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LPS-induced intestinal inflammation
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Ling Guo1,2,*, Linna Li1,*, Yang Zhang1,2, Shulin Fu1,2,
Jing Zhang1,2, Xiuying Wang1,2, Huiling Zhu1,2, Mu Qiao3,
Lingying Wu1,2 and Yulan Liu1,2

Abstract

LPS can induce an inflammatory immune response in the intestine, and long non-coding RNA (lncRNA) is involved in the

process of inflammatory disease. However, the biological role of lncRNA in the intestinal inflammation of piglets remains

unclear. In this study, the lncRNA expression profile of the ileal mucosa of piglets challenged by LPS was analysed using

lncRNA sequencing. In total, 112 novel lncRNAs were predicted, of which 58 were up-regulated and 54 down-regulated

following LPS challenge. Expression of 15 selected lncRNAs was validated by quantitative PCR. We further investigated

the target genes of lncRNA that were enriched in the signalling pathways involved in the inflammatory immune response

by utilising Gene Ontology and Kyoto Encyclopaedia of Genes and Genomes analysis, with cell adhesion molecules and

mTOR signalling pathway identified. In addition, the co-expression networks between the differentially expressed

lncRNAs and the target mRNAs were constructed, with seven core lncRNAs identified, which also demonstrated

that the relationship between lncRNAs and the target genes was highly correlated. Our study offers important infor-

mation about the lncRNAs of the mucosal immune system in piglets and provides new insights into the inflammatory

mechanism of LPS challenge, which might serve as a novel target to control intestinal inflammation.
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Introduction

Long non-coding RNAs (lncRNAs) are more than 200

nucleotides long, belong to the subgroup of non-coding

RNAs and have the characteristic of no protein coding

ability.1 Previous research has shown that lncRNAs

have important biological functions. lncRNAs poten-

tially influence the extracellular matrix and are

involved in the metastasis of hepatocellular carcino-

ma.2 It has been documented that overexpression of

lncRNA has an impact on proliferation, invasion and

migration of OVCAR-3 tumor cells and attenuates

apoptosis by activation of the PI3K/Akt/mTOR signal-

ling pathway.3 Expression of lncRNA p21 is aberrantly

up-regulated in human non-small-cell lung cancer and

reduces apoptosis by down-regulating PUMA expres-

sion.4 In addition, lncRNA uc.173 regulates the growth

of mouse intestinal mucosa and promotes intestinal

epithelial renewal through attenuating expression of
miRNA195.5 lncRNA H19 is related to mucosal regen-
eration, and is significantly up-regulated by IL-22
inflamed intestinal tissues and epithelial cells of mice
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induced by LPS.6 However, whether the changes in

lncRNAs in the ileal mucosa are associated with

inflammation in piglets has not been investigated.
LPS is an important component of the Gram-

negative bacterial outer membrane.7 Previous research

has reported that Helicobacter pylori LPS modulates

pathogen-elicited host inflammatory immune

responses, leading to chronic inflammation in the gas-

trointestinal tract.8 LPS induces host inflammation that

enhances prostate cancer metastasis by NF-jB activa-

tion.9 Low-grade inflammation triggered by LPS

can up-regulate expression of hypothalamic C-Jun

N-terminal kinase, resulting in insulin resistance.10 It

has been documented that LPS induces lncRNA

changes in human endothelial cells that might be

responsible for sepsis-induced endothelial dysfunc-

tion.11 Investigation of LPS-triggered expression pro-

files in the rodent central nervous system is crucial to

exploration of the function of lncRNAs, which is relat-

ed to the pathogenesis of sepsis-associated encephalop-

athy.12 Overexpression of lncRNA THRIL could

promote LPS-stimulated osteoarthritis cell (ATDC5)

inflammatory injury through decreasing miR-125b

expression and activating the JAK1/STAT3 and

NF-jB signalling pathways.13 So, we speculated that

lncRNA might be involved in intestinal inflammation.
Whether lncRNA is involved in ileal mucosal

inflammatory response to LPS has not been explored

in vivo. In addition, the signalling pathways enriched by

the target genes of the lncRNAs that were induced by

LPS have not been fully understood. In this study, our

objective was to investigate the lncRNAs that partici-

pated in the ileal mucosal inflammation stimulated by

LPS. Our results suggested that lncRNA is involved in

the regulation of host inflammatory immune response.

Our study provides new insights into the inflammatory

mechanism of LPS induction, which might serve as a

novel target to control intestine inflammation.

Materials and methods

Ethics approval

This study was carried out in strict accordance with the

recommendations of the China Regulations for the

Administration of Affairs Concerning Experimental

Animals 1988 and Hubei Regulations for the

Administration of Affairs Concerning Experimental

Animals 2005. The protocols were approved by

China Hubei Province Science and Technology

Department (permit number SYXK(ER) 2010-0029).

All experimental animals were killed at the end of the

experiments. All experiments were approved by Wuhan

Polytechnic University guidelines and regulations.

Experimental design

Six 35-d-old naturally farrowed early-weaned piglets

(Duroc�Landrace�Large White), weighing 9–10 kg,

were purchased and used for in vivo experiments.

The piglets were randomly divided into two groups.

Group 1 was challenged i.p. with LPS (Sigma–

Aldrich, St. Louis, MO) from Escherichia coli at

100 lg/kg. Group 2 was administered i.p. with the

equivalent amount of 0.9% NaCl solution

(Sinopharm, Beijing, PR China) as the control group.

Three h after injection of LPS, all the piglets from both

groups were killed. The ileal mucosa was collected,

frozen in liquid nitrogen and stored at �80�C for

sequencing analysis.

RNA extraction and quality control

Approximately 25 mg ileal mucosa was re-suspended in

TRIzol reagent (Invitrogen, Carlsbad, CA). Total

RNA was extracted according to the manufacturer’s

protocols.14 The amount of total RNA was measured

using a NanoDrop spectrophotometer (Thermo Fisher

Scientific, Waltham, MA). The quality of the total

RNA was determined by an Agilent 2100 bioanalyzer

(Agilent Technologies, Santa Clara, CA).

Construction of RNA-Sequencing libraries

The RNA-Sequencing (RNA-Seq) libraries were pre-

pared using ileal mucosa, and 150 bp paired-end

sequencing were carried out using the HiSeq platform

(Illumina, San Diego, CA).15 The RNA-Seq libraries

were constructed with 2 lg total RNA using the

TruSeq Kit (Illumina), with some modifications.

rRNA was removed by applying the Ribo-Zero

rRNA Removal Kit (Illumina), which was instead of

purifying of poly-A RNA by utilising the poly-dT

primer beads. Other steps were determined according

to the manufacturer’s instructions. Analysis of RNA-

Seq libraries was performed for quality control, and the

average length of inserts was 200–300 bp. The libraries

were sequenced using the HiSeq platform (Illumina).

Prediction of lncRNA

Transcripts of FPKM¼0 were deleted based on

the results of assembly. The open reading frames

of the transcripts were predicted using the tool of

TransDecoder (https://transdecoder.github.io/), and

transcripts > 300 nt or < 200 nt were removed.16 The

non-coding potentials of lncRNAs were predicted by

using the combination of four software platforms of

Pfamscan (http://www.ebi.ac.uk/Tools/pfa/pfamscan),

Coding Potential Calculator (CPC) (http://www.cpc.

cbi.pku.edu.cn), Coding-Non-Coding Index (CNCI)
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(http://www.bioinfo.org/software/cnci/) and PhyloCSF

(http://www.github.com/mlin/PhyloCSF/wiki) at the

same time.17

Prediction and annotation of lncRNA targets

We identified the target genes 100 kb upstream and

downstream of the lncRNAs, and the relationship

between the target genes and lncRNAs was determined

utilising the Bedtools programme.18 Prediction of the

lncRNA target genes included the cis and trans target

genes. Prediction of the cis target genes relied upon the

lncRNA function being associated with the protein-

coding genes that were adjacent to their coordinates.

The prediction of the trans target genes was to screen

the genes encoded by the nearest protein of the

lncRNA. We thought that the screened protein-

encoding gene could be a cis-regulated target gene

that interacted with the lncRNA.

Gene Ontology and Kyoto Encyclopaedia of Genes

and Genomes enrichment analysis

The analysis of Gene Ontology (GO; http://geneontol

ogy.org/) and Kyoto Encyclopaedia of Gene and

Genomes (KEGG; http://www.kegg.jp/) enrichment

was carried out to identify target genes of differentially

expressed lncRNAs.19 All target genes were mapped to

each term within the GO database. GO terms with

corrected a P-value of � 0.05 were considered as sig-

nificantly enriched. The KEGG automatic annotation

server (KASS) was utilised to carry out pathway anno-

tation using the entire genome as the background.

Pathways with a P-value of � 0.05 were thought to

be significantly enriched.

Co-expression analysis of lncRNA and mRNA

lncRNAs interact with mRNA and can regulate expres-

sion of the target genes. CytoScape software was uti-

lised to screen the lncRNA target genes, as described

previously.20 To construct a co-expression network,

the expression levels derived from the total RNA-Seq

data were screened to detect the similar expression

patterns of DElncRNAs and their potential targets.

The Pearson correlation coefficient and corresponding

P-value was calculated, but only the strongest correla-

tions (correlation coefficient > 0.9 or < –0.9, and

P<0.05) were retained to make a visual representation

of the co-expression network.

Quantitative real-time PCR

RNA was extracted from ileal mucosa using TRIzol

reagent (Invitrogen). Following that, cDNA was

reverse transcribed using reverse transcriptase

(TaKaRa, Dalian, PR China) and was further quanti-

fied using a SYBR Green PCR Kit (TaKaRa) accord-

ing to the manufacturer’s instructions. Three technical

repeats were utilised for individual transcript in each

sample, with GAPDH as the reference gene. The primer

sequences used for the quantitative PCR are listed in

online Supplemental Table S1.

Statistical analysis

The experimental data are expressed as mean�SD.

The difference between two groups was analysed by

a two-tailed Student’s t-test. P < 0.05 was consid-

ered significant.

Results

lncRNA sequencing results

To explore the global characteristics of the changes in

lncRNA in the ileal mucosa of piglets following chal-

lenge with LPS, we used the lncRNA sequencing in the

HiSeq platform (Illumina). A total of 259,220,396

� 2,590,095.8 raw reads were obtained from the ileal

mucosa of the piglets challenged with LPS, which were

aligned to the Sus scrofa genome compared to the con-

trol group of 259,816,902� 2,454,107.3 raw reads

(Table 1). In addition, 515,005,900 clean reads were

Table 1. Statistics of clean reads in the ileum mucosa in piglets.

Samples

Reads

num.

Q30 reads

(%)

Total clean

reads

Clean

reads (%)

Mapped

reads

Mapping

rate (%)

Uniquely

mapped

reads

Uniquely

mapped

reads (%)

S12 83,840,036 93.22 83,218,398 99.25 65,074,641 78.20 54,508,006 83.76

S13 87,453,416 92.81 86,747,160 99.19 68,084,409 78.49 57,018,574 83.75

S14 88,523,450 93.16 87,876,806 99.26 68,973,826 78.49 58,384,507 84.65

S22 83,952,602 93.26 83,352,740 99.28 65,141,394 78.15 54,258,618 83.29

S23 86,153,598 93.24 85,455,516 99.18 66,577,877 77.91 54,851,509 82.39

S25 89,114,196 92.58 88,355,280 99.14 68,008,307 76.97 56,626,375 83.26

The control group: S12, S13, S14; Ileal mucosa of piglets challenged by LPS: S22, S23, S25.
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acquired by quality control, with the clean reads rate

ranging from 99.14 to 99.28 (Table 1). Furthermore,

165,736,502� 1,232,067.5 and 169,911,087� 1,966,214

of uniquely mapped reads were gained from the LPS

challenge and control groups, respectively (Table 1).

The uniquely mapped reads were detected in the

range 82.39–84.65 (Table 1), which indicated that the

high-quality sequencing data could be serviced for

the next analysis.
Our results showed that 112 lncRNAs were significantly

differentially expressed in ileal mucosa of the piglets chal-

lenged with LPS. In addition, compared to the control

group, 58 lncRNAs were up-regulated and 54 down-

regulated following LPS challenge, with a fold change

> 2 (P < 0.05; Figure 1). Furthermore, the top 10 expres-

sion level at up- and down-regulation are showed in Table

2. The most significant differential lncRNAs, as well

as lncRNAs identified in the co-expression analysis, were

selected as the candidates for further quantitative RT-PCR

validation. Results showed that SIGLEC1, WWC3, SLA-

8, ITGA10, TMP-SLA3, TMP-SLA-5, MSTRG.533,

MSTRG.10517, MSTRG.28029, MSTRG.28586,

MSTRG.8144 and MSTRG.8674 were significantly up-

regulated in the LPS challenged ileal mucosa, while

PDGFRA and MSTRG.23436 were significantly down-

regulated (Figure 2).

lncRNA functional prediction in the ileal mucosa

of the piglets

To determine the important biological functions of the

lncRNA involved in the ileal mucosa of the piglets,

the candidate target genes of the lncRNA were
predicted by evaluating the cis functions. Cis function
prediction analysis showed that 1945 target genes were
screened for the lncRNAs (online Supplemental
Table S2). Hence, the target genes of the lncRNAs
were characterised by exploring the enrichment
analysis by utilising the GO classification and KEGG
pathway. GO enrichment analysis demonstrated
that the target genes were attributed to three types,
which were involved in biological process, molecular
function and cellular components (Figure 3a).
Further analysis indicated that DEAD/H-box RNA
helicase binding, MHC protein complex and Ag proc-
essing and presentation were the most abundant with
which the target genes of the lncRNAs were involved
(Figure 3a).

The target genes involved in the signalling pathways
were explored by KEGG pathway analysis. The data
demonstrated that the main signalling pathways were
cell adhesion molecules (CAMs), mTOR signalling
pathway, Ag processing and presentation, phagosomes,
JAK/STAT signalling pathway and other disease-
related pathways (Figure 3b).

Global gene changes of ileal mucosa in piglets
following LPS challenge

To explore the transcriptional regulation in inflamma-
tory immune responses induced by LPS further, gene
expression profiling was determined using RNA-Seq.
We identified 415 differentially expressed genes
(DEGs), of which 228 were up-regulated and 187
down-regulated (Figure 4).

GO classes associated with DEGs were chaperone
binding, MHC class I protein complex and protein
folding. GO analysis related to molecular function, cel-
lular component and biological process is shown in
Figure 5a. In KEGG analysis, the significant signalling
pathways in which DEGs were involved were protein
processing in the endoplasmic reticulum, Ag processing
and presentation, cytokine–cytokine receptor interac-
tion, chemokine signalling pathway, cell adhesion mol-
ecules and tight junctions, which may be related to
inflammatory immune responses (Figure 5b).

KEGG analysis of CAMs and mTOR
signalling pathway

The target genes of the DElncRNA identified were uti-
lised to explore the effects and network of the proteins
that the genes encoded using KEGG analysis.
The target genes that likely participated in the interest-
ing signalling pathway and might have been associated
with the inflammatory immune response or damage
were screened by KEGG pathway analysis.
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Figure 1. Volcano plots of the detected long non-coding RNAs
(lncRNAs) in the ileal mucosa of piglets challenged with LPS. The
control group (S1): S12, S13, S14; ileal mucosa of piglets chal-
lenged by LPS (S2): S22, S23, S25.
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The signalling pathway analysis demonstrated that
compared to the control group, four target genes
(MHC-I, MHC-II, PECAM1 and CD34) participated
in the CAM signalling pathway, which were all

up-regulated (Figure 6). In addition, another three
up-regulated target genes (TBC1D7, v-ATPase and
Frizzled) were involved in the mTOR signalling path-
way (Figure 7). Activation of these important

Table 2. Top 10 expression levels at up- and down-regulation of LncRNAs.

GeneID log2 fold change Up/down P-value

ENSSSCG00000030767 8.125782453 Up 0.023431105

MSTRG.533 5.532879028 Up 0.000000021

MSTRG.10517 5.364472577 Up 0.001519058

MSTRG.50977 5.152625922 Up 0.000000159

MSTRG.28029 4.657895757 Up 0.006710455

MSTRG.37166 4.532799202 Up 0.000707623

MSTRG.34715 4.116648791 Up 0.012862051

MSTRG.38432 3.440076305 Up 0.000500609

MSTRG.27410 3.438033247 Up 0.038478878

MSTRG.43434 3.325514473 Up 0.025942251

MSTRG.20741 –7.612131114 Down 0.000004622

MSTRG.23436 –6.797028078 Down 0.000216454

MSTRG.30184 –5.067784487 Down 0.003200392

MSTRG.8674 –4.37402212 Down 0.02892462

MSTRG.37395 –4.190284089 Down 0.010521

MSTRG.41908 –3.585430649 Down 0.030951158

MSTRG.28586 –3.561576869 Down 0.000001103

MSTRG.8144 –3.487897829 Down 0.002299782

MSTRG.50678 –3.30787314 Down 0.001018054

MSTRG.19976 –3.297246311 Down 0.038865818
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signalling pathways might be considered as key, result-

ing in an inflammatory immune reaction or damage

induced by LPS.

Co-expression analysis of interaction between

differentially expressed lncRNAs and target genes

in the ileal mucosa of the piglets challenged by LPS

To explore the function of the identified lncRNAs, co-

expression networks were constructed between differ-

entially expressed lncRNA and mRNAs using

CytoScape software. A total of 112 DElncRNAs and

415 DEGs were correlated to each other according to

their similar expression pattern, and only the strong

correlations (correlation > 0.9, P < 0.05) were utilised

to construct the co-expression network (Figure 8), in

which seven core lncRNAs (SLA-8, ITGA10, WWC3,

SIGLEC1, TMP-SLA-5, TMP-SLA-3 and PDGFRA)

and the corresponding targets were identified. This sug-

gests that these interactions may have important effects

on the process of inflammatory response in LPS chal-

lenge. Meanwhile, none of these core lncRNAs have

homologs in humans or mice after searching the

NONCODE database (http://www.noncode.org/

index.php). Furthermore, the qPCR result showed

that lncRNA SLA-8, ITGA10, WWC3, SIGLEC1,

TMP-SLA-3 and TMP-SLA-5 were up-regulated in

the LPS-challenged ileal mucosa, while PDGFRA

was down-regulated (Figure 2).

Discussion

We explored the expression profile of lncRNAs and
mRNAs through RNA-Seq in the ileal mucosa of pig-
lets challenged by LPS. A total of 112 novel lncRNAs
were identified to be differentially expressed between
the LPS challenge and control groups, of which 58
were up-regulated and 54 down-regulated. We also
analysed the mRNA changes, and we found that 228
DEGs were up-regulated and 187 were down-
regulated. The changes in lncRNAs and mRNAs
provided an important basis for understanding the
inflammatory immune responses in the ileal mucosa
challenged by LPS.

With the improvement of the sequencing technolo-
gy, mammalian genomes have been shown to have
many kinds of lncRNAs.21,22 lncRNAs have important
biological functions involved in the mucosal immune
responses.23 So far, many lncRNAs have been identi-
fied, but the interactions between lncRNAs and their
target genes have not been explored in detail.
Pathological damage of the ileal mucosa has been
seen when piglets are challenged by LPS.24 The ques-
tion is whether this damage is related to the effect of
lncRNAs. The relationship between the change in
lncRNA expression in the ileal mucosa resulting from
LPS stimulation and the pathological damage needs to
be further investigated.

In our study, a co-expression network composed
with seven core lncRNAs and their corresponding tar-
gets were identified in the LPS challenged ileal mucosa.
Quantitative RT-PCR showed that SLA-8, ITGA10,
WWC3, SIGLEC1, TMP-SLA-3 and TMP-SLA-5
were up-regulated and PDGFRA was down-
regulated. Among these targets, many genes participate
in the process of inflammation responses. IL-17RE reg-
ulates mucosal immunity to infection, with intestinal
pathogens as a receptor of IL-17C.25 CCL2 during
inflammation provides a mechanism to limit and
resolve acute inflammation.26 Overexpression of
CCL23 might contribute to the recruitment of inflam-
matory cells, including monocytes and macrophages,
and the amplification of local inflammation.27 Thus,
we infer that these core lncRNAs may participate in
the inflammatory immune responses by interacting
with their target genes.

CAMs are glycoproteins expressed on the cell sur-
face that play an important role in the inflammatory
immune response.28 It has been documented that
CAMs are involved in neuronal differentiation and
may serve as an important target to improve nerve
regeneration.29 Inflammatory cytokines could stimulate
CAM expression in neutrophils and macrophages and
recruit leukocytes, leading to the pathogenesis of vas-
cular inflammatory diseases.30 CAMs also participate
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Figure 4. Volcano plots of the mRNAs detected by RNA-
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Figure 7. mTOR signalling pathway identified by KEGG analysis of the target genes of the DElncRNA. TBC1D7, v-ATPase and Frizzled
were up-regulated and participated in the mTOR signalling pathway.

Figure 6. CAM signalling pathway identified by KEGG analysis of the target genes of the DElncRNA. MHC-I, MHC-II, PECAM1 and
CD34 were up-regulated and participated in the CAM signalling pathway.
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in the process of allergic inflammation.31 In this study,

the lncRNA target genes MHC-I, MHC-II, PECAM1

and CD34 were all significantly up-regulated in the ileal

mucosa induced by LPS, which participates in the

CAM signalling pathway. It has been shown that

CD34 is an important inflammatory biomarker in

peri-implant soft tissues.32 Therefore, CAMs might be

considered as a novel therapeutic target to control the

ileal mucosal inflammation.
We also found that three target genes (TBC1D7,

v-ATPase and Frizzled) were up-regulated after LPS

stimulation and involved in the mTOR signalling path-

way. Previous research has shown that autophagy and

inflammation are regulated by lncRNA-FA2H-2-mixed

lineage kinase domain-like protein (MLKL), which is

essential via mTOR-dependent signalling pathway in

atherosclerosis-related diseases.33 The regulation of

airway remodeling of asthma is adjusted by

miRNA-133a utilising the mTOR/PI3K/Akt signalling

pathway, which targets insulin-like growth factor-1

receptor.34 Neutrophil infiltration in rheumatoid

arthritis was attenuated by blocking of Yin Yang 1

(YY1) through the PI3K/Akt/mTOR signalling path-

way.35 Decrease of lncRNA for nuclear enriched abun-

dant transcript 1 (NEAT1) in a streptozotocin-induced

diabetes model inhibited proliferation and fibrosis in

diabetic nephropathy through activating the Akt/

mTOR signalling pathway.36 lncRNA JPX inhibits

cell proliferation, invasion and migration in human

ovarian cancer cell lines via activating the PI3K/Akt/

mTOR signalling pathway.37 We speculate that the

mTOR signalling pathway is a key pathway involved

in the inflammatory response of the ileal mucosa when

stimulated by LPS, which might provide a novel path-

ological mechanism for ileal mucosal inflammation.
This is believed to be the first report of lncRNA and

mRNA expression patterns in the ileal mucosa induced

by LPS. Our study may provide some novel candidate

units for exploration of lncRNAs and mRNAs related

to ileal mucosal inflammation, which suggests new
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therapeutic targets to reduce inflammatory responses in

the ileal mucosa.
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