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Abstract

The chytrid fungus Batrachochytrium salamandrivorans (Bsal) is a dangerous pathogen to

salamanders and newts. Apparently native to Asia, it has recently been detected in West-

ern Europe where it is expected to spread and to have dramatic effects on naïve hosts.

Since 2010, Bsal has led to some catastrophic population declines of urodeles in the Neth-

erlands and Belgium. More recently, it has been discovered in additional, more distant sites

including sites in Germany. With the purpose to contribute to a better understanding of

Bsal, we modelled its potential distribution in its invasive European range to gain insights

about the factors driving this distribution. We computed Bsal Maxent models for two predic-

tor sets, which represent different temporal resolutions, using three different background

extents to account for different invasion stage scenarios. Beside ‘classical’ bioclimate, we

employed weather data, which allowed us to emphasize predictors in accordance with the

known pathogen’s biology. The most important predictors as well as spatial predictions var-

ied between invasion scenarios and predictor sets. The most reasonable model was based

on weather data and the scenario of a recent pathogen introduction. It identified tempera-

ture predictors, which represent optimal growing conditions and heat limiting conditions, as

the most explaining drivers of the current distribution. This model also predicted large areas

in the study region as suitable for Bsal. The other models predicted considerably less, but

shared some areas which we interpreted as most likely high risk zones. Our results indicate

that growth relevant temperatures measured under laboratory conditions might also be rel-

evant on a macroecological scale, if predictors with a high temporal resolution and rele-

vance are used. Additionally, the conditions in our study area support the possibility of a

further Bsal spread, especially when considering that our models might tend to underesti-

mate the potential distribution of Bsal.
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Introduction

Worldwide, biological diversity is alarmingly declining [1], and it has been proposed that we
are witnessing a sixth mass extinction in Earth’s history [2]. Among the various reasons
responsible for species and population declines and extinctions are emerging infectious dis-
eases. There has been a remarkable pathogen-related increase in species declines during the
last decades [3]. As pointed out by Daszak et al. (2000) [4], mediation by humans helps patho-
gens to cross evolutionary and ecological boundaries. Such a ‘pathogen pollution’ has led to
dramatic species declines and extinctions in various regions [5,6].

Amphibians belong to the globally most threatened of all vertebrates. More than one third
of the ca. 7,500 species is threatened with extinction when applying IUCN Red List criteria [1].
Emerging infectious diseases play a key role in the world’s ‘amphibian crisis’ and are seen as
one main factor for the global amphibian decline [7]. The pandemic amphibian chytrid fungus
(Batrachochytrium dendrobatidis, Bd) has significantly contributed to this crisis [8]. This path-
ogen is spreading and is already known from more than 400 host species in all three amphibian
orders and on all continents where amphibians occur [8,9]. However, the effects of Bd infec-
tions depends on various factors, such as the Bd strain, the species, the population and regional
climatic factors [8,9].

Recently, a congeneric chytrid fungus has been discovered in Europe [10]. Batrachochy-
trium salamandrivorans (Bsal) is lethal only to salamanders and newts, order Urodela. Under
laboratory conditions, in many urodeles from outside Asia, Bsal infection led to 100% mortality
within a few days [11]. Since this fungus has been found in wild Asian newts, it is expected that
Bsal is native to Asia and has recently been introduced into Europe by humans [11]. Since
2010, observedDutch populations of fire salamanders (Salamandra salamandra) have drasti-
cally declined due to Bsal infections, with sometimes less than one percent survival rate (the lat-
ter studied in one population only) [12,13]. In subsequent years, Bsal infections have been
recorded in additional species and nearby sites (within a radius of about 100 km from first
noted outbreaks) in Belgium and Germany, and it appears that Bsal is spreading in its invasive
range [13]. According to these authors, to date Bsal infections in Europe in the wild are known
in one salamander and two newt species at 14 sites. In addition, Bsal infections have recently
been detected in captive salamanders and newts in the UK and Germany [14,15].

The emergence of Bsal, accompanied by massive amphibian diversity loss, is feared [11],
especially in regions that are species-rich in salamanders and newts [16,17]. Biologists and con-
servationists are saying that Bsal mitigation strategies are necessary now. Recommendations
for minimizing impacts of lethal emerging infectious diseases on wildlife, among others,
include the reduction of local spread, habitat manipulation and host translocations [18].
Macroecologicalmodels forecasting the potential invasive range of pathogens are helpful in
these steps [19]. Such ‘spatial risk assessments’ are available for the pandemic Bd, based on cor-
relative species distribution models (SDMs). These use climatic information at pathogen pres-
ence records [20,21] to infer its environmental niche [22]. Until recently, the number of Bsal
records was too few for SDM building. Aware of this circumstance, Yap et al. (2015) [23] provi-
sionally used avatar species (i.e. records and random points inside the distribution of Asian
urodeles that potentially can be Bsal-positive) to create a Bsal SDM for North America.

Besides using SDMs to predict distributions of species, they can be applied to gain insights
about the environmental drivers of their distributions [24]. With this goal, we in this paper
provide Bsal SDMs for the region where it is invasive in Europe. We use true observedpresence
records for SDM building. We create models with fine-scale weather data as well as ‘classical’
bioclimate data to explore the responses of Bsal with respect to different temporal resolutions,
using predictors relevant to Bsal and adapted to known temperature limits [10]. A basic
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assumption of SDMs is that a species and its environment are in equilibrium [25,26]. SDMs
built in early invasion stages, as it is expected for Bsal [13], are in conflict with this assumption
and tend to underpredict the potential distribution of a species [27]. On the other hand, with
regard to the development of mitigation strategies, attempting to build a Bsal SDM might be a
valuable contribution. Our models were fine-tuned to better meet equilibrium conditions with
respect to different invasion stages and according to the small number of presences to mini-
mize biases. We consider our study as an important step towards a better understanding of
Bsal.

Materials and Methods

Climate predictors and Bsal presence data

The climate data used in this study were generated with the regional climate model COS-
MO-CLM (consortium for small-scale modelling—climate limited area modelling; [28]; http://
www.clm-community.eu, version 5.0_clm6). It was forced with ERA-Interim data [29] and
dynamically downscaled in a multi-nesting chain approach [30]. Hourly data of precipitation
and surface temperature were modelled for the period from 1 January 2011 to 31 May 2014 at a
horizontal resolution of ~ 1.3 km. We used the surface temperature because it is modelled with
respect to seasonal vegetation cover, leaf area index, soil properties and others. As almost all
Bsal records were located in forested areas, the surface temperature was supposed to reflect the
conditions at ground level better than the standard 2 m air temperature. The climate data cover
an area of 67,600 km2 (40,000 grid cells) in Belgium, France, Germany and the Netherlands
(Fig 1). The area has lowlands (< 100 m a.s.l.), such as the Rhine valley and low mountain
ranges with most of the highest peaks< 800 m a.s.l., including the Ardennes, Eifel, Wester-
wald, Hunsrück and parts of the Black Forest. The climate time period and the modelling
domain was restricted due to limited computational resources and because it was set in the
context of a different project (‘KlimLandRP’; http://www.klimlandrp.de). Despite these limita-
tions, the application of this data is more appropriate than the use of standard Worldclim data
[31], which strongly predates the Bsal presences and is not comparable in temporal resolution
and quality.

Out of these data, we generated two initial predictor sets for our Bsal modelling approach:
(1) We calculated 25 indices of weather extremes (S1 Table) of the ECA project (European Cli-
mate Assessment; http://www.eca.knmi.nl), which are based on hourly and daily surface tem-
peratures and precipitation data over the three and a half year climate period (i.e. no yearly
averages). To better meet the Bsal ecology, indices were adapted in a way that they acknowl-
edged temperature growth limits of Bsal [10]: that is 5–25°C, with an optimum growth at 10–
15°C. (2) Monthly multi-year averages of the precipitation as well as the minimum and maxi-
mum surface temperatures were taken to calculate 19 BIOCLIM variables [31,32] (S2 Table).
BIOCLIM variables are biologically meaningful predictors and are widely used in SDM build-
ing [33]. These variables have a lower temporal resolution than the ECA indices. Hence, they
do not or less account for short term extreme events, while ECA indices do.

Of the so far 14 Bsal-positive sites reported [10,11,13], 12 fell into the study region (Fig 1).
The addition of two yet unpublished Bsal-positive sites allowed us to employ 14 records in the
modelling process (S3 Table).

Species distribution modelling

Model algorithm. The variety of algorithms available for correlative model computation
can lead to markedly different SDM results. To account for this variation, it is generally recom-
mended to employ distinct algorithms in SDM reconstructions [34–38]. On the other hand,
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Warton & Aarts (2013) [39] highlighted, that for distinct algorithms when applied in a similar
way (i.e. the same random points, predictors, type of model responses), differences will typi-
cally be small and can even lead to almost identical results. However, steering a single algo-
rithm in different ways can reveal dramatic output alterations [39]. Therefore, it is important
to select a method, which is suitable for the available data and a modelling approach, which is
ecologically reasonable [39,40]. In this study, we used Maxent 3.3.3k [41] to generate models.
Maxent is a machine-learning algorithm, following the principle of maximum entropy.
Thereby, it uses environmental predictors (here, out of the ECA and BIOCLIM sets), species
presence records and random background points (at which the presence of the target species is
unknown). It contrasts the environmental conditions at species’ presences against the condi-
tions at the background points, to fit a function to estimate the relative habitat suitability
[24,42,43].

We chose Maxent for our modelling approach for several reasons. We suggest that at the
current state of knowledge a Bsal SDM should be based on presence-only information (i.e.
applicable to Maxent). We reject the use of presence–absence, since a rigorous sampling for
Bsal has just started in the invasive area [13]. For the same reason, we do not support the con-
cept of pseudo-absencemethods in this context. Besides, there is no clear strategy how to

Fig 1. Western Europe study region. First noted Bsal outbreaks are indicated by black and subsequent

records by white triangles. Elevational range (grey scales, light to dark: 28–1,050 m a.s.l.), borders (bold

lines), rivers (thin lines), some major cities (normal font) and low mountain range names (sloped font) are

shown.

doi:10.1371/journal.pone.0165682.g001

Salamander Chytrid Fungus Distribution

PLOS ONE | DOI:10.1371/journal.pone.0165682 October 31, 2016 4 / 17



generate pseudo-absence and this is still subject of ongoing research [44–47]. Also, in correla-
tive SDMs, model quality and accuracy depends on the number of records available of the tar-
get species. When the number of records is low (as in Bsal), Maxent has been shown to build
reliable models and it can be fine-tuned to maximize the utility of the available information
[48–52]. Maxent produces response curves, which allow to assess the modelled responses in
terms of ecological meaning. Furthermore, via background definitions, it allows us to account
for different dispersal hypotheses (i.e. different invasion stages) across the landscape. We
acknowledge that in recent years Maxent has been scrutinizedby some studies, especially
because of its uncritical use in the literature [24,53,54]. However, due to the considerations
above, we conclude that Maxent is the most appropriate method here, which we navigated with
highest care.
Predictor selection. To avoid both model overfitting and data collinearity and because

our goal was the interpretation of the environmental drivers of the distribution of Bsal, we
reduced the number of predictors in our two predictor sets. This procedure leads to more parsi-
monious and interpretable models [24,55,56]. For this purpose, we examined pairwise Pearson
correlation coefficients between the predictors and eliminated correlated variables with abso-
lute values higher than 0.8 [57,58], because a more restrictive threshold value would have
resulted in considerably less predictors. Moreover, we selected variables according to their
expected relevance to Bsal life history [59]. The hypotheses behind this selection were based on
Bsal in vitro temperature responses [10] as well as some general ecological aspects of the hosts
[60]. Too cold or too hot conditions, likewise to dry conditions, should be disadvantageous to
Bsal, as both fungal parasites and amphibian hosts generally rely on humid conditions. We
choose predictors that reflected optimal conditions and limitations of Bsal [10], with emphasis
of the adapted temperature indices (ECA set). Out of the ECA set, we therefore favoured pre-
dictors with a consecutive character over counting predictors. While, for instance, thirty conse-
cutive days that are too hot for Bsal growth can be a limiting factor, thirty hot days might not
be limiting when regularly interrupted by cooler days. However, in our study region these con-
secutive predictors are correlated to some counting predictors and can therefore be seen as sur-
rogates for them (S4 Table).

Similar to the ECA approach, we chose a set out of the available BIOCLIM predictors that
represent extreme and favourable conditions to Bsal (similar to [20,23]). The predictor ‘bio 8’
(mean temperature of wettest quarter) was included to account for possible temperature rela-
tionships at expected beneficial humid conditions, and ‘bio 15’ (precipitation seasonality) was
included to examine the importance of stable precipitation conditions over the year. The result-
ing final predictor sets are shown in Table 1, S1 and S2 Figs, for correlations between final pre-
dictor sets and between the final and the initial predictor sets see S4 Table.
Model fine-tuning and evaluation. We ran Maxent with the model complexity specifica-

tions describedby Shcheglovitova & Anderson (2013) [51] for models with small sample sizes
(only hinge features, regularization multiplier of 2). These authors found that models with more
complex feature classes (which can lead to model overfitting) and with higher regularizations
(which results in simpler models) outperform models with standard settings for small sample
sizes (simple feature class with lower regularization). As Maxent assumes that a species is
equally likely to be anywhere in the background extent, the latter is often restricted to areas that
are accessible via dispersal, while modifying this extent is equivalent to changing the a priori
expectation of a species’ distribution [24]. As it is presumed that Bsal is in an early invasion
stage, regions in the south-western part of our study region may be far beyond the invasion
front. As it is not clear if Bsal is really a recently introduced pathogen, as there are indications
that Bsal has been introduced to Europe more than 10 years ago (authors’ unpubl. data), we
defined three background extents to account for different hypothetical invasion scenarios
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(S3 Fig). We decided for an approach similar to Elith et al. (2010) [61] who compared a conti-
nent-wide background with a background restricted to a polygon in reachable distance around
early invasion records. (1) As a conservative approach, we drew a minimum convex polygon
(MCP) of 70 km distance (~ the known furthest distance of two Bsal records within the study
region) around the presences to limit our background. This background represents the hypothe-
sis of a recent arrival of Bsal in Europe and early invasive stage. (2) Additionally, we created a
150 km MCP (this distance accounts for the two presences outside our study region [13]) and
(3) the full study area as alternative extents to account for the possibility of earlier unnoticed
arrivals and a longer dispersal ability. Models, which were trained with a MCP background were
again projected into the entire study area without ‘clamping’. When projecting a model into pre-
dictor conditions outside their training conditions, ‘no clamping’ results in continuing the
response curve, while ‘clamping’ keeps the suitability constant at the limits of the training data
[57]. We chose this setting because of the simple type of response curves. It seems reasonable to
simply continue with them, as they are monotonic at their edges with no complex patterns. We
present Multivariate Environmental Similarity Surfaces (MESS) maps [61] to identify areas out-
side of the training conditions of MCP-based models. In these areas, predictions could have
poor support if the response curves are unrealistically extrapolated with respect to a species’
ecology [61].

Evaluating model performance for small sample sizes is a challenging task in SDM building
for the lack of independent test data. To evaluate our models, we therefore employed a leave-
one-out jackknife approach (in this case equal to a 14-fold cross-validation), which is applica-
ble to small sample sizes [48,51]. Models were built for both predictor sets (ECA, BIO) and the
three background extents (indexed ‘70’, ‘150’, ‘full’), respectively. We ran each model with 30
replicates to account for variance in the background data, using each time 10,000 different ran-
dom background points. The area under the receiver operating characteristic curve (AUC) was
calculated by Maxent as a measure of predictive accuracy, although we are aware that its use
for presence-only data is controversially debated [54,62]. AUC values reflect the model’s ability
to distinguish between presence and background points, giving information how general or
restricted a distribution is along the range of the predictor variables in the study region [24,62].

Table 1. Final predictor sets used for the Bsal SDMs.

Set Code Definition Unit

ECA csu 5 largest number of consecutive days where Tmax > 5˚C days

csu 25 largest number of consecutive days where Tmax > 25˚C days

su 10–15 number of days where 10˚C < Tmax < 15˚C days

tr 10–15 number of days where 10˚C < Tmin < 15˚C days

cddn number of consecutive dry day (cdd) periods with� 5 cdd per period number

cwdn number of consecutive wet day (cwd) periods with� 5 cwd per period number

r 10 number of days with precipitation < 10 mm days

BIO bio 8 mean temperature of wettest quarter ˚C

bio 10 mean temperature of warmest quarter ˚C

bio 11 mean temperature of coldest quarter ˚C

bio 15 precipitation seasonality (coefficient of variation) -

bio 16 precipitation of wettest quarter mm

bio 17 precipitation of driest quarter mm

For additional information on ECA predictors, as explanations to codes, definitions of ‘dry’ or ‘wet’ days, see

S1 Table.

doi:10.1371/journal.pone.0165682.t001
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AUC is considered useful to compare models built with the same data and background, which
is not the case for the models in this study, as different background extents were used [24]. For
this reason, we just state AUC as an indicator of how widespread the distribution of Bsal is pre-
dicted in our background area. Additionally, we present the omission of the test locality (test
omission, proportion of misidentified test presences) with respect to the ‘minimum training
presence’ (MTR) threshold, which is also calculated by Maxent [63]. For small sample sizes,
this threshold rule represents a conservative approach, because it identifies the minimum pre-
dicted area, which keeps the omission error in the training data set at zero [48]. We also pro-
vide the predicted area for the binary maps with respect to the MTR threshold for each model
type, calculated by Maxent. To identify the most important variables for each model, we used
the analysis of variable contribution as incorporated in Maxent. We calculated for all measures
the mean and standard deviation over all cross-validation folds and replicates. To compare the
mean predictions of the different models we used Pearson correlation coefficients and Scho-
ener’s D, a metric of niche overlap [64,65].

Additional information on software and data used

We used CDO 1.6.2 [66] to process the climate model output (netCDF format) and to calculate
the ECA indices. The R 3.2.2 [67] packages RASTER [68] and DISMO [69] were employed for cal-
culating BIOCLIM variables, raster correlations, niche overlap and boxplots. The PMCMR pack-
age [70] was used to apply the Kruskal-Wallis Nemenyi post-hoc test. ARCGIS 10.2.1 and
SDMtoolbox 1.1b [71] were used to build the final predictor layers, check correlations between
them and to create output maps and figures. Administrative boundary data was obtained from
the GADM database 2.8 (http://www.gadm.org) and river data from the European Environ-
ment Agency, EEA (http://www.eea.europa.eu).

Results

ECA70 performed best according to the test omission (Table 2). For both predictor sets the pro-
portion of misidentified Bsal presence records increased with larger background extent, with
the predicted area decreasing. Test AUC values mirrored the predicted area; less restricted pre-
dictions in the background extent (i.e. smaller AUC values) led to more widespread predictions
over the entire study region. ECA70 predicted the largest and BIOfull the most restricted distri-
bution of Bsal (Fig 2).

The BIO models were almost identical to each other, independent from the background
selection, which was reflected by high values of Pearson correlation coefficient and Schoener’s

Table 2. Test omission, test AUC and predicted area for the different Bsal SDMs.

Model Test omission Test AUC Predicted area

ECA70 0.079 ± 0.038 a 0.817 ± 0.004 0.436 ± 0.04 a

ECA150 0.290 ±0.082 b 0.896 ± 0.006 0.141 ± 0.01 bc

ECAfull 0.271 ± 0.081 b 0.920 ± 0.006 0.125 ± 0.02 bd

BIO70 0.143 ± 0.000 c 0.871 ± 0.001 0.275 ± 0.00 ac

BIO150 0.143 ± 0.000 c 0.941 ± 0.002 0.114 ± 0.00 de

BIOfull 0.214 ± 0.000 b 0.952 ± 0.002 0.084 ± 0.00 e

Values are mean ± one SD. Test omission and predicted area were calculated with respect to the ‘minimum training presence’ threshold. Value pairs with no

letter in common are significantly different (Kruskal-Wallis test, Nemenyi post-hoc, p < 0.05). As AUC values are not comparable between models, no

statistical test was applied.

doi:10.1371/journal.pone.0165682.t002
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D (Table 3). Suitable areas were mainly predicted in the region of the known Bsal presences,
into small parts of the Westerwald and the northern portion of the Black Forest. On the con-
trary, ECA models differed more strongly from each other, most obvious between ECA70 and
ECAfull (Fig 2, Table 3). ECA70 predicted suitable areas all over the study area, with larger areas

Fig 2. Predictions into the study region for the different Bsal SDMs. Predicted suitability maps (top) with

corresponding presence-absence maps (below) for the different models. High suitability and presences are

indicated in red, low suitability and absences in grey. Bsal presences are indicated by black triangles.

doi:10.1371/journal.pone.0165682.g002

Table 3. Pairwise Pearson correlation coefficients r and Schoener’s D (grey-shaded) for average ECA and BIO model predictions.

r \ D ECA70 ECA150 ECAfull r \ D BIO70 BIO150 BIOfull

ECA70 1 0.795 0.701 BIO70 1 0.840 0.799

ECA150 0.836 1 0.797 BIO150 0.960 1 0.921

ECAfull 0.451 0.784 1 BIOfull 0.929 0.982 1

doi:10.1371/journal.pone.0165682.t003
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of unsuitability only in the Eifel, Westerwald and area between the Hunsrück and the Black
Forest. The other ECA models predicted considerably less suitable areas to Bsal. They identi-
fied similar suitable regions as did the BIO models, with some additional areas in the Hunsrück
and the south-western portion of the study region.

For ECA70 and ECA150, the temperature-based predictors ‘tr 10–15’ (days with minimum
temperatures between 10° and 15°C) and ‘csu 25’ (highest number of consecutive days warmer
than 25°C) were the most contributing variables. The other predictors contributed noticeably
less (Table 4). In ECAfull though, ‘tr 10–15’ lost importance and ‘csu 25’ became the most
explaining variable, followed by ‘cddn’ (number of dry periods) and ‘csu 5’ (highest number of
consecutive days warmer than 5°C). Among all BIO models, ‘bio 11’ and ‘bio 17’ clearly were
the most important variables. Associated variable response curves are provided in S4 Fig, and
MESS maps to assess response extrapolation in S5 Fig.

Discussion

Model performance

Since SDMs infer the environmental niche of a species from its presences as well as from envi-
ronmental data [22], it can be problematic if the number of presence data is too small to cover
all suitable conditions to describe a species’ niche. Because of the small number of known Bsal
presences and the expected Asian origin of this pathogen [11], it has to be taken into account
that our models do not reflect the entire niche of Bsal. In addition, it should be considered that
occasionally niche shifts occur during biological invasions [72,73]. As a consequence, our Bsal
SDMs more represent ‘conservative’ approaches, which likely underestimate the potential dis-
tribution of Bsal [27]. Thus, they emphasize the predicted suitable areas. Nevertheless, as our
main goal was to shed some light into the driving factors of Bsal distribution, our modelling
approach is appropriate.

Table 4. Relative variable contributions of the predictor variables to Bsal SDMs.

ECA70 ECA150 ECAfull

pc pi pc pi pc pi

csu 25 34.4 32.8 26.5 24.0 39.4 49.4

csu 5 0.0 0.0 6.4 4.1 18.8 20.8

su 10–15 0.0 0.0 5.9 0.3 6.5 1.7

tr 10–15 56.2 55.8 32.1 48.0 4.0 10.9

cddn 0.3 0.5 19.5 7.1 30.1 15.2

cwdn 0.8 1.4 2.7 4.6 0.5 0.7

r 10 8.3 9.5 7.0 11.8 0.7 1.3

BIO70 BIO150 BIOfull

pc pi pc pi pc pi

bio 8 21.6 8.4 9.2 6.0 8.1 7.0

bio 10 0.0 0.0 0.0 0.0 2.1 4.1

bio 11 35.8 50.2 37.3 46.3 26.7 43.8

bio 15 3.0 1.1 12.6 2.6 21.1 3.3

bio 16 0.0 0.0 0.0 0.0 0.0 0.0

bio 17 39.6 40.2 40.9 45.0 42.0 41.9

Variable contributions are shown as average percent contribution (pc) and permutation importance (pi) (for details see https://www.cs.princeton.edu/~

schapire/maxent/tutorial/tutorial.doc). For each model the three highest values are in bold.

doi:10.1371/journal.pone.0165682.t004
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Among our models, ECA70 performed best. As ECA predictors were customised according
to Bsal temperature physiology and as the restricted background presumably reflects a more
realistic invasion scenario, we suggest this to be a reasonable result. However, some uncertainty
is casted on this, because of the second best performing models, BIO70 and BIO150. They
markedly differed in their predictions in geographic space, while performing only slightly less
well with regard to test omission. Differences between the various background extents, espe-
cially with respect to the predicted area, are not surprising. As a larger background usually goes
hand in hand with a wider range of predictor values, it is easier for a model to fit responses to
contrast the presences against the background (compare predictor responses for the different
backgrounds, S4 Fig). As a consequence, the predicted Bsal distribution is more restricted
around the presences. In reverse, projections from smaller backgrounds into the full area are
less restricted.

Since almost all Bsal presences are located in forested areas and as the known amphibian
host species in our study area are ground-dwelling, we accentuated the surface temperature
for the calculation of the temperature variables. Through the incorporation of the effect of
vegetation cover, we expected that our temperature-based predictors well reflect the niche of
Bsal. Additionally, the shapes of all response curves were reasonable and supported the
hypotheses, which were considered during the process of variable selection. The response of
‘bio 8’ appears to be uncommon, but is sound when accounting for the fact that the wettest
quarter is associated to cold temperatures in the study region. Therefore, too warm condi-
tions in winter might correlate with too hot conditions in summer. As the predictor ranges in
the full study region compared to the restricted background extent were pretty similar (see
MESS maps, S5 Fig [61]), questionable extrapolations into new predictor conditions were
not problematic.

Predictor importance

The temporal more coarse BIO models were mainly driven by ‘bio 11’ (mean temperature of
coldest quarter) and ‘bio 17’ (precipitation of driest quarter), representing an approach that
identifies regions according to the modelled lower limits of temperature and precipitation suit-
able to Bsal. These findings are in concordance with the known needs of Bsal under laboratory
conditions, but depicted a rather simple model, as the expected upper temperature limit [10]
was not found or reached by the mean monthly temperature. As hosts often die from Bsal
within a few days after infection [11], short time weather events might be more relevant to Bsal
survival and added valuable extra information to our models. Several studies have brought to
light that SDMs benefit from the incorporation of weather extremes [74–77]. This was
acknowledged by the ECA predictor set. ECA models with restricted background were mainly
influenced by ‘tr 10–15’, i.e. the number of days where the minimum temperature lays in the
optimal growth temperature range of Bsal. Opposed to the BIO models, the second most
important variable was also temperature-related, namely ‘csu 25’, the maximum length of heat
periods. Such temperature-based predictors seem plausible to explain the current distribution
of Bsal, because in previous laboratory experiments colonization of hosts occurred at tempera-
tures above 15°C, but the critical thermal maximum for Bsal was 25°C [10,78,79]. A precipita-
tion-based predictor, ‘cddn’ (number of dry periods), became again more influent for ECAfull.
These findings indicate that temperature conditions may play a more important role to Bsal
than precipitation, at least in our study region. Furthermore, high temperatures might be a
stern limiting factor to the fungus, even on a landscape scale. However, to identify these limit-
ing temperatures, predictor variables may be needed with a high temporal resolution, rather
than data based on monthly averages.
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Assessing Bsal high risk zones

So far, Bsal is known from a limited number of records only, but is expected to spread [13]. The
known host species in the pathogen’s invasive European range are, when put together, distrib-
uted more or less evenly throughout our study region [80]. This implies that unlimited pathogen
spread is a possible scenario, even when amphibians are the only Bsal vectors. Even worse, if
additionally other spread pathways play a role, such as human-mediated long distance dispersal
(as known in Bd [8]). For these reasons, an essential question is, where in our study region Bsal
is able to cope with the abiotic environment. Even when we are unable to fully answer this ques-
tion with the present SDMs, because of the fungus’ cryptic niche as a result of its expected non-
equilibrium stage, these SDMs help to gain knowledge on high risk zones of Bsal invasion. In
conservation practice, this is an important first step when developing mitigation strategies [18]
and justifies a Bsal SDM approach despite its presumed early invasion stage.

Certain areas within the study region were identified as highly suitable to Bsal by all model-
ling approaches (Fig 3). This included the north-western portion, i.e. parts of the Ardennes
and the Eifel; likewise, parts of the Westerwald and the Black Forest. We suggest these to repre-
sent ‘most likely high risk zones’. All ECA models additionally supported high suitability in the
Hunsrück. Moreover, these models suggested patchily distributed high suitability in-between
the areas mentioned. In ECA70, which was considered as the best model (Table 2), this resulted
in the largest extant of high suitability covering half of our study region (Fig 2), supporting the
future scenario of further spread of the pathogen. As the ECA approach accounted for weather
extremes, which might be informative in the case of Bsal (see above), we propose these areas to
represent ‘likely high risk zones’.

Conclusion

We identified the apparently most important predictors for the present distribution of the fun-
gus for the lethal amphibian pathogen Batrachochytrium salamandrivorans in its invasive

Fig 3. Average predictions of all Bsal SDMs. Average predicted suitability map (left) and presence-absence map (right) of all models. High

values are indicated in red, low values in grey. Bsal presences are indicated by black triangles.

doi:10.1371/journal.pone.0165682.g003
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range in Europe. Different SDMs with both bioclimate and fine-scale weather data helped us to
further identify possible risk zones. The most important predictors of the best fitting model
were temperature-based (number of days with minimum temperature> 10°C and< 15°C and
the largest number of consecutive days where the maximum temperature was> 25°C). This
seems plausible with regard to the (still limited) information on the biology of this recently dis-
covered pathogen and indicates that growth limiting temperature values of laboratory experi-
ments are also relevant on a landscape scale. The best model predicted suitable areas all over
the study area, with larger areas of unsuitability only in parts of the Eifel, Westerwald and the
area between the Hunsrück and the Black Forest, indicating that a further Bsal spread is a pos-
sible scenario. Especially because it is known that niche shifts can occur during biological inva-
sions and as we probably did not capture the entire niche of Bsal, our models may
underpredict the potential distribution of this amphibian pathogen in Europe. Nevertheless, as
our main goal was to shed some light into the driving factors of Bsal distribution, our model-
ling approach was reasonable and can be helpful for further Bsal exploration and SDMs.

Supporting Information

S1 Fig. Maps of the ECA predictor set.
(PDF)

S2 Fig. Maps of the BIO predictor set.
(PDF)

S3 Fig. Background restrictingminimum convex polygons (MCPs).
(PDF)

S4 Fig. Model response curves.
(PDF)

S5 Fig. MESSmaps.
(PDF)

S1 Table. ECA predictor variables.
(DOCX)

S2 Table. BIOCLIM predictor variables.
(DOCX)

S3 Table. Bsal presences.
(DOCX)

S4 Table. Predictor correlations.
(DOCX)

S1 ZIP Archive. ECA predictors (initial set, full extent).
(ZIP)

S2 ZIP Archive. BIOCLIMpredictors (initial set, full extent).
(ZIP)

Acknowledgments

S.F. and L.S. are funded by the Trier Centre for Sustainable Systems (TriCSS). Our Bsal
research benefits from funds by the Deutsche Gesellschaft für Herpetologie und Terrarien-
kunde (DGHT), Nikolaus Koch Stiftung, Stiftung Artenschutz, Verband der Zoologischen

Salamander Chytrid Fungus Distribution

PLOS ONE | DOI:10.1371/journal.pone.0165682 October 31, 2016 12 / 17

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0165682.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0165682.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0165682.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0165682.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0165682.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0165682.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0165682.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0165682.s008
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0165682.s009
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0165682.s010
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0165682.s011


Gärten and Zoo Landau. We thank the DKRZ (Deutsches Klimarechenzentrum, Hamburg) for
providing the computational resources for running climate simulations. In addition, we are
grateful to the Biologische Station Aachen and Biologische Station Düren for collaboration,
and Annemarieke-Spitzen van der Sluijs (Amphibian & Fish ConservationNetherlands) for
sharing ideas on the topic. We also thank three reviewers for valuable comments on an earlier
manuscript version.

Author Contributions

Conceptualization: SL SF.

Data curation: SF LS.

Formal analysis: SF.

Investigation: SF.

Methodology:SF.

Resources: LS GH.

Supervision:SL.

Visualization: SF.

Writing – original draft: SF SL.

Writing – review& editing: SF LS NW GH MV SL.

References

1. Stuart SN, Hoffman M, Chanson JS, Cox NA, Berridge RJ, Ramani P, et al., editors. Threatened

amphibians of the world. 1st ed. Barcelona: Lynx; 2008.

2. Barnosky AD, Matzke N, Tomiya S, Wogan GOU, Swartz B, Quental TB, et al. Has the Earth’s sixth

mass extinction already arrived. Nature. 2011; 471: 51–57. doi: 10.1038/nature09678 PMID:

21368823

3. Smith KG, Lips KR, Chase JM. Selecting for extinction: nonrandom disease-associated extinction

homogenizes amphibian biotas. Ecol Lett. 2009; 12: 1069–1078. doi: 10.1111/j.1461-0248.2009.

01363.x PMID: 19694784

4. Daszak P, Cunningham AA, Hyatt AD. Emerging Infectious Diseases of Wildlife—Threats to Biodiver-

sity and Human Health. Science. 2000; 287: 443–449. doi: 10.1126/science.287.5452.443 PMID:

10642539

5. Rahbek C. Disease ecology: the silence of the robins. Nature. 2007; 447: 652–653. doi: 10.1038/

nature05889 PMID: 17507926

6. Blehert DS, Hicks AC, Behr M, Meteyer CU, Berlowski-Zier BM, Buckles EL, et al. Bat white-nose syn-

drome: an emerging fungal pathogen. Science. 2009; 323: 227. doi: 10.1126/science.1163874 PMID:

18974316

7. Collins JP, Storfer A. Global amphibian declines: sorting the hypotheses. Diversity and Distributions.

2003; 9: 89–98.

8. Fisher MC, Garner TWJ, Walker SF. Global emergence of Batrachochytrium dendrobatidis and

amphibian chytridiomycosis in space, time, and host. Annu Rev Microbiol. 2009; 63: 291–310. doi: 10.

1146/annurev.micro.091208.073435 PMID: 19575560

9. van Rooij P, Martel A, Haesebrouck F, Pasmans F. Amphibian chytridiomycosis. A review with focus

on fungus-host interactions. Vet Res. 2015; 46: 9031. doi: 10.1186/s13567-015-0266-0 PMID:

26607488

10. Martel A, Spitzen-van der Sluijs A, Blooi M, Bert W, Ducatelle R, Fisher MC, et al. Batrachochytrium

salamandrivorans sp. nov. causes lethal chytridiomycosis in amphibians. Proc Natl Acad Sci U S A.

2013; 110: 15325–15329. doi: 10.1073/pnas.1307356110 PMID: 24003137

Salamander Chytrid Fungus Distribution

PLOS ONE | DOI:10.1371/journal.pone.0165682 October 31, 2016 13 / 17

http://dx.doi.org/10.1038/nature09678
http://www.ncbi.nlm.nih.gov/pubmed/21368823
http://dx.doi.org/10.1111/j.1461-0248.2009.01363.x
http://dx.doi.org/10.1111/j.1461-0248.2009.01363.x
http://www.ncbi.nlm.nih.gov/pubmed/19694784
http://dx.doi.org/10.1126/science.287.5452.443
http://www.ncbi.nlm.nih.gov/pubmed/10642539
http://dx.doi.org/10.1038/nature05889
http://dx.doi.org/10.1038/nature05889
http://www.ncbi.nlm.nih.gov/pubmed/17507926
http://dx.doi.org/10.1126/science.1163874
http://www.ncbi.nlm.nih.gov/pubmed/18974316
http://dx.doi.org/10.1146/annurev.micro.091208.073435
http://dx.doi.org/10.1146/annurev.micro.091208.073435
http://www.ncbi.nlm.nih.gov/pubmed/19575560
http://dx.doi.org/10.1186/s13567-015-0266-0
http://www.ncbi.nlm.nih.gov/pubmed/26607488
http://dx.doi.org/10.1073/pnas.1307356110
http://www.ncbi.nlm.nih.gov/pubmed/24003137


11. Martel A, Blooi M, Adriaensen C, van Rooij P, Beukema W, Fisher MC, et al. Recent introduction of a

chytrid fungus endangers Western Palearctic salamanders. Science. 2014; 346: 630–631. doi: 10.

1126/science.1258268 PMID: 25359973

12. Goverse E, Zeeuw MP de. Trends in aantallen NEM Meetnet Amfibieën 2014. schubben & slijm. 2015;
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50. van Proosdij André S. J., Sosef MSM, Wieringa JJ, Raes N. Minimum required number of specimen

records to develop accurate species distribution models. Ecography. 2016; 39: 542–552. doi: 10.

1111/ecog.01509

51. Shcheglovitova M, Anderson RP. Estimating optimal complexity for ecological niche models. A jack-

knife approach for species with small sample sizes. Ecological Modelling. 2013; 269: 9–17. doi: 10.

1016/j.ecolmodel.2013.08.011

52. Hernandez PA, Graham CH, Master LL, Albert DL. The effect of sample size and species characteris-

tics on performance of different species distribution modeling methods. Ecography. 2006; 29: 773–

785. doi: 10.1111/j.0906-7590.2006.04700.x

53. Renner IW, Warton DI. Equivalence of MAXENT and Poisson point process models for species distri-

bution modeling in ecology. Biometrics. 2013; 69: 274–281. doi: 10.1111/j.1541-0420.2012.01824.x

PMID: 23379623

54. Yackulic CB, Chandler R, Zipkin EF, Royle JA, Nichols JD, Campbell Grant EH, et al. Presence-only

modelling using MAXENT. When can we trust the inferences? Methods Ecol Evol. 2013; 4: 236–243.

doi: 10.1111/2041-210x.12004

55. Burnham KP, Anderson DR. Model Selection and Multimodel Inference: A Practical Information-theo-

retic Approach. 2nd ed.: Springer; 2002.

Salamander Chytrid Fungus Distribution

PLOS ONE | DOI:10.1371/journal.pone.0165682 October 31, 2016 15 / 17

http://dx.doi.org/10.1111/j.2006.0906-7590.04596.x
http://dx.doi.org/10.1111/j.2006.0906-7590.04596.x
http://dx.doi.org/10.1016/j.ecolmodel.2015.03.017
http://dx.doi.org/10.1111/j.1365-2699.2006.01460.x
http://dx.doi.org/10.1111/j.1365-2699.2006.01460.x
http://dx.doi.org/10.1111/j.1365-2699.2004.01076.x
http://dx.doi.org/10.1111/1365-2656.12071
http://www.ncbi.nlm.nih.gov/pubmed/23488567
http://dx.doi.org/10.1016/S0304-3800(02)00205-3
http://dx.doi.org/10.1016/j.ecolmodel.2005.03.026
http://dx.doi.org/10.1111/j.1472-4642.2010.00725.x
http://dx.doi.org/10.1371/journal.pone.0044486
http://www.ncbi.nlm.nih.gov/pubmed/22952985
http://dx.doi.org/10.1111/j.2041-210X.2011.00172.x
http://dx.doi.org/10.1111/j.2041-210X.2011.00172.x
http://dx.doi.org/10.1371/journal.pone.0071218
http://www.ncbi.nlm.nih.gov/pubmed/23967167
http://dx.doi.org/10.1111/j.1600-0587.2009.06039.x
http://dx.doi.org/10.1111/j.1365-2699.2006.01594.x
http://dx.doi.org/10.1111/j.1472-4642.2008.00482.x
http://dx.doi.org/10.1111/j.1472-4642.2008.00482.x
http://dx.doi.org/10.1111/ecog.01509
http://dx.doi.org/10.1111/ecog.01509
http://dx.doi.org/10.1016/j.ecolmodel.2013.08.011
http://dx.doi.org/10.1016/j.ecolmodel.2013.08.011
http://dx.doi.org/10.1111/j.0906-7590.2006.04700.x
http://dx.doi.org/10.1111/j.1541-0420.2012.01824.x
http://www.ncbi.nlm.nih.gov/pubmed/23379623
http://dx.doi.org/10.1111/2041-210x.12004


56. Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carré G, et al. Collinearity. A review of methods
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