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Tumor microenvironment, including extracellular matrix (ECM) and stromal cells, is a key
player during tumor development, from initiation, growth and progression to metastasis.
During all of these steps, remodeling of matrix components occurs, changing its
biochemical and physical properties. The global and basic cancer ECM model is that
tumors are surrounded by activated stromal cells, that remodel physiological ECM to
evolve into a stiffer and more crosslinked ECM than in normal conditions, thereby
increasing invasive capacities of cancer cells. In this review, we show that this too
simple model does not consider the complexity, specificity and heterogeneity of each
organ and tumor. First, we describe the general ECM in context of cancer. Then, we
go through five invasive and most frequent cancers from different origins (breast, liver,
pancreas, colon, and skin), and show that each cancer has its own specific matrix,
with different stromal cells, ECM components, biochemical properties and activated
signaling pathways. Furthermore, in these five cancers, we describe the dual role of
tumor ECM: as a protective barrier against tumor cell proliferation and invasion, and
as a major player in tumor progression. Indeed, crosstalk between tumor and stromal
cells induce changes in matrix organization by remodeling ECM through invadosome
formation in order to degrade it, promoting tumor progression and cell invasion. To sum
up, in this review, we highlight the specificities of matrix composition in five cancers
and the necessity not to consider the ECM as one general and simple entity, but one
complex, dynamic and specific entity for each cancer type and subtype.
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INTRODUCTION

In 2012, Hanahan et al. reviewed the hallmarks of cancer by including the tumor microenvironment
(1). This concept postulates that cancer cells are not able to promote the disease alone but they
could recruit and modulate resident and normal cell types in order to establish cooperation to
promote tumor progression (2). The tumor microenvironment is a complex and dynamic network
composed of cancer cells, stromal tissue (stromal cells such as fibroblasts, macrophages, immune
cells, cytokines, and vascular tissue), as well as the extracellular matrix (ECM) (3). ECM plays
key roles during tumor development, from initiation, growth and progression to metastasis (2).
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Remodeling of matrix components occurs during all of these
steps. The role of the ECM in this journey is still not emphasized
enough with the exception of some studies (4–7).

The ECM is the acellular component, secreted by the cells,
that forms a tissue. It has a supporting role for normal
cells, as well as a role in maintaining tissue homeostasis.
In addition, the ECM is also involved in the establishment,
separation and maintenance of differentiated tissues and organs
(8). Structurally, ECM proteins notably form the basement
membrane (BM), which separate the epithelium or endothelium
from the stroma and the interstitial matrix involved in tissue
resistance (9). The ECM composition can be very different
according to the tissue, due to the wide variety of proteins
involved in its composition. ECM is composed of hydrated gel-
forming macromolecules [hyaluronic acid (HA), proteoglycans],
fibrillar proteins (collagen) and structural proteins (elastin and
fibronectin). These macromolecules can assemble together to
form three dimensional supramolecular structures with distinct
biochemical and biophysical properties (10). Cells can interact
with the ECM through expression of receptors at their cell
surface, in order to maintain physiological signaling such as
homeostasis, adhesion and migration.

In addition to its structural role, the ECM has a reservoir
role for bioactive molecules such as cytokines and growth
factors. ECM is then involved in cell growth, proliferation,
survival, differentiation, migration and invasion (9). ECM is a
dynamic environment which is constantly remodeled to adapt
and maintain tissue homeostasis (11). This remodeling process is
deregulated during cancer, with abnormal ECM deposition and
stiffness, leading to tumor progression (12). In order to sense,
remodel and degrade the ECM, matrix receptors such as CD44,
integrins or discoidin domain receptors contribute to formation
of invasive structures called invadosomes (or invadopodia),
allowing invasion of cancer cells and metastasis formation (13,
14). However, this classical model of ECM remodeling with
increased crosslinking, stiffness and tumor-promoting signaling
pathway activation does not apply to all stages of all cancers.
This model does not consider ECM heterogeneity, complexity
and specificity of each organ and each tumor. Indeed, each organ
possesses its own ECM with unique architecture, composition
and biological and physical properties associated with organ
specific roles (9). Most of the studies still consider the model
of tumor ECM as one entity without discriminating each cancer
type. Indeed, studies are usually performed on a 2-dimensional
(2D) matrix made of only one matrix element, vitronectin,
laminin and quite often, collagen I. Moreover, those matrix
elements are not in their physiological organization. For example,
type I collagen is used as monomers and not in its physiological
triple helix form, which does not reflect the in vivo ECM. It will
be interesting to study and compare all tumors and associated
extracellular matrices, in order to create more complex and
relevant ECM networks to work with.

The ECM is also the interface between tumor cells and normal
tissues. This interface evolves over time, in parallel with the
tumor. Initially, the ECM forms a physical barrier, preventing
the proliferation and invasion of tumor cells and then, plays a
protective role (15). We could hypothesize that stresses, such as

hypoxia, oxidative or metabolic stresses, proliferation of tumor
cells or ECM accumulation could lower protective nature of
the matrix and favor tumor progression. Consequently, dialogue
between tumor cells and surrounding ECM is a key element in
the tumor progression process by promoting tumor cell invasion
(9, 12). So far, there have been no studies on the ECM’s protective
barrier role, and as such, this molecular mechanism needs further
investigations. The basic scheme of tumor associated matrix is
that ECM remodeling process is abnormally deregulated during
cancer, with an increase in ECM deposition and degradation,
promoting tumor invasion.

In this review, we describe the main molecular components of
the ECM and associated biomechanical properties. We describe
the ECM composition and its role in five cancers (breast,
liver, pancreas, colon cancer, and melanoma), highlight their
similarities and differences, show that each cancer possesses its
own specific matrix associated with physical and biochemical
properties. Furthermore, in these five cancers, we evaluate the
protective and the pro-invasive role of the ECM.

To sum up, in order to go beyond the classical and reducing
scheme of the tumor-associated ECM, the originality of this
review is that we highlight the complexity and the specificity of
the matrix related to the organ and cancer. Then, we do not only
describe a pro-tumor role for ECM but also a protective role,
which is less investigated.

ECM COMPOSITION AND ITS
EVOLUTIVE ROLE DURING CANCER
PROGRESSION

Components and Deposition of the
Physiological ECM
The ECM and, more globally, the matrisome are dynamic
structures composed of thousands of proteins including
glycoproteins (such as fibronectin and laminin) and fibrous
proteins such as collagens (7). The ECM form structures such
as the BM and the interstitial matrix (9). The main role of
BM is to act as a physical barrier between the epithelial cells
and the stroma of an organ. The BM is more compact than
interstitial matrix; it is composed of laminins, heparan sulfate
proteoglycans, collagen IV and proteins synthetized and secreted
by epithelial cells, endothelial cells and myofibroblasts (9).

The interstitial ECM is mainly composed of collagens I
and III, fibronectin, and proteoglycans. The ECM is mainly
secreted by fibroblasts, but in different specialized tissues such
as cartilage or bones, ECM could be secreted by chondroblasts
or osteoblasts, respectively. This physiological ECM is very
heterogenous between the organs. For instance, fibroblasts
are able to synthetize and secrete collagens I or III, elastic
fibers, reticular fibers and proteoglycans, whereas, chondroblasts
synthesize and secrete extracellular matrix of cartilage composed
of collagen II, elastic fibers and glycosaminoglycans. Osteoblasts
synthesize and secrete extracellular matrix of bones principally
composed of type I collagen. Specific to blood vessels, different
studies showed that pericytes, vascular smooth muscle cells
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and fibroblasts are able to produce ECM such as collagen IV,
fibronectin, and laminin (16). The different origins of these
ECM-secreting cells contribute to heterogeneity and complexity
of the physiological ECM.

Physiological ECM is constantly remodeled. Indeed, its
components are secreted, modified and degraded, in order to
adapt and maintain tissue homeostasis. This process is important
to maintain physical properties of the different matrix, and
also participate in the physiology of the tissue. This remodeling
process is deregulated and occurs abundantly during cancer.
The ECM in cancer participate in cancer cells epithelial to
mesenchymal transition (EMT), BM degradation, migration into
the stroma and invasion through the interstitial ECM (17). ECM
in cancer is also the interface between tumor cells and normal
tissues and could have two opposite roles: protective and pro-
tumor.

Extracellular Matrix Evolution in Cancer
ECM Protective Role
The ECM could act as a physical barrier actor in order to inhibit
tumor progression. In different cancers, myoepithelial cells or
cancer-associated fibroblasts (CAFs) surround the tumor and
secrete growth factors, protease inhibitors, angiogenic inhibitors
or several tumor suppressors in order to prevent tumor growth,
invasion and metastasis. Furthermore, different ECM elements,
such as collagen IV or collagen I, could also participate in
restraining tumor growth and could first act as a protective
barrier by inhibiting cell proliferation. We describe these different
elements in detail later in this review.

Very little is known about the protective role of the ECM and
how this protective barrier becomes pro-invasive and requires
further investigation. Some cancers do not even appear to have
any protective effect induced by the ECM or stromal cells.
We could hypothesize that when stromal cells are overactivated
into stromal cancer cells, they induce an upregulation of ECM
component secretion. First, in some cancers, collagen secretion
could act as a protective barrier around the tumor cells.
Subsequently, cancer cell proliferation and alterations increase
over time, the pressure and the stiffness become too high,
inducing a stress on tumor cells. To overcome these stresses,
tumor cells evolve to pursue proliferation and tumor progression.

Tumor-Promoting Role of the ECM
Tumor cells can cause activation of stromal cells into stromal
cancer cells that can remodel the ECM to create a pro-tumor
environment. We propose to name this matrix promoting tumor
progression: Tumor Associated Extracellular Matrix (TAEM).
Collagen I is the main component and most studied ECM
element, therefore, we focus on this element in this review. Even
if the most abundant element of the TAEM is collagen I, ECM
is highly complex and heterogenous, and most of the studies of
cancers are still mainly performed on only one type of matrix. It is
important to study the full matrisome of each cancer and cancer
subtype and study the interaction between the different TAEM
elements. This would allow better understanding of what role can
have each specific molecule. Thus, we could focus on the ones that
can have a protective role and could become therapeutic targets.

One general feature during cancer is that type I collagen is
overexpressed (18, 19), crosslinked and continuously remodeled,
although the process varies between different cancers.

Next, we describe the remodeling of TAEM: (i) its deposition
and (ii) its degradation by invadopodia formation (20) through
(iii) matrix receptors, leading to loss of ECM homeostasis (19)
and change of biomechanical properties of the ECM.

ECM deposition
Cancer cells, through activation of normal cells into stromal cells,
or by themselves, can remodel physiological ECM into TAEM.
Fibroblasts are the most abundant cells of the tumor stroma and
are involved in several biological processes. Some fibroblasts can
be recruited, activated and transformed into CAFs by different
secreted factors from tumor cells in the microenvironment such
as TGF-β, PDGF or FGF (21, 22). CAFs can result from the
activation of fibroblasts near the tumor, mesenchymal stem
cells, but also from cells that have undergone EMT (21–26).
Once activated, owing to their different origins, CAFs possess a
variety of tumor promoting functions, adding another step in the
complexity and heterogeneity of the stroma.

One of their functions is to secrete various ECM elements
including collagen I, fibronectin and hyaluronan, growth factors
(HFG, PDGF, and CTGF), chemokines, cytokines, interleukines
(IL-6 and IL-8) and proteases in order to promote tumor
cell proliferation, angiogenesis and invasion (3, 27). Moreover,
during remodeling in cancer, ECM undergoes drastic structural
changes due to chemical and physical restructuration, leading to
TAEM. Many studies have shown an increased ECM deposition,
inducing a stiffer stroma; in addition, morphological changes
that occur are characterized by more aligned collagens at the
tumor front (28). Tissue stiffness can be increased by enzymes
such as lysyl oxidases (LOX), which can crosslink collagen.
These enzymes can be secreted either by stromal or tumor cells,
inducing increased crosslinks and, thus, an accumulation of
collagen I, fibrosis and promoting metastasis (29–31).

Different studies showed mechano-regulatory mechanisms
wherein ECM rigidity perturbs epithelial morphogenesis and
tissue polarity (28, 32–34). For example, Weaver et al. have
shown that this mechanism will enhance ERK activation and
increase cancer cell malignant phenotype (28). CAFs can also
mechanically remodel the ECM, through compaction and CAF
contractility, in order to create paths to increase cancer cell
migration and invasion (35).

Invadosome formation leads to ECM degradation
The other way to remodel the ECM into TAEM is by degradation.
This ECM degradation can be achieved by cancer cells and all
cells present in the tumor microenvironment, all of them can
form invasive and degradative structures called invadosomes.
Invadosomes are membrane protrusions that can be found on
normal cells (named podosomes) as well as in tumor cells (where
they are named invadopodia). Contrary to other actin-based
structures such as filopodia, focal adhesions or lamellipodia,
invadosomes not only possess adhesive, mechanosensitive
capacities but also proteolytic activity by recruiting, secreting
and activating matrix metalloproteinases (MMPs), allowing them
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to degrade the ECM. They also present their own translational
machinery to maintain their structure and function (36).

Invadosomes are plastic structures, with the ability to adapt to
the available ECM receptors as well as to the microenvironment.
Invadosomes are complex and highly dynamic structures
composed of a F-actin core surrounded by a ring of scaffold and
adaptor proteins in 2D. Actin-regulating proteins, kinases and
small GTPases regulate actin machinery within the invadosomes
(37, 38). Key molecular players for functional invadosomes have
already been identified, including the adaptor protein Tks5,
Cdc42 (36, 39), the actin regulators cortactin and N-WASP, as
well as the transmembrane protein MT1-MMP (37).

Even though invadosomes share a common molecular
signature, they exist in different organizations, depending
on the cell type and on the microenvironment. Cells can
form invadosomes as dots (such as MDA-MB-231 cells), as
rosettes (such as NIH3T3-Src cells) or as aggregates (such as
macrophages and osteoclasts). All of them can reorganize their
actin cytoskeleton to form another class of invadosomes, called
linear invadosomes, when seeded on type I collagen (40, 41).

This last linear organization is induced by physiological
fibrillar collagen I and form specifically along fibrils. Even if
cells can form invadosomes to degrade the BM, this suggests
that when cancer cells are in direct contact with collagen I
after BM degradation, TAEM promotes invadosome formation.
The collagen receptor discoidin domain receptor 1 (DDR1)
is responsible for linear invadosome formation and their
degradation function. Indeed, DDR1 activates the RhoGTPase
Cdc42 and its guanine exchange factor Tuba, inducing their
localization in linear invadosomes (42).

Moreover, other collagen receptors such as integrins or CD44,
that can also be found on stromal cells as well as cancer cells,
have also been shown to be involved in invadosome formation
(43–45). Most cells possess the ability to form invadosomes that
are dependent on various stimuli like growth factors (VEGF,
TGF-β. . .), genome alteration or microenvironment (40, 45, 46),
allowing TAEM degradation.

We can hypothesize that cell cooperation between cancer
cells and stromal cells could promote invadosome formation:
indeed, stromal cancer cell activation by tumor cells induce ECM
deposition and secretion. This will, in turn, promote invadosome
formation by the binding of ECM elements (such as collagen
I) to cancer cell receptors. Different studies have shown that
increased ECM rigidity promotes invadosome formation and
activation. Some studies already demonstrated a cooperation
between tumor cells and CAFs or macrophages in order to
secrete ECM-degrading enzymes (47–50), but no study clearly
demonstrated cell cooperation to directly promote invadosome
formation. However, we could imagine that stromal cells around
the tumor, such as fibroblasts or endothelial cells, could secrete
many soluble factors such as TGF-β or TNF-α in order to
promote invadosome formation by cancer cells. This would lead
to an invasive loop, inducing TAEM degradation, at the same
time as tumor cell proliferation and angiogenesis.

To sum up, both stromal and cancer cells are able to create
TAEM by secreting ECM and degrading it to promote tumor
growth, invasion and metastasis. To create TAEM, a crosstalk
between stromal and cancer cells is needed. This TAEM will,

in turn, serves for communication between stromal and cancer
cells. In order to mediate the interaction with the TAEM,
stromal and tumor cells will bind with different matrix elements
via the presence of receptor panels on their surface, each
cell expressing different receptors modulated during tumor
progression, contributing to tumor heterogeneity.

ECM receptor expressions in cancer cells and in CAFs
Even though many receptors are able to bind the ECM, three
are mainly described in tumor progression (CD44, integrins and
DDRs). Due to prominent interest in cancer cells, rather than
in stromal cells and ECM, a large number of well-described
reviews focus on these matrix receptors in cancer cells (14,
51–53). Indeed, we describe, the role of CD44, integrins and
DDRs - notably in invadosomes and metastasis formation - in
cancer cells and CAFs.

CD44 is a transmembrane glycoprotein receptor which is an
adhesion molecule that is upregulated following tissue injury,
and is implicated in many chronic inflammatory diseases such
as atherosclerosis or autoimmune diseases. It can interact with its
extracellular domain with different ligands like HA, osteopontin,
fibronectin, collagen, MMPs and different growth factors such
as HGF, bFGF and VEGF. This receptor is overexpressed in
CAFs (54) and in a large number of cancer cells [pancreatic
cancer, breast cancer, prostate cancer, head and neck squamous
cell carcinoma (HNSCC), and gastrointestinal cancer] where
it is involved in several steps of tumor progression such as
tumor invasion, EMT, metastasis formation and resistance to
chemotherapy (52). High expression of CD44 in cancer cells is
also associated with cancer stem cell (CSC) properties and is used
as a CSC marker. CD44+ cancer cells show an increase in EMT
and in invasion, correlated with poor prognosis (55–58).

Integrins are transmembrane heterodimers which consist
of α-subunit associated with a β-subunit in a non-covalent
manner. Integrins are able to bind different elements of ECM
such as vitronectin, fibronectin, laminin or collagens. Only four
integrins are able to bind collagen I: α1β1, α2β1, α10β1, and
α11β1 (59). Integrins are overexpressed in a large number of
cancers in both stromal and tumor cells where they can promote
survival, proliferation, motility, invasion, and ECM modulation
(53). Moreover, various studies have shown that integrin α11
is expressed in CAFs in a large number of cancers, like non-
small cell lung cancer (NSCLC) or HNSCC. In these cancers,
α11β1 expression is involved in migration, tumorigenicity and
invasion of tumor cells (60–63). Furthermore, in NSCLC, α11β1
expressed in CAF induces collagen reorganization and tissue
stiffness, promoting tumor growth and metastatic potential of
tumor cells (63). Thus, α11β1 seems to be an important receptor
for collagen remodeling and CAF migration in the tumor
microenvironment.

DDRs are members of the tyrosine kinase receptor family and
are composed by two members, DDR1 and DDR2 (64). These
transmembrane receptors are activated by collagens in their
native triple helix form (65–67). Moreover, DDRs are involved
in several physiological functions such as embryogenesis and
wound healing and are overexpressed in a large number of
cancer subtypes, where they are associated with cell proliferation,
invasion, migration and drug resistance (51).
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DDR1 and DDR2 play an important role in the tumor
microenvironment which is involved in the dissemination
of tumor cells. These receptors could be expressed both by
cancer cells and CAFs in order to promote tumorigenesis. For
instance, Jin et al. have shown that CAFs promote the secretion
of cytokine IL-6 which activates the JAK/STAT3 pathway in
gastric carcinoma cells, inducing DDR1 upregulation, promoting
peritoneal tumorigenesis (68). Thus, inhibition of DDR1 is an
interesting strategy for the treatment of peritoneal metastasis
of gastric cancer.

To sum up this part, tumor cells are able to activate fibroblasts
into CAFs by factor secretion and CAFs are in turn able to secrete
TAEM in order to promote tumor cell invasion, proliferation,
migration and metastasis. To our knowledge, little is known
about the effect of these collagen receptor expressions in other
stromal cells such as immune cells or adipocytes and on the
crosstalk with tumor cells.

However, these collagen receptors are known to be involved
in invadosome formation, allowing tumor cells to remodel
and degrade the ECM in order to migrate, invade and form
metastasis. Those receptors are also able to interact together
(DDRs/integrins and integrins/CD44) (64, 69, 70). It will be
important to study if these three receptors cooperate together in
tumorigenesis and if there is any compensation in their functions.

Although the remodeling of the matrix is an important step,
this classical model of ECM remodeling does not apply to all
cancers. Indeed, this model of an increased ECM deposition,
stiffness and increased activated stromal cells, neither considers
the complexity of the organ, the heterogeneity of the tumor nor
the specificity of its own ECM. Moreover, most studies focus on
the pro-tumor role of ECM whereas initially, in certain cancers,
it could play a protective role, making it possible to restrict tumor
progression. Then, the dynamic of the microenvironment causes
the protective side of the matrix to become pro-tumor. This will
in turn induce ECM rigidity, remodeling and degradation which
will then promote tumor cell invasion (9, 12).

To illustrate this point, we next describe the composition and
evolution of the ECM in five cancers: breast cancer, liver cancer,
pancreas cancer, colon cancer and melanoma as well as the dual
role of their ECM in cancer progression.

BREAST CANCER

ECM Composition and Function
Healthy breast epithelium forms a ductal network surrounded
by adipose tissue. This network connects mammary lobes to
nipples. The normal breast tissue is made of two compartments:
the epithelium and the stroma. The epithelium of the ducts
and of the lobule of the mammary gland is made of luminal
cells, which express hormone receptors, and myoepithelial cells.
Both cell types are surrounded by a BM. The mammary gland
goes through several cycles of changes such as differentiation,
development and apoptosis during physiological adult life,
including during puberty and pregnancy (71–73). These cycles
are highly regulated, but the disruption of the tissue homeostasis,
tissue organization and cell function can lead to cancer.

The most common breast cancer is ductal carcinoma. It is
thought to arise after cellular abnormalities, inducing abnormal
proliferation in the terminal duct lobular units. Then, a
multistep transformation of epithelial cells and accumulation
of abnormalities induce hyperplasia, premalignancy, in situ
carcinoma, and finally, invasive carcinoma (71, 72). Breast
cancers are highly heterogenous and are divided into six subtypes,
depending on their histology, epidemiology and molecular
signatures: luminal A, luminal B, Her2-positive, claudin-low
triple negative (also called basal-like), and normal-like (73). Their
diversity induces more or less invasive forms with different
clinical outcomes.

The tumor microenvironment of breast cancer is far from
homogenous and can evolve during tumor progression in
the same tumor (Figure 1). From primary tumor growth to
extravasation and metastasis formation, the ECM is constantly
changing. For example, even when a ductal carcinoma in situ
(DCIS) becomes an invasive carcinoma, the microenvironment is
different, due to a differential gene expression of all the cell types
between these two cancer steps (74). The ECM is highly dynamic
and is now known to be a major player in tumor progression (75).

The ECM in breast shows similarities to tissues undergoing
wound healing (76, 77) or breast tissue going back to homeostasis
through remodeling after pregnancy, with overexpression of
fibrillar collagens, fibronectin and ECM remodeling enzymes
(78). This change in ECM has also been associated with increased
risk of breast cancer after pregnancy (78, 79).

During breast cancer, one main change in the ECM is
the collagen abundance (Figure 1). Collagen I, III and V are
accumulated while collagen IV is decreased, due to degradation
of the BM (75). Collagen crosslinking is increased too, inducing
a change in collagen organization (shaping it more aligned),
and an increased ECM stiffness. Both characteristics are
associated with tumor progression. The crosslinking is facilitated
by LOX enzymes, which are also overexpressed in breast
cancer (29, 80, 81).

Collagen fibril formation is induced by fibronectin (82),
changing collagens into scaffold for tumor cells to migrate and
invade (48). Fibronectin is also overexpressed during breast
cancer (by CAFs and cancer cells) and is associated with
poor prognosis, notably because it promotes metastasis (83,
84). Hyaluronan as well as versican also accumulate in the
breast cancer ECM and are associated with poor prognosis
(85, 86). Indeed, hyaluronan helps creating a pro-tumor
microenvironment (87), while versican promotes breast cancer
cell self-renewal and migration (88, 89). Several matricellular
proteins, such as osteopontin, tenascin C or periostin, are also
overexpressed during breast cancer and are associated with
increased migration, invasion, and a poor outcome (90).

Extracellular matrix modifications do not only come from
matrix components, but also from remodeling enzymes: from
proteases such as MMPs (MMP-2, -3, -9, and -14) to crosslinking
enzymes such as LOX. These enzymes are often overexpressed in
breast cancer, and promote cancer development and metastasis
(76). However, these two families of enzymes can be differentially
expressed depending on cancer subtypes. For example, LOX,
LOXL2, LOXL3, and LOXL4 are overexpressed in more

Frontiers in Oncology | www.frontiersin.org 5 August 2020 | Volume 10 | Article 1620

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


fonc-10-01620 August 27, 2020 Time: 18:39 # 6

Sala et al. Extracellular Matrix in Cancer Invasion

FIGURE 1 | Schematic representation of ECM composition and ECM dual role as a (A) protective barrier or as a (B) tumor promoting role in breast cancer.

invasive cancers, such as triple negative breast cancers, inducing
cancer cell invasion and metastasis (91, 92). Similarly, MMP-9
overexpression is higher in high-grade and more invasive breast
cancers (such as triple negative and Her2-positive), where it is
associated with metastasis and relapse (93).

ECM Evolution During Cancer
Protective Role
Several components of the ECM can first have protective roles
in order to inhibit tumor progression (Figure 1A). For example,
myoepithelial cells can be considered as the main natural tumor
suppressor in breast cancer, and their disruption seems to be a
key step in tumor progression. Indeed, the myoepithelial cells
are located between the stroma and the luminal cells (from
which cancer arises), creating a separating sheet between the
epithelium and the stroma. They have an important role during
lactation as well as protective roles during tumorigenesis, as
they form a physical barrier around luminal cells (94–96).
Myoepithelial cells can act on tumor cells and on fibroblasts
to reduce MMP-2, MMP-9, and MT1-MMP gene expression,
decreasing cancer cells invasive capacities (97). They also express
some proteinase inhibitors, such as the MMP inhibitor TIMP-
1, and angiogenic inhibitors such as thrombospondin-1 and
bFGF receptors (98), allowing them to inhibit angiogenesis (99).
They can secrete several tumor suppressors such as maspin,
cytokeratins, relaxin and activin in order to prevent tumor
growth, invasion and metastasis (96). The myoepithelial cells
also participate in accumulating ECM and basement membrane

instead of degrading it. To do so, these cells express high levels
of collagen, fibronectin and laminin (100, 101). All of these
show that these specific cells can have several positive roles in
preventing tumorigenesis.

Moreover, some studies also suggest a protective role for CAFs
in breast cancer. CAFs can secrete factors such as caveolin-1
and podoplanin, which are associated with decreased metastasis
(102). CAFs can also inhibit PI3K and TGF-β signaling through
secretion of SLIT2 and asporin, respectively, inducing a decrease
in EMT, invasion and metastasis (103).

Proteoglycans are proteins that are heavily glycosylated and
can bind ECM components like collagens. Decorin, a member of
the proteoglycan family, is also known to have anti-tumor roles
(104). Indeed, reduced expression of decorin is associated with
poor prognosis and may promote tumorigenesis and invasion
(105), while its overexpression is associated with better prognosis
and leads to tumor growth and metastasis inhibitions (through
ERbB2 inhibition) (106–108).

This suggests that several cell types and ECM elements may
have protective roles in breast cancer, but some of them may not
be elucidated yet, and it needs further investigation. However,
there is not enough information to understand at what stages
stromal cells are activated and when the protective role becomes
pro-tumor. It would be important to understand this time frame
in order to block this transition to inhibit tumor progression.

Tumor Promoting Role
Many ECM components (cellular as well as matrix) play a role
in favoring breast cancer progression (Figure 1B). For example,
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CAFs are the most abundant cell types in breast cancer stroma,
they can derive from resident fibroblast or myoepithelial cell
activation (103). CAFs can secrete ECM components (such as
type I collagen or fibrin) and several soluble factors, such as
growth factors (EGF, HGF, TGF-β), metalloproteinases (MMP-
1, -2, -9) or chemokines (CXCL12), to promote tumor growth
and metastasis (74, 95). Macrophages (also known as tumor-
associated macrophages, TAMs) are also involved: they can
secrete VEGF, cytokines or TGF-β to promote cancer cell
survival, angiogenesis and invasion (109, 110). Finally, tumor-
infiltrating lymphocytes help tumorigenesis by blocking anti-
tumor response and suppressing immune cells (111).

Several studies showed that myoepithelial cells from normal
or cancer tissues strongly differ in their gene expression. The
cells isolated from normal tissue express high levels of interstitial
ECM, such as laminin, tenascin or tropomyosin, while the
cells isolated from DCIS overexpress proteases (such as MMP-
2), protease inhibitors (such as TIMP3 or thrombospondin-
2), chemokines, cytokines and collagens (74). They are also
deficient in production of laminin, showing that they tend
to degrade the normal ECM instead of depositing it as in
physiological conditions (72). Another study by Hu et al. showed
that myoepithelial cell differentiation must be maintained in
order to avoid invasive phenotype of breast cancer. Loss of
myoepithelial cells, through inhibition of TGF-β, Hedgehog, p63
or cell adhesion signaling by tumor cells induces the transition
from DCIS into invasive carcinomas, suggesting that loss of
myoepithelial cells is a prerequisite for tumor invasion (112).

Moreover, increasing invasion and metastasis can also be
promoted through a crosstalk between different cell types. For
example, Condeelis et al. have shown, using intravital imaging,
that tumor microenvironment plays a key role in invasion and
metastasis by creating an essential paracrine loop between tumor
cells and macrophages with direct interaction of the two cell
types. This induces a specific microenvironment, dependent on
macrophages and EGF and CFS-1 signaling, which is essential for
intravasation of cancer cells (48).

Extracellular matrix binding receptors are also involved in this
tumor-promoting role. Indeed, CD44, integrins and DDRs are
overexpressed in breast cancer and promote tumor progression
(51–53, 64). For example, CD44 standard isoform (CD44s) is
positively correlated with CSC gene signature in breast cancer,
notably through PDGFRβ/Stat3 activation (113). CD44 can also
activate several signaling pathways such as MAPK, PI3K/Akt to
induce migration, survival and invasion (114).

Integrins are also key players in breast cancer, notably in
the metastatic cascade. Indeed, they promote migration, MMP
expression, secretion and location at invadosome in order to
facilitate invasion (115). They also directly control invadosome
formation and can be found localized in these structures (116).
Moreover, one study demonstrated that collagen binding integrin
α11 expressed by CAFs activates PDGFRβ/JNK signaling in
breast cancer cells to promote tumor cell invasion (117).

Concerning DDRs, Corsa et al. demonstrated that in CAF,
DDR2 is critical for ECM production and the organization of
collagen fiber (118). They also showed, in these cells, that DDR2 is
involved in breast cancer cells metastasis in the lungs, by affecting

collective cell migration. Furthermore, this team demonstrated
that DDR2, when expressed by stromal cells, promotes the
metastatic spread of breast cancer cells. DDR1 has also been
shown to be involved in many steps of breast cancer, including
invasion (through its interaction with collagen I and invadosome
formation), proliferation, migration (both through its association
with the insulin-like growth factor-I receptor) and resistance to
treatment (through its interaction with collagen IV and NFκB
activation) (42, 51).

Concerning the matrix components (secreted by cancer cells
as well as stromal cells), fibronectin overexpression can modulate
cancer cell signaling in order to promote tumorigenesis, for
example, by inducing EMT via ERK (119) or STAT3 (120)
activation. Laminins are also involved: laminin-5 can promote
survival through NFκB activation in activated B cells (121)
and invasion and migration through integrin interaction (122),
and laminin-511 promotes metastasis (123). Versican can also
increase tumorigenesis by inducing cancer-cell self-renewal
through EGRF signaling (89) and by inducing cell survival, tumor
growth and metastasis (124, 125).

Collagen is also described as a key player in tumor
development. The increased ECM stiffness during cancer induces
a change in biochemical signaling and in cell behavior, promoting
tumor progression in several ways. For example, increased
stiffness in mammary epithelial cells induces MAPK activation
and proliferation (126). This mechano-regulatory mechanism
could also induce aggressive phenotype in tumors (28). Increased
stiffness of ECM also promotes transcriptional coactivator with
a PDZ-binding motif (TAZ) activity (leading to an increase
of CSC properties) (127) as well as PI3K activity (leading to
invasion) (80). Studies have shown that, to increase invasion,
matrix density can also promote invadosome formation and
ECM degradation (128). Invadosome formation can also be
induced by the ECM itself, via collagen: type I collagen
is an inducer or linear invadosome formation and matrix
degradation (41, 42). Indeed, breast cancer cells seeded on type
I collagen tend to have an increased matrix degradation capacity
than on gelatin.

Extracellular matrix degradation is mediated by proteases.
In cancer, MMPs are key players in ECM remodeling and
degradation. Some of them, such as MMP-2, MMP-9 and
MMP-14 are overexpressed in breast cancer, inducing collagen
degradation and promoting metastasis (129, 130). Heparanase,
another ECM remodeling enzyme, has been shown to be
involved in breast cancer progression. Its overexpression
induces mammary tumor growth, survival and cell spreading
(131–134). Similarly, the inhibition of cathepsins, which are
lysosomal proteases, was shown to inhibit breast cancer
metastasis (135, 136).

To sum up, in breast cancer, many ECM players are involved
in tumor progression, creating stroma that are either pro-invasive
or protective. However, studies we reviewed did not specify
differences between breast cancer subtypes, because they are
mostly performed with the same types of samples (MDA-MB-
231 or MCF-7 cells in vitro, and comparing normal breast and
DCIS in vivo). There is a real need to find new matrix to
work on (not only collagen matrix), and to work in 3D using
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organoids, adapted to each cancer type and subtype, to be more
representative of what is happening for real in vivo.

LIVER CANCER

ECM Composition and Function
Liver is structured in highly organized units of hexagonal shape
called lobules, whose size is about 1 mm. The prominent cell
type (50–60% in cell number) is hepatocytes (parenchymal
cells), which carry out the main functions such as detoxification,
synthesis of plasma proteins, lipids, glycogen, and activation
of inflammatory or immune responses. However, about
40% of the liver cells are non-parenchymal (NP), including
sinusoidal endothelial cells (LSEC, serve as a filtration
barrier), Kupffer cells (KC, function as in situ macrophages),
hepatic stellate cells (HSC, fat-storing cells; play a major
role in the progression of fibrosis) and a small fraction of
biliary epithelial cells (cholangiocytes) and liver-associated
lymphocytes and leukocytes.

Besides this diversity in cell types, the population of
hepatocytes is itself heterogeneous: hepatocytes are functionally
different depending on their location within the lobule,
dictated by the unique vasculature of the liver. Perivenous (or
centrolobular) hepatocytes are exposed to lower oxygen tension
as well as nutrient and hormone levels. In other words, the
oxygen gradient through the lobule translates into a gradient
of metabolic functions, which leads to the so-called zonation of
the liver (137). In adults, normal liver ECM is mainly composed
by collagen (60%), non-collagenous proteins and proteoglycans.
Collagen I (COL1A1 and COL1A2) is predominant, but other
collagens such as COL2A1, COL21A1, COL23A1, COL5A3,
and COL26A1 are present. Collagen fibers were found in the
portal tracts, whereas the normal parenchyma contains only few
collagen fibers (138). An originality of liver microvasculature is
the presence of a very fine and partial basal membrane associated
with fenestrated endothelial cells to facilitate exchange between
blood and hepatocytes.

Liver cancers are the fourth most lethal cancers worldwide
(139). Hepatocellular Carcinoma (HCC) is the most common
form of primary liver cancer. Intra- and extra-hepatic metastases
are usual complication in HCC. Due to frequent late diagnosis,
the prognosis for HCC is poor. In most cases, HCC develops
upon chronic liver disease caused by various factors such as viral
hepatitis B/C, alcohol or metabolic syndrome (Non-Alcoholic
SteatoHepatitis). Persistent hepatic injury and associated
regeneration could produce a stressful environment leading
to inflammation and hypoxia, which are features of HCC
microenvironment.

In most cases (70%), HCC occurs on a cirrhotic liver. Cirrhosis
is characterized by formation of regenerative nodules of liver
parenchyma that are separated by fibrotic septa. Activation
of hepatic stellate cells (HSCs) into myofibroblasts, mostly
characterized by Smooth Muscle Actin (SMA) expression are
the principal source of secrete matrix playing an important role
in the initiation of liver fibrosis, cirrhosis development and
cancer emergence. In normal liver, HSCs are quiescent cells

found in the perisinusoidal space of Disse. Chronic liver injuries
promote a complete cell transdifferentiation into proliferative
myofibroblasts. In this context, the microenvironment is very
specific, associated with type I and type II collagens and
elastin accumulation corresponding to the pathological evolution
of liver fibrosis.

Nevertheless, in some cases, HCC is observed in non-
pathological liver. Consequently, the matrix microenvironment
varies a lot between the different HCCs in terms of etiology and
the presence of cirrhosis or not. Here, we describe the role of
ECM on HCC progression and invasion.

Some ECM elements are deregulated during cirrhosis and
HCC. Those ECM elements can be secreted by different cell types
such as tumor cells and myofibroblasts or CAFs. Several matrix
elements such as type I and type III collagens are upregulated
during fibrosis and cirrhosis. In HCC, other matrix elements
such as type IV collagen, tenascin, osteopontin and laminin
are upregulated (Figure 2). In normal liver, heparan sulfate is
the main glycosaminoglycan component, whereas chondroitin
sulfate is prevalent in HCC.

Various proteoglycans (PGs) are involved in HCC
progression, at cell surface (such as syndecan-1 or Glypican 3), in
the pericellular space (such as agrin or collagen XVIII/endostatin)
and in the extracellular space (for instance versican, decorin).
Most of these PGs are overexpressed in HCC and can serve as
biomarkers (140).

ECM Evolution During Cancer
Protective Role
In a significant proportion (40 to 60%), HCC can be surrounded
by a fibrous capsule, whose thickness varies from 0.13 to
3 mm (141), presenting a trabecular pattern (Figure 2A). This
encapsulation is present in small (≤5 cm), as well as in large
HCC (>5 cm) (142). There is no link between the presence
of a capsule and the presence of cirrhosis. It is important to
note that several studies have shown that this fibrous capsule
is associated with a better prognosis than non-encapsulated
tumors, suggesting a protective effect of this capsule (142). On
the contrary, the presence of an invaded capsule corresponds to
a bad survival prognosis, a recurrence and a non-transplantation
criteria (143).

This capsule is composed of several matrix elements, including
type I and III collagens (144) and the presence of an inflammatory
infiltrate is not systematic. To date, there are only few studies
on the molecular mechanisms that control the formation of this
capsule and the cellular origin of the elements that compose it.
A study by Ishizaki et al. demonstrated the presence of positive α-
SMA cells, which is a marker of CAF, associated with the presence
of procollagen I and III in the capsule (145). The origins of CAFs
can be multiple, contributing to the heterogeneity of the tumor.
They could participate in the secretion of this fibrous capsule in
collaboration with myofibroblasts.

Most analyses of this capsule are based on the
immunohistochemistry technique. New global studies could
allow further the knowledge of the composition of this structure
and determine molecular mechanisms and ECM elements
associated with the protective effect of the capsule.
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FIGURE 2 | Schematic representation of ECM composition and ECM dual role as a (A) protective barrier or as a (B) tumor promoting role in liver cancer.

Tumor Promoting Role
In presence or absence of a capsule, HCC is a highly invasive
tumor (Figure 2B). HCC invasion criteria correspond to satellite
nodules, vascular embolization and are hallmarks of HCC
progression. Intra-liver metastasis formation contributes to the
very high HCC mortality rate as they cause liver failure. Presence
of these invasive features is a non-transplantation criterion,
which is the only way to treat advanced HCC.

Hepatocellular Carcinoma tumors often occur in cirrhosis
context where the number of activated fibroblasts is very high.
Several studies have shown the importance of crosstalk between
cancer cells and fibroblasts in HCC. Cytokines secreted by cancer
cells, such as transforming growth factor-β (TGF-β), stimulate
myofibroblasts, leading to their activation. Growth factors and
inflammatory cytokines such as PDGF, TGF-β, TNF-α, IL-6,
and IL-1β, expressed by cancer cells during HCC, activate and
transform quiescent fibroblasts into myofibroblasts and then
into CAFs (146). Several studies demonstrate the role of CAFs
during HCC progression. A positive correlation exists between
the frequency of CAFs around HCC nodules and the tumor
size. Moreover, these cells secrete the hepatocyte growth factor
(HGF), fibroblast growth factor (FGF), TGF-β, CCL-2, -5, -7
and CXCL16, promoting tumor cell proliferation and invasion,
respectively (147).

Increased expression of MMPs was detected at the nodule
periphery; metalloproteinases such as MMP-9, MMP-2 and MT1-
MMP are probably involved in HCC invasion. Indeed, TGF-
β is overexpressed and overactivated during HCC, inducing
an increase in ECM deposition (such as type I collagen) and

EMT (148). LOXL2 is also a very important element in HCC,
its expression is controlled by hypoxia and TGF-β. LOXL2
modulates matrix rigidity, increasing collagen crosslinking and
promoting invasion (149). Matrix accumulation and crosslinking
increase stiffness, inducing HCC cell proliferation and invasion
(150). Physical parameters seem to be crucial to promote HCC
progression. Indeed, if the fibrous capsule plays first a protective
role, its rigidity could then promote an invasive switch. To
illustrate this point, an invaded capsule corresponds to a very
aggressive feature associated with a very poor prognosis.

Hepatocellular Carcinoma invasion can be increased by
different ways. Indeed, EMT, MMPs secretion and matrix
stiffness are elements that control invadopodia formation.
Several studies have demonstrated the ability of HCC cells to
form invadopodia and to degrade ECM. Keratin 19, MMP-2,
TIMP2, Mena, Agrin, Src, and TGF-β are notably described
to participate in invadopodia formation in HCC cells (151–
154). For example, TGF-β stimulates type I collagen, DDR1 and
LOXL2 expression, modulating ECM organization and inducing
invadopodia formation (155).

Accumulation and overexpression of various ECM elements
also promote cell proliferation, provide survival signals and
induce tumor invasion. In parallel, associated receptors must
be present and are involved in signaling pathways. In fact, in
HCC, a large number of ECM receptors are overexpressed such as
integrins, CD44, DDRs. For example, β1 integrin induces a pro-
survival signal through MAPK pathway in HCC cells (156). CD44
plays an important role in tumor cell initiation, proliferation,
invasion and CSC properties (157). CD44 is required for Mdm2

Frontiers in Oncology | www.frontiersin.org 9 August 2020 | Volume 10 | Article 1620

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


fonc-10-01620 August 27, 2020 Time: 18:39 # 10

Sala et al. Extracellular Matrix in Cancer Invasion

nuclear translocation and AKT activation leading to tumor
progression (157).

Discoidin domain receptor 1 and DDR2 are also
overexpressed in HCC. Both participate in tumor cell
proliferation, EMT and invasion processes through ERK
signalization, SNAIL1 stabilization and MMPs activation,
respectively (155, 158, 159).

To conclude, a large number of studies demonstrate a real
impact of the ECM on the development and evolution of HCC.
However, many questions remain. Moreover, this notion of
protection or, on the contrary, pro-invasive role of the ECM is
not yet considered in the clinic, neither in the diagnosis nor in the
management of the patients. This aspect is obscured not only by
the lack of knowledge but also by the lack of adapted therapeutic
solutions. At the research level, in vivo and in vitro models do not
reflect the complexity and dynamics of the interface between the
tumor and the ECM.

PANCREATIC CANCER

ECM Composition and Function
In physiological conditions of pancreas, BMs predominate,
occurring around each acinar cell of the exocrine pancreas,
surrounding blood vessels and encasing each pancreatic islet
(160, 161). The interstitial matrix confers tensile strength and
elasticity to tissues, mainly due to the presence of fibrillar
collagens. The interstitial matrix is limited in the pancreas and
appears as a thin layer immediately subjacent and external to the
peri-islet BM and surrounding large ducts and blood vessels. One
specificity of the pancreas ECM it is that there is no hyaluronan,
but it is composed of hyaladherins such as versican, inter-alpha-
inhibitor (IαI), and tumor necrosis factor-stimulated gene-6
(TSG-6) (162). The human peri-islet BM is mainly composed
of collagen type IV, agrin, perlecan, nidogen-1 and -2 and
laminin isoforms (160, 161). In normal pancreatic tissue, resident
fibroblasts, pancreatic stellate cells (PSCs), immune cells, and
vascular cells play a critical role in tissue repair and wound
healing (163) (Figure 3A). In physiological conditions, quiescent
PSCs reside at the basolateral aspect of pancreatic acinar
cells and could synthesize ECM proteins and ECM degrading
enzymes (164). Following pancreatic injury or tissue damages,
injured acinar cells produce and secrete inflammatory cytokines
and pro-angiogenic growth factors that increase recruitment
and activation of immune cells, promoting angiogenesis. This
also leads to increased PSC-mediated deposition of ECM to
restore normal pancreatic function. PSCs regulate ECM by
maintaining the balance between ECM synthesis and degradation
(165, 166).

Pancreatic ductal adenocarcinoma (PDAC) is the most
common type of pancreatic cancer. In PDAC, disruption of BM
integrity leads to a decrease of collagen IV, altered epithelial cells
become cancer cells and activate PSCs to create a permissive
microenvironment for cancer progression (167). Once PSCs are
activated, the equilibrium shifts, that causes ECM proteins such
as collagen I to accumulate (164, 168). This abundant amounts
of ECM corresponds to a desmoplastic reaction which exerts

mechanical and biochemical effects of PDAC cells by promoting
tumor progression (168). The PDAC fibrotic stroma is composed
of connective tissues which are rich in collagens I (mainly) and
III, fibronectin, CAFs [most of them are pancreatic stellate cells
(168)], vascular and immune cells as well as cytokines and growth
factors (169–173) (Figure 3B).

ECM Evolution During Cancer
Protective Role
The vast majority of patients with PDAC present metastatic
disease whereas, normally, deposition of huge amounts of
collagen around PDAC cells might inhibit invasion and
metastasis. Indeed, PDAC cells have mechanisms that help them
overcome this fibrotic barrier and ECM here provides a protective
effect in PDAC. Therefore, to our knowledge, there is no physical
barrier mediated by the ECM or stromal cells that could constrain
tumor progression. However, some matrix elements could be
involved in a protective role and are described as better prognosis
in PDAC. Indeed, overexpression of some components of the
ECM such as collagen XV could act as a tumor suppressor
in the BM zone by reducing migratory ability of PDAC cells
(174). Proteoglycans can be expressed by tumor cells as well
as stellate cells and could play anti-tumor role. For example,
biglycan expression is inversely correlated to poor prognosis
(175). For instance, lumican expression is associated with an
increased survival in patients. It is expressed in both the tumor
and the stromal compartments and could directly interact with
tumor cells, turning PDAC cells into quiescent cells in G0/G1
arrest (176).

Tumor Promoting Role
The ECM is essential in PDAC development, from the initiation
to tumor progression (Figure 3). The fibrotic ECM tumor stroma
is mainly composed by CAFs and most of them are pancreatic
stellate cells (168). PDAC cells secrete Sonic Hedgehog signaling
molecule and TGF-β to attract and activate PSCs. Activated PSCs
produce pro-inflammatory growth factors and chemokines which
could act as a feedback loop to maintain their activity and then
promote the synthesis of ECM proteins such as collagen (177–
179). Subsequently, activated PSCs promote tumor growth and
local invasion of PDAC cells (180).

Pancreatic ductal adenocarcinoma cell properties could also
be altered by tissue stiffness of the ECM, which reduces
tissue polarity, inhibits adherent junctions, promotes tumor
cell proliferation and EMT, by altering expression of vimentin
and E-cadherin in PDAC cells (181). Inhibition of PDAC cell
contractility decreases MMP activity, suggesting that PDAC
cells also influence the ECM properties (182). Crosslinking
of collagen I in PDAC could be mediated by LOX and
tissue transglutaminase 2 (TG2) (31, 183, 184). TG2 is weakly
expressed in normal pancreatic tissue, but its expression and
secretion in ECM are increased in PDAC cells (56). Crosslinked
collagen activates Yes-associated protein (YAP) and TAZ and
promotes proliferation and EMT of PDAC cells (56). ECM
degradation is mediated by proteases. For instance, in PDAC,
MMPs are key players in ECM remodeling and degradation,
as well as in proliferation of Panc-1 cells (185). One study
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FIGURE 3 | Schematic representation of ECM composition (A) and ECM role as a (B) tumor promoting role in pancreas.

showed that ROCK1 and ROCK2 promote expression of MMP-
10 and -13, enhancing collagen degradation and thus local
invasion (186).

Some other matrix components play a crucial role in
promoting tumor progression. In patients with PDAC, a level
of laminin inferior to 25% in BM (due to BM disruption) or
an increase of circulating collagen IV are associated with bad
prognosis (187, 188). In PDAC, fibronectin shares similarities
with collagen: it can also bind to integrins (such as α5β1)
leading to FAK activation (189). Fibronectin acts as a major pro-
tumor actor in PDAC, promoting resistance to radiotherapy,
proliferation and production of reactive oxygen species (190,
191). Fibronectin also plays an important role in amplifying
ECM synthesis by PSCs. By binding to the latent TGF-β binding
protein, fibronectin allows the release of active TGF-β, which
in turn activates PSCs (192). Similar to fibronectin, vitronectin
is a major glycoprotein that binds to both integrins (α5β3)
and collagens (193). In physiological conditions, vitronectin
is involved in wound healing and homeostasis whereas in
PDAC, vitronectin is overexpressed and binds to collagen I,
promoting cancer cell migration. It also stimulates secretion of
interleukin 8 and promotes proliferation of PDAC cells (194,
195). Proteoglycans such as Glypican-1 is overexpressed in
PDAC tumor cells and involved in tumorigenicity (196). Another
proteoglycan, SPOCK-1, is able to remodel the ECM, and allows
tumor cells to become more invasive (197). HA, which can
bind to proteoglycans, is important to promote cell survival,
proliferation, and invasion through its binding to CD44 and
to the receptor for HA-mediated motility (RHAMM). HA is

required, with the help of collagen, to induce an increase in tissue
pressure (198).

Extracellular matrix binding receptors also are key players in
tumor progression. Collagen I is the most abundant and well
characterized component of interstitial matrix in PDAC. Collagen
binds to integrins or DDR1 located on PDAC cells, inducing
important downstream signaling pathways. Binding of collagen
I to integrin on PDAC cells promotes proliferation, migration
and inhibits apoptosis of tumor cells through an autocrine loop
(199). Collagen I-Integrin signaling also promotes migration of
PANC-1 and UlaPaCa cells through activation of FAK (200). FAK
activation by this complex could lead to disruption of E-cadherin,
promote Wnt activation and thereby regulate EMT (201, 202).
The binding of collagen I to DDR1 activates FAK-related
protein tyrosine kinase (PYK2), resulting in the expression
of the EMT marker N-cadherin (203). Furthermore, binding
of collagen I to DDR1 together with transmembrane-4-L-sox-
family member 1 (TM4SF1) promotes invadosome formation,
induces cell migration and promotes MMP-2 and -9 expressions
(204, 205). Another study showed that high levels of palladin
expression in PCSs enhance their ability to remodel the ECM
by regulating the activity of Cdc42, which promotes invadosome
formation as dots or rosettes in PSCs and tumor cell invasion
(206). However, it has been reported in PDAC that PSCs
can regulate matrix degradation by the activity of the large
GTPase Dynamin 2 promoting tumor invasion, independent of
invadopodia formation (207). Indeed, PSCs are able to promote
tumor cell invasion by degradation of the matrix, dependent or
independent of invadosome formation.
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Finally, PSCs can directly interact with cancer cells, promote
local tumor growth, and co-migrate with cancer cells to
distant metastatic sites, establishing stromal abundant tumors
beyond the pancreas. Additionally, activated PSCs and cancer
cells produce pro-angiogenic factors, which promote neo-
angiogenesis and support cancer cell growth and survival under
a hypoxic tumor-microenvironment (208, 209).

To conclude, ECM in PDAC is one of the hallmarks of cancer
and promotes PDAC progression. Little is known about the
protective role of ECM in PDAC and needs further investigation.
We could hypothesize that the aggressiveness of this cancer could
be due to the absence of a protective role of the ECM or stromal
cells compared to other cancers.

COLORECTAL CANCER

ECM Composition and Function
In colon, in physiological conditions, colonic epithelial cells are
anchored to the BM and act as a physical barrier with absorptive
and exocrine functions (Figure 4A). BM is synthetized and
secreted by epithelial and mesenchymal cells and separates the
colon mucosa from its submucosa (210, 211). BM is composed
of collagen IV, proteoglycan perlecan and glycoproteins such
as laminin, fibronectin and nidogen (212). Stromal ECM is
composed of similar components, but collagen IV is substituted
by collagen I produced by resident fibroblasts.

Colorectal cancer (CRC) is the third most common cancer
worldwide. An orderly ECM confers unique biomechanical
properties in order to assure the regulation of cell proliferation
and tissue homeostasis. During cancer, after BM degradation,
abnormal ECM deposition and stiffness are observed, which
correspond to desmoplastic reaction, promoting tumor
progression (12).

Desmoplasia defines the abundant collagenous stroma
surrounding parenchymal cells that is deposited after BM
degradation. Fibroblasts are activated into myofibroblasts
and become the primary producers of ECM in response to
desmoplasia, leading to dramatic tissue remodeling (213). ECM
of the CRC desmoplastic reaction is composed by collagen types
I, III, IV, and V, proteoglycans (biglycan, fibromodulin, perlecan
and versican) and small leucine-rich proteoglycans (SLRPs)
decorin (214). Desmoplastic reaction prognosis is controverted
in colorectal cancer: some studies report that it has a pro-
tumor role but most of the studies describe a protective role,
which is associated to good prognosis (214, 215) (Figure 4B).
Therefore, it is important to study which ECM elements involved
in the desmoplastic reaction are protectors or promoters of
tumor progression.

ECM Evolution During Cancer
Protective Role
In a study from 2011, Coulson-Thomas et al., showed that co-
culture systems with colorectal cancer cell lines and fibroblasts
promote an increase in ECM density which could inhibit the
migration and invasion of CRC tumors. The desmoplastic
collagen fibers were thicker than in normal tissue and arranged

into parallel bundles with an altered orientation. This study
demonstrated a protective role of CRC desmoplastic reaction
by forming a barrier which can restrain tumor growth by
creating an increased pressure, preventing tumor invasion of the
surrounding tissue (214) (Figure 4B). A clinical study showed
that desmoplasia is a protective factor for survival in patients with
CRC. Thus, desmoplasia could prevent cancer cell invasion by
building a barrier around the tumor (215).

However, for now, no study analyzes how and how long
the protective barrier of desmoplasia needs to become pro-
invasive and requires investigating. It could be due to collagen
up-regulation as well as other ECM components such as
fibromodulin, biglycan and fibronectin surrounding CRC. We
could hypothesize that these components could first act as a
protective barrier around the tumor cells; the pressure and
stiffness then become too high in tumor cells which continue to
proliferate which leads to the disruption of the protective barrier,
allowing invasion and migration of tumor cells.

Tumor Promoting Role
Basement membrane disruption participates in tumor
progression by releasing angiogenic, growth stimuli and
chemotactic factors in order to promote tumor angiogenesis,
growth and cell proliferation. For example, laminin 332
degradation promotes EGFR activation, causing a decrease of
cell matrix adhesion enhancing migration (216). In CRC, loss of
BM integrity is correlated to metastatic potential.

During cancer, the newly deposited collagen I replaces the
proteolytically degraded ECM proteins by secreted proteases.
This change can cause cellular migration which is predominantly
oriented along radially aligned collagen fibers, promoting
invasion. In physiological conditions, collagen fibers are disposed
in the epithelium stroma with an angle of 10◦, whereas in
CRC, collagen fibers are thicker and present an angle of 50◦
(217). Furthermore, it has been demonstrated that ordered
collagen fibers and an increase in collagen density are associated
with CRC, demonstrating the main role played by collagen in
malignant tissue transformation (218) (Figure 4C). In CRC,
ECM elasticity ranges from soft and compliant to stiff and
rigid. As mentioned before, tissue stiffness can be increased by
enzymes such as LOX, which can crosslink collagen. In CRC
cells, LOX is upregulated leading to increased tissue stiffness
and activation of Src/FAK pathway promoting proliferation,
invasion and metastasis (219, 220). Furthermore, at clinical level,
LOX upregulation is associated with poor prognosis of CRC
(221). Crosslinked collagen activates YAP and TAZ, promoting
malignancy of CRCs.

A recent study analyzes the changes of the ECM at different
stages of CRC and their effect on proliferation of cancer cells.
It was shown that expression of MMP-2 and type I collagen are
positively correlated to the stages in CRC. Collagen I expression
is the highest in stage III and stage IV and lowest in normal tissue
and stage I. The expression of MMP-9 is also higher in CRC,
mainly in stage III. As regards collagen IV and TIMP-3, their
expression is inversely correlated to CRC stages (221).

The binding of ECM elements to ECM receptors promotes
tumorigenesis. Binding of collagen I to DDR1 promotes local

Frontiers in Oncology | www.frontiersin.org 12 August 2020 | Volume 10 | Article 1620

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


fonc-10-01620 August 27, 2020 Time: 18:39 # 13

Sala et al. Extracellular Matrix in Cancer Invasion

FIGURE 4 | Schematic representation of ECM composition (A) and ECM dual role as a (B) protective barrier or as a (C) tumor promoting role in colon cancer.

invasion of primary CRC cells and promotes their dissemination.
DDR1 overexpression is associated with poor prognosis in CRC
patients (222). Binding of collagen I to DDR2 promotes cell
proliferation, migration, invasion and peritoneal dissemination
of colon cancer cells (223). Binding of collagen I to α2β1
integrin activates the pro-survival PI3K/AKT signaling pathway;
resulting in the tumor promotion in CRC cells. This complex
allows activation of transcription factor SNAIL; which in turn
downregulates the expression of E-cadherin, inducing EMT and
distant metastasis (224). Overexpression of CD44 is associated
with poor prognosis of CRCs. The binding of HA to CD44v6
improves cancer cell proliferation, invasion, metastasis and
resistance in colon cancer. The binding of osteopontin to CD44v6
also improves proliferation, invasion and metastasis of CRC cells
(225). CAFs also improve the adhesion and migration of CRC
through upregulation of CD44 in cancer cells (226). One study
demonstrated that CD44 expression in CAFs maintains stem-cell
properties of CRC cells but the exact molecular mechanism is not
known. Furthermore, CD44 expressed by CAFs may interact with
CRC cells to support cancer cell survival in hypovascular areas
but it needs further investigations (54).

Besides collagen I, other proteins are deregulated in ECM
of CRC. A downregulation of proteins such as keratin or
collagen IV has been found in CRC tissues compared to
normal tissues (227). During tumor invasion and metastasis,
tumor cells directly secrete degradative enzymes and induce
CAFs, inflammatory cells and the endothelial cells to produce

proteolytic enzymes to degrade ECM. In CRC, MMP-1 and
MMP-13 collagenases and MMP-2 and MMP-9 (two gelatinases)
expression correlates to advanced CRC stage and poor prognosis
(228). Different co-culture of CRC cell lines and TAM cell lines
cause the upregulation of tumor cell-derived MMP-2 and MMP-9
expression and secretion, with increased tumor invasiveness and
migration (229). Proteases such as ADAM9, ADAM10, TSLI and
MMP-1, -2, -9, -11, and -12 have been found in colon primary
tumor but not in metastasis, suggesting their role in migration
of primary tumor cells (230). Myofibroblasts also promote CRC
invasion by secreting soluble factors such as HGF and SPARC
or by remodeling the ECM (231, 232). Myofibroblasts may
interact directly with tumor cells by leading collective tumor
cell invasion, through a process dependent on the Rho-GTPase
effector ROCK (233).

Colorectal cancer cells are able to form invadosomes
organized in dots in order to invade (234–236). Invadopodia
formation could be mediated through activation of ROCK-II,
modulating MMP-2 and -13 expressions and activities and by
Smad 4-independent BMP signaling in CRC cells. Src activation
could also induce Nox A1 phosphorylation, this will; in turn;
lead to reactive oxygen species (ROS) generation promoting
invadopodia formation (235–237). However, no study analyzes if
these cancer cells are able to form linear invadosomes when they
are seeded on collagen I. As expected, proteases were peculiar
of primary colon tumor: ADAM 9, 10, TSL1 and MMP1, 2, 9,
11, and 12 have been found solely in colon tumor (230) and
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not in the metastasis, suggesting their role in the migration
process. In another paper, the paired biopsies from tumor
and its normal counterpart were obtained from 13 patients.
Fifty-six proteins have been identified in the insoluble tissue
fraction, after the extraction of lipids and soluble proteins. The
digested peptides from ECM fraction were analyzed using a
nano-ESI source by means of label-free quantitation approach
(e.g., solely based on measurements of observed peptide ion
peak intensities). The obtained data for Beside collagens, other
ECM proteins are deregulated in CRC. One study report that
MAGP2 (Microfibrial-associated glycoprotein 2), which is ECM
component, is upregulated in CRC tissues compared to adjacent
tissue, promoting proliferation, migration and invasion of cancer
cells and the increase in it promoted malignant phenotypes
of CRC cells including proliferation, migration, and invasion.
Microfibrial-associated glycoprotein 2 can increase expression of
the downstream genes of Notch, including HES1, Slug, Snail,
matrix metalloproteinase (MMP) 2, MMP9, whereas its decrease
Kruppel-like factor 4 (KLF4) expression. In this study they
hypothesized that MAGP2 could be secreted by cancer cells or
by CAF (238).

Furthermore, it has recently been shown that citrullined
ECM proteins are characteristic of colon cell metastasis in
the liver, suggesting that this process is important for the
metastatic journey. Citrullination is the deamination of arginine
residues to form peptides containing the non-coding amino
acid citrulline. This process is a well-recognized characteristic of
chronic inflammation, as demonstrates in autoimmunity where
ECM proteins are extensively citrullinated. In CRC, citrullination
is catalyzed by PAD4 which is produced by tumor cells, then
PAD4 is delivered to the liver metastatic ECM by extracellular
vesicles (239). ECM citrullination is a driver of human CRC
liver metastasis.

To sum up, ECM of CRC evolves during tumor progression.
The ECM first acts as a protective barrier to restrain tumor
growth to local area and subsequently becoming a key player
in tumor progression. Desmoplasia seems to act as a protective
barrier and is a good prognostic in patient with colon cancer.
It seems that the same element in colon ECM could have both
a protective or a tumor promoting role. However, it would
be interesting to study how the microenvironment dynamic
influences this switch from protective to tumor promoting role.

MELANOMA

ECM Composition and Function
Mammalian skin is composed of a multi-layered epithelium
(Figure 5). The outer surface of the skin, the epidermis, consists
of a keratinized stratified squamous epithelium. The epithelium
rests on a layer of nourishing fibroelastic connective tissue
called the dermis, which mainly consists of type I collagen.
The dermis is connected to the underlying tissue by a layer of
loose connective tissue, the hypodermis or subcutaneous layer,
which contains varying amounts of fat tissue. Skin is composed
of cells such as fibroblasts, endothelial cells, keratinocytes
and ECM (240).

The separation between the epidermis and the dermis is a
BM (Figure 5). In skin, BMs are composed of laminin, type IV
collagen, nidogen, and perlecan, a heparan sulfate proteoglycan
(241). In contrast, the tensile strength and elasticity in the
dermis underneath is determined by ECM, composed of collagen
types I (80%), III (15%), and type V (5%), microfibrils, elastic
fibers, proteoglycans, glycosaminoglycans and water (242). In
normal dermis, collagen fibers exhibit a random, “basket-weave”
structure (243). The cutaneous ECM is constantly remodeled
throughout the lifespan, for example during wound-healing or
aging (243).

Melanoma is a cancer that arises from melanocytes. This very
aggressive skin cancer develops in very rich in fibrillar type I
collagen environment (Figure 5). In physiological conditions,
keratinocytes modulate behavior of melanocyte population and
the dermally located fibroblasts synthesize the ECM. During the
initiation of melanomagenesis, melanocytes accumulate sufficient
mutations to degenerate, notably through the aberrant activation
of an oncogene such as the BRAF V600E mutation. Melanoma
cells, therefore, hyper-proliferate on the surface of the skin during
radial growth. Subsequently, the cells deeply invade the deep
layers of the skin, after having degraded the BM separating
the epidermis from the dermis. The transition from radial to
vertical growth phase in melanoma is associated with loss of
E-cadherin expression, increased N-cadherin expression and
increased expression of αvβ3 integrin, leading to secretion of the
antiapoptotic factor bcl-2 and MMP-2, an endopeptidase that
degrades collagen IV at the BM (244–246). Additionally, the
shift from E-cadherin to N-cadherin expression allows melanoma
cells to interact with fibroblasts and vascular endothelial cells to
better facilitate migration and intravasation (247). The fibroblasts
also become activated, resulting in increased growth factor
production leading to a hyperproliferative microenvironment
that supports growth of many cell types and collagen I synthesis
(248). Finally, the tumor is fully competent to invade and
metastasize to distant organs. Once metastasis to distant organs
has occurred, the tumor enters its final stage and is termed
metastatic melanoma.

ECM Evolution During Cancer
Protective Role
The ECM can first act as a protective barrier against melanoma
progression (Figure 5). In the dermis, the major component of
the extracellular matrix is type I collagen, which is synthesized
mainly by fibroblasts. It has been established that collagen I acts as
a protective barrier in tumor progression and proliferation (249).
In the same study, they showed that contact with fibrillar collagen
inhibits the proliferation of malignant and highly metastatic
M24met cells. Inhibition of proliferation is due to the binding
of collagen to α2β1 integrin which induces an increase in
p27KIP1 mRNA and protein, promoting growth arrest in the
G1/S transition and inhibition of cyclin E-associated kinase
activity (249).

During the early phase of melanomagenesis such as Radial
Growth Phase (RGP), co-culture of fibroblasts with RGP
melanoma cells represses tumor growth; whereas advanced
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FIGURE 5 | Schematic representation of ECM composition and ECM dual role as a protective barrier or as a tumor promoting role in melanoma.

melanoma cells acquire an ability to escape such control
mechanisms (250). It is possible that dermal fibroblasts form
a physical barrier that blocks melanoma cells to migrate and
invade the surrounding tissues. Another hypothesis, regarding
the inhibitory effect of dermal fibroblasts, is that dermal
fibroblasts could recruit immune cells by secreting interleukin-6
(IL-6) (251).

Tumor Promoting Role
Cancer-associated fibroblasts at the level of the primary tumor are
called melanoma associated fibroblast (MAFs) and are involved
in melanoma progression (Figure 5). Fibroblasts can be activated
by chemical factors secreted by melanoma cells, inducing
fibroblasts to migrate toward, surround, and then infiltrate the
tumor mass. For example, in melanoma, the secretion of TGF-
β by tumor cells allows the activation of MAFs (252), which are
able to synthesize and deposit ECM proteins such as collagen,
fibronectin and tenascin (253, 254).

PDGF and bFGF could increase the production of
glycosaminoglycan (GAG) from MAFs (255). Oxidative
stress induced by hypoxia in the melanoma as well as factors
secreted by melanoma cells stimulate MAFs to secrete cytokines
and growth factors such as VEGF, stromal derivative factor-1
(SDF-1 or CXCL12) and IL-6 thus promoting invasion into the
melanoma (256, 257).

Melanoma associated fibroblast are also able to remodel the
ECM by MMP-1, MMP-2, MMP-13, and MT1-MMP (MMP-14)
secretion, which could influence the motility and invasiveness
of melanoma cells (205, 258–261). In primary and metastatic

melanoma, it has been shown that up-regulation of FAP-α
expression (an active serine protease which could degrade type
I collagen) enhances ECM remodeling, tumor cell growth and
migration (262, 263).

Collagen I receptors are also involved in tumor progression.
CD44 expression is associated with poor prognosis of melanoma,
and different studies have shown that binding of collagen I or
HA to CD44 promote tumor progression (264, 265). The binding
of collagen I to α2β1 integrin promoting cathepsin B-mediated
invasiveness was associated with secreted acidic and cysteine-rich
proteins in melanoma (266). The binding of collagen I to DDR1
enhances invasion and the binding of collagen I to DDR2 induces
MMP-2 and MMP-9 expressions as well as Erk/NF-κB signaling
pathways to promote invasion (267). Despite the abundance of
collagen I, melanoma progression is characterized by the increase
of other matrix proteins such as tenascin-C and fibronectin.
These two proteins could affect the organization of collagen
fibers. It has been shown that MAFs facilitate tumor invasion
through αVβ3 integrin-dependent fibronectin secretion, which
induces mechanical changes in the ECM through the contraction
of collagen fibers (268). It has been previously demonstrated
that biglycan expression is involved in matrix contraction and
increased in matrix stiffness which induce β1 integrin expression,
promoting invasion of melanoma cells (269). However, most of
the studies focus on ECM stiffness and its protective role during
resistance to the treatment. It has been shown that an increase
in ECM stiffness upon exposure of BRAF inhibitor promotes
a protective matrix environment during resistance to treatment
(270, 271). This increasing stiffness leads to the re-organization of
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β1 integrin into focal adhesions and elevated pFAK levels (271).
The binding of fibronectin to α4β1or αVβ3 integrins promote
melanoma cell invasion (268, 272).

Tks4 and Tks5 adaptor proteins are key players in melanoma
growth and metastasis in vitro and in vivo, promoting
invadopodia formation by MT1-MMP regulation (273). Another
study showed that, invadopodia formation in melanoma cells
could be regulated by crosstalk between receptor tyrosine kinases
AXL and ERBB3 (274). Our data report that when melanoma
cells are seeded on collagen I matrix, there is invadosome
reorganization into linear invadosomes (51).

Finally, MAFs expresses a lot of proteins which are key
players for melanoma cell metastasis. MAFs secrete tenascin
C and periostin, which are required for the development of a
CSC phenotype and the formation of metastatic sites. MAFs
are also able to secrete the matricellular protein CCN2, which
is required for melanoma metastasis (275, 276). Furthermore,
different crosstalk between MAFs and melanoma cells are
involved in metastasis of melanoma cells. For example, CXCR4
(CXC chemokine receptor-4) is expressed on the surface of
melanoma cells, while its ligand CXCL12 is released by MAFs
in the tumor microenvironment, promoting the migration and
metastasis of melanoma cells to distal metastatic sites through
interaction with CXCR4 expressed on tumor cells (277–279).
Besides, HGF secreted by MAFs induce fibronectin expression
and associated matrix assembly, which promotes melanoma cell
metastasis (280).

Extracellular matrix in melanoma firstly acts as a protective
barrier to avoid tumor progression. Then, ECM becomes an
essential partner in order to facilitate migration, invasion,
metastasis and resistance in the melanoma. It could be important
to study the crosstalk between cancer cells and stromal cell in the
promotion of ECM remodeling, degradation and invasion, in a
physiological matrix model, in different skin acellular models that
exist (262, 281).

SIMILARITIES AND DIFFERENCES
BETWEEN THE ECM OF THE FIVE
CANCERS

We note that these five cancers share similarities (Table 1). First,
a crosstalk between cancer and stromal cells, where cancer cells
could activate stromal cells into stromal cancer cells, promoting
enhancement of ECM deposition. The stromal cancer cells in
turn are able to secrete growth factors and cytokines to promote
the invasion of tumor cells. Second, these 5 cancers also share
some similarities in their ECM composition: after BM disruption,
collagens I, III, and V, proteoglycans, glycosaminoglycans and
elastic fibers accumulate. Whereas after BM disruption there
generally is a decrease of collagen IV, we note that liver cancer
ECM showed an upregulation of collagen IV. Furthermore, at
late stages of tumor progression, biomechanical properties of
the matrix, such as the alignment of ECM constituents have
been correlated to cell invasion and poor prognosis. Moreover,
a recent paper showed the importance of crosstalk between
stromal cells and ECM to promote breast cancer cell migration
(282). Indeed, CAFs, through cell collision guidance, induce

their own alignment, which in turn, promote ECM alignment.
This increased ECM alignment promotes tumor cell invasion,
suggesting that the cancer ECM anisotropy is a key characteristic
to take into consideration while studying cancer.

Despite similarities in these different types of matrix, we
also note major differences (Table 1). For instance, collagen
crosslinking is mediated by LOX only in breast and colon cancers,
whereas in pancreas, crosslinking could be also mediated by
transglutaminase 2 (30, 32, 81, 82, 184, 221). In liver cancer,
collagen crosslinking is mediated by LOXL2 only. Regarding
melanoma, tenascin C and fibronectin affect the organization of
collagen fibers and biglycan is involved in matrix contraction and
increased matrix stiffness (175, 268). To our knowledge, no study
reports the role of LOX in collagen crosslinking in melanoma.

One other major difference is that TAEM in breast, liver,
colon and melanoma cancer has an anti-tumor role to restrict
tumor growth at the primary site, whereas this is not observed
in pancreatic cancer. ECM in breast cancer is the most studied
and described. One of the specificities of breast cancer is that
myoepithelial cells act as a protective barrier around the tumor
cells and are able to decrease the secretion of MMP-2, MMP-9,
and MT1-MMP (94–96). In addition, they can secrete protease
inhibitors or angiogenic inhibitors, several tumor suppressors
in order to prevent tumor growth, invasion and metastasis
(81, 82, 84). CAFs are often associated with poor prognosis in
cancer, whereas in liver and in breast cancer, CAFs can also
participate to the protective role of ECM. In breast cancer, CAFs
have been shown to secrete factors which are associated with
decrease metastasis (87–89). ECM of liver cancer, colon cancer
and melanoma present some similarities with regards to the
protective effect. Indeed, at the early stages of tumor progression,
they all show a structure like a capsule made of collagen
and fibroblasts around the tumor in order to restrict tumor
growth (214, 215). No study analyzes how the protective barrier
of desmoplasia becomes pro-invasive, which requires further
investigations. We could hypothesize that collagen secretion
could first act as a physical protective barrier around the tumor
cells. Then, the pressure becomes too high by tumor cells which
continue to proliferate, that the protective barrier is disrupted,
allowing invasion and migration of tumor cells. We could also
postulate that when fibroblasts are activated into CAFs, there is an
upregulation of ECM component secretion promoting pressure
around the tumor, leading to the disruption of the protective
barrier and then to cancer progression. Regarding pancreatic
cancer, one of the most aggressive cancer, there is no collagen
or fibroblast protective barrier at early stages. Thus, maybe the
aggressiveness of this cancer at beginning stages could be due to
the lack of the protective barrier. In all of the cancers discussed
above, we could not find any study that analyzes the transition
between protection and this pro-invasive effect. New epigenetic
mutations in cancer cells that promote proliferation and invasion
of the protective barrier - immunity or metabolic stress - could
be at the origin of this transition. It would be crucial to study
the elements which could induce this switch, in order to promote
protective role of ECM in cancer and restrain tumor growth.

To sum up, the complexity and heterogeneity of each tumor
matrix is due to the architecture and organization of each
organ. In addition of this inter-tumor heterogeneity, matrix
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TABLE 1 | Similarities and differences in composition and crosslinking of the tumor associated protective or tumor promoting ECM in each cancers.

Stroma composition

Protective Pro-tumoral

Composition Composition Signaling pathways Cross-linking

Breast
cancer

– Collagens I, III, V,
fibronectin, laminin, decorin

– Myoepithelial cells
– CAFs

– Collagens I, III, V
– Fibronectin, fibrin, hyaluronan,

versican, osteopontin,
tenascin, periostin

CD44→ PDGFRβ/Stat3
CD44→ MAPK or AKT→ Invasion, migration, survival
Collagen I→ Integrin α11→ PDGFRβ/JNK→ Invasion

→ DDR1→ Invadosomes formation
→ DDR1 + IGFRI→ Proliferation and migration

Collagen IV→ DDR1→ NFκB→ Resistance
Fibronectin→ Erk or Stat 3→ EMT
Laminin→ Integrin→ Invasion and migration

LOX
LOXL2
LOXL3
LOXL4

Liver
cancer

– Collagens I, III
– CAFs

– Collagens I, III, IV
– Tenascin, osteopontin,

laminin, chondroitin sulfate

Collagen I→ β1 integrin→ MAPK→ prosurvival signal
CD44→ MDM2 nuclear translocation→ Akt→ tumor
progression
TGFB→ collagen I→ DDR1→ LOXL2→ Invadopodia
Collagen I→ DDR1→ Erk→ SNAIL→ EMT

→ DDR2→ ERK→ MMPs→ Invasion

LOXL2

Pancreas
cancer

– Byglican, lumican:
associated to better
prognosis

– Collagens I, III
– Fibronectin, vitronectin,

glypican, SPOCK1, HA

Hyaluronan→ CD44→ survival, proliferation, invasion
Collagen I→ Integrin→ FAK→ migration

→ DDR1→ PYK2→ EMT
→ DDR1/TM4SF1→ invadosome formation

LOX
TG2

Colon
cancer

– Collagens I, III, IV, V,
biglycan, fibromodulin,
perlecan, versican, decorin

– Collagens I, III, V
– Byglican, perlecan, versican,

fibromodulin, biglycan,
fibronectin

Collagen I→ DDR1→ Invasion
→ DDR2→ Proliferation, migration, invasion
→ α2β1→ PI3/Akt→ tumor progression
→ α2β1→ Snail→ EMT

HA→ CD44v6→ proliferation, invasion, resistance
Osteopontin

LOX

Melanoma – Collagen I
– Fibroblast

– Collagen I
– Tenascin-C, fibronectin,

periostin, osteopontin,
SPARC, CCN3

Collagen I→ α2β1→ Cathepsin B→ invasion
→ DDR1→ Invasion
→ DDR2→ ERK/NFκB→ Invasion

Fibronectin
Biglycan
Tenascin C

heterogeneity can also be observed at the level of the same tumor
and each tumor structure could have a specific matrix.

DISCUSSION

In the last decade, the role of ECM in cancer has been widely
studied and gained more and more importance. During cancer
progression, ECM is constantly remodeled, and is the result
of a balance between secretion and degradation. ECM evolves
constantly from primary tumor to metastasis site including
pre-metastatic niche. Therefore, there is modification of ECM
composition and organization in the pre-metastatic niche for
cancer cell to become dormant or to grow and form metastasis.

The crosstalk between tumor and stromal cells controls this
balance. Tumor evolution leads to TAEM creation, which is
essential in the tumor progression. In order to interact with
TAEM, stromal and cancer cells need to express ECM receptors
including collagen receptors promoting malignant phenotype of
tumor cells such as invasion, migration and proliferation.

However, this scheme of ECM involvement in cancer
progression is too simple and need to be adapted to each organ,
cancer and cancer stages. We showed, in this review, that each
cancer has its own matrix, with its own composition, its own
molecules promoting crosslinking, therefore they present specific
pro-tumor or protective effect.

The ECM is well-known and well-studied for its tumor
promoting role. However, it is very important to note that, at the
beginning of a large number of cancers, ECM first could serve as
a protective barrier. It could be complicated to develop therapies
against ECM due to its heterogeneity as well as its dual role as a
pro or anti-tumor. However, there is a real need to understand the
dynamics of the microenvironment, in order to determine when
and how the protective barrier could became pro-tumor. This
could allow development of a therapeutic strategy to enhance
protective role of the ECM and control the disease by preventing
or delaying the pro-tumor role of the ECM.
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