in the absence of immune receptor proteins and
the HR response, has been very useful and has identified effectors that caused different pheno-
types in yeast and plants. As an example, the tyrosine phosphatase HopAO1 and the cysteine
protease HopN1 were shown to arrest yeast growth only if their enzymatic activities were intact
[14]. Interestingly, the same activities were also required to inhibit HR cell death in plants
[103–105]. This suggests that biochemical functions are conserved in different cell contexts,
although this may have disparate physiological consequences [14].

Alteration of membrane structure or vesicle trafficking
Certain bacterial effectors induce host cell permeation and membrane damage to ensure patho-
gen entry and survival inside host cells [106]. For example, ExoU from P. aeruginosa encodes a
phospholipase A2, whose activity releases free fatty acids from membrane phospholipids caus-
ing membrane damage to different organelles, fragmentation of the vacuole in yeast [73], and
acute cytotoxicity in mammals [107].

In addition to manipulating the cytoskeleton and endomembrane system, intracellular patho-
genic bacteria have learned to escape from phagosomal degradation by modulating host–vesicle
trafficking. Effects of DspA/E from E. amylovora and EspG from enteropathogenic E. coli on this
pathway was described to be a consequence of their above-mentioned activities altering the cyto-
skeleton or G protein signalling, respectively [50,108,109]. Other effectors were shown to target
trafficking from the ER to the nucleus. We found that Xanthomonas XopE2 perturbed this molec-
ular signalling by interfering with the activation of the unfolded protein response (UPR) upon ER
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stress induction [49]. T3E manipulation of the UPRmay help the pathogen to escape from phago-
cytic pathways and cell death. ExoS also was recently shown to alter intracellular trafficking
through ADP-ribosylation of similar mammal and yeast targets [34,110]. Interestingly, the ADP-
ribosylation activity is encoded in a C-terminal domain essential for yeast growth inhibition in
both ExoS and ExoT, which also have a Rho-GTPase activity domain (see above) [36,64].

In other cases, bacterial effectors exploit vesicular transport to their benefit. For instance,
proper nuclear localization of YopM from Yersinia pestis in both yeast and mammalian cells
requires a functional vesicle trafficking [66,67]. Yeast has been a robust model to study YopM
trafficking dynamics and to identify its leucine-rich repeat (LRR) domain as necessary for
nuclear translocation.

Concluding Remarks
In this work, we present a comprehensive overview on latest studies using S. cerevisiae systems
biology to uncover T3E function. We have shown how yeast offers unique and versatile
resources for the study of effector proteins from many pathogenic bacteria. Growth inhibition
phenotypes are common amongst T3Es and can be exploited in both small-scale and genome-
wide functional analysis. Further characterisation in yeast has expedited the parallel work per-
formed with the host cells, in which T3Es are naturally injected and common targets have
often been identified in the two systems. We have cited many examples where yeast was instru-
mental in identifying the physiological targets of effector proteins. In some cases, such as
IpaH9.8, the yeast target was different from the relevant mammalian target, but it allowed clas-
sification of an entire family of effector proteins as novel E3 ubiquitin ligases [76].

However heterologous, characterisation of T3Es in yeast has many limitations. First, proper
expression of the bacterial gene or the posttranslational modifications acquired in the native ani-
mal or plant cells may not be achieved in yeast. This may be an important reason why themajority
of T3Es show no apparent phenotype when expressed in yeast. Against this hypothesis are exam-
ples like ExoU, which requires binding to ubiquitin or ubiquitin-modified proteins and is func-
tional in both animal and yeast cells, which still contain the required ubiquitylated proteins
[111,112]. Second, the specific process affected by the T3E may not be sufficiently conserved
across kingdoms, for example, because budding yeast lacks key proteins in a pathway, or their
structure and/or function is not sufficiently conserved to be targeted by T3Es. For instance, regula-
tion of growth and cell cycle progression in yeast depends on cell-size checkpoints, whereas mam-
malian cells respond to extracellular growth factors [113]. The fact that effectors, such as YopE,
often recognise their targets in natural host cells better than in yeast is suggestive of this [33]. An
additional limitation derives from the fact that bacterial effectors may target physiological pro-
cesses that are specific to the host, such as the plant and mammalian innate immune response.
For example, to avoid recognition and activation of defence responses, certain T3Es of phytopath-
ogenic bacteria manipulate the function of components of the plant immune system that are not
conserved in yeast. Therefore, the elucidation of physiological functions of T3Es that target such
components of plant immunity may not be possible in yeast. Still, in some circumstances, pheno-
types in yeast can only be uncovered by the activation of specific signalling pathways, thereby
allowing the investigator insight into the molecular mechanism targeted by the T3SS effector.
Thus, yeast remains an effective, fast, and robust means to identify cellular pathways affected by
T3Es and will continue contributing to the understanding of bacterial pathogenesis.
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