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INTRODUCTION

Synthetic biology (Amos & Goni- Moreno,  2018; 
Ausländer et al., 2017; Meng & Ellis, 2020) engineers 
novel biological systems to fulfil predetermined func-
tions using rational design, which depends fundamen-
tally on mathematical models (Gerosa et al.,  2013; 
Goñi- Moreno et al.,  2017; Stoof et al.,  2019; Weiße 
et al., 2015) and abstraction of the underlying biolog-
ical processes. In particular, synthetic biology has 
developed sophisticated gene networks in bacteria 
(Brophy & Voigt,  2014) and other organisms (Chen 
et al., 2020; Zhu et al., 2021), which it has used for a 
variety of biotechnological applications from biore-
mediation (De Lorenzo et al.,  2018) to biodiagnosis 
(Slomovic et al.,  2015). The focus on genetic control 
is not accidental. Genetic networks regulate essen-
tial cellular process in bacteria, and the combination 
of experiments with synthetic genetic networks and 

mathematical modelling can yield critical insight into 
the biology of the cell (García- Betancur et al., 2017).

Synthetic gene networks are often designed to pro-
cess chemical inputs into chemical outputs according 
to some rules that implement a function of interest 
to the designer. We refer to this processing of inputs 
into outputs as a biocomputation (Goñi- Moreno & 
Nikel, 2019; Grozinger et al., 2019). Arriving at a net-
work design that performs the desired function well is 
typically a hard problem, motivating the use of math-
ematical models, numerical analysis and simulations 
(Appleton et al.,  2017) to predict the performance 
characteristics of a specific network before time and 
resources are spent building it (Calles et al.,  2019; 
Nielsen et al., 2016).

Synthetic biology has focused primarily on opti-
cal methods of measuring the output of biological 
networks, especially during the testing phases of the 
design process. Typically the synthetic gene network 

R E S E A R C H  A R T I C L E

An electrogenetic toggle switch model

Lewis Grozinger1,2  |   Elizabeth Heidrich3  |   Ángel Goñi- Moreno2

Received: 23 May 2022 | Accepted: 10 September 2022

DOI: 10.1111/1751-7915.14153  

This is an open access article under the terms of the Creative Commons Attribution- NonCommercial License, which permits use, distribution and reproduction 
in any medium, provided the original work is properly cited and is not used for commercial purposes.
© 2022 The Authors. Microbial Biotechnology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

1School of Computing, Newcastle 
University, Newcastle Upon Tyne, UK
2Centro de Biotecnología y Genómica 
de Plantas, Universidad Politécnica 
de Madrid (UPM)- Instituto Nacional de 
Investigación y Tecnología Agraria y 
Alimentaria (INIA/CSIC), Madrid, Spain
3School of Civil Engineering and 
Geosciences, Newcastle University, 
Newcastle Upon Tyne, UK

Correspondence
Ángel Goñi- Moreno, Centro de 
Biotecnología y Genómica de Plantas, 
Universidad Politécnica de Madrid 
(UPM)- Instituto Nacional de Investigación 
y Tecnología Agraria y Alimentaria (INIA/
CSIC), Pozuelo de Alarcón, Madrid, Spain.
Email: angel.goni@upm.es

Funding information
MCIN/AEI/10.13039/501100011033, Grant/
Award Number: CEX2020- 000999- S; 
Projects of the Comunidad de Madrid, 
Grant/Award Number: PID2020- 
117205GA- I00; UKRI EPSRC, Grant/
Award Number: 2127432

Abstract

Synthetic biology uses molecular biology to implement genetic circuits that 

perform computations. These circuits can process inputs and deliver outputs 

according to predefined rules that are encoded, often entirely, into genetic 

parts. However, the field has recently begun to focus on using mechanisms 

beyond the realm of genetic parts for engineering biological circuits. We 

analyse the use of electrogenic processes for circuit design and present 

a model for a merged genetic and electrogenetic toggle switch operating 
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measured and controlled both genetically and electronically.
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is designed to express a fluorescent reporter protein 
whose activity can be measurement using equipment 
such as flow cytometers (Goñi- Moreno et al., 2016). In 
addition, synthetic biological networks have been engi-
neered to utilize optical inputs, and the field of optoge-
netics takes advantage of light- sensitive characteristics 
of biological networks in order to regulate expression in 
synthetic gene networks (Melendez et al., 2014). Light 
is a signal that can be both emitted and sensed easily 
with electronics, and the combination of optical inputs 
and outputs has allowed the development of hybrid 
electronic and biological systems for the closed- loop 
control of synthetic biological networks based on opto-
genetics (Chait et al., 2017).

However, bacteria are capable of using many differ-
ent types of inputs and outputs in their natural biolog-
ical networks. For example, exoelectrogenic bacteria 
(Logan, 2009) are capable of sensing electronic inputs 
(Tschirhart et al., 2017) in the form of electrochemical 
potentials and of producing electronic outputs such as 
electrical current. These exoelectrogenic bacteria cou-
ple the oxidization of a substrate to the reduction of a 
solid extracellular acceptor and find application in vari-
ous bioelectrochemical systems, for example, in gener-
ating electrical power or for evolving hydrogen (Logan 
et al., 2019). When these bacteria use an electrode as 
the electron acceptor, the resultant movement of charge 
from substrate to electrode can be detected as an out-
put electrical current. The rate at which the bacteria 
metabolize substrate is therefore correlated with their 
current output. Synthetic gene networks have been en-
gineered to exploit this relationship in exoelectrogens 
such as Geobacter sulfurreducens (Ueki et al., 2016) 
and Shewanella oneidensis (Li et al.,  2020), by con-
trolling expression of enzymes involved in key metabolic 
pathways. These networks offer the synthetic biologist 
genetic control of the bacteria's electronic output.

Exoelectrogens respond to changes in electron 
acceptor potentials by using different metabolic and 
electron transfer pathways and by regulating genetic 
expression (Barchinger et al., 2016; Hirose et al., 2018; 
Levar et al., 2017). Controlling the electrical potential of 
an electrode can therefore provide exoelectrogens with 
an electrical input to which they can respond. For exam-
ple, by coupling the electrical potential of an electrode 
to the activity of the redox- sensitive transcription factor 
SoxR in Escherichia coli, it has been demonstrated that 
electronic control of synthetic genetic networks can be 
achieved using exogenous redox mediators (Tschirhart 
et al., 2017).

Since both genetic control of electronic output and 
electronic control of genetic input have been engi-
neered separately, a logical next step for scaling up 
the complexity of electrogenic devices would be a  
synthetic biological network combining both mech-
anisms –  this position underpins our current work. 
Such a network would take an electronic input and use 

synthetic genetic networks to process it into an elec-
tronic output. In this particular case, electronic input is 
provided by control of the electrical potential of the elec-
trode used by the bacteria as an electron acceptor. The 
electronic output is the measurement of the electrical 
current produced by the bacteria. However, synthetic bi-
ology has only relatively recently begun to consider how 
electrogenic processes might be used to build novel bio-
logical networks (Bird et al., 2021; Lawrence et al., 2022), 
and predictive computational models for the rational de-
sign of complex dynamical behaviours with electrogenic 
components are yet to be developed and tested.

Exoelectrogens such as Geobacter can colo-
nize electrodes to form electroactive biofilms (Bond 
et al., 2012). An electroactive biofilm is composed of the 
bacteria themselves and an extracellular matrix with the 
capability of transporting electrons over large distances 
from bacteria deep in the biofilm to the electrode- biofilm 
interface. As a result, exogenous redox mediators are 
not required in order to connect bacteria with the elec-
trode. Furthermore, biofilms can support larger popula-
tions of exoelectrogens by providing electrode access to 
bacteria without direct electrode contact. Nevertheless 
an electroactive biofilm has a finite capacity for charge 
(Schrott et al., 2011) and cannot transport charge to the 
electrode at an arbitrary rate. Therefore, it is possible 
that transport in the biofilm becomes the limiting step 
in current production and provides an upper bound on 
the potential depth of electroactive biofilms (Strycharz 
et al., 2011). Limiting transport in the biofilm also pres-
ents a design challenge for synthetic biologists, in that it 
leads to heterogeneity in the condition of different parts 
of the biofilm (Jo et al., 2022). For example, one region of 
the biofilm may be rich in electron donor substrate, while 
in another substrate is depleted entirely. This means the 
same synthetic biological network might be required to 
operate under different environmental conditions, add-
ing complexity which further motivates the rational de-
sign of such networks using mathematical models.

Here we model the biofilm- electrode dynamics of a 
bioelectrochemical system where exoelectrogens form 
a biofilm on an electrode and consume substrate to 
produce current. The purpose of the model is to inves-
tigate the different dynamic behaviours that could be 
implemented by engineering the exoelectrogenic bac-
teria with synthetic gene networks, while using electri-
cal signals as the input and output of the system. We 
will use bistability as a case study to demonstrate the 
usefulness of the model.

In a bistable system, there are two stable steady 
states and the system rests in one of these two states 
indefinitely until induced by some external force to 
switch to the other. Bistability is a fundamental type of 
dynamics in both natural and synthetic biology, and in 
fact some of the earliest work in synthetic biology was 
toward engineering a bistable synthetic gene network 
called the ‘genetic toggle switch’ (Gardner et al., 2000). 
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Emergence of bistability in the genetic toggle switch, 
and generally in dynamic systems, requires certain 
conditions on the components of the switch; relatively 
few of the possible realizations of the genetic toggle 
switch will produce bistability. A major contribution of 
the original genetic toggle switch work was the de-
velopment of a simple model, which could be used to 
identify the conditions under which a novel gene net-
work would exhibit bistability.

In the following, we model a biofilm- electrode sys-
tem that might be found in a bioelectrochemical system 
where exoelectrogens form a biofilm on an electrode 
and consume substrate from which they produce cur-
rent. The purpose of the model is to aid in the design 
of an electrogenetic toggle switch, a bistable hybrid 
electrogenic- genetic system that could be implemented 
by engineering exoelectrogenic bacteria with synthetic 
gene networks. The system should be able to switch 
between two different levels of steady- state electrical 
current output, using a transient change in electrode 
potential to induce switching. As in the study of the ge-
netic toggle switch, we aim to use the model to predict 
conditions under which the synthetic gene network will 
exhibit bistability by using a mathematical model and 
steady- state analysis.

EXPERIMENTAL PROCEDURES

Model formulation

The three- dimensional biofilm was reduced to a single 
dimension x and is of length L. At x = 0 is the electrode- 
biofilm interface and at x = L is the interface between 
the biofilm and the bulk solution. Between x = 0 and 
x = L, both electron transport and substrate diffusion 
can occur. It is assumed that the abundance of 
exoelectrogens and the rates of electron and substrate 
transport do not depend on x.

The diffusion coefficient matrix (D) from Equation 6 
is a diagonal matrix containing the apparent rates of 
diffusion for each reactant. Diffusion of ax is zero for all 
x, since a is assumed to be confined to the intracellular 
environment. Transport of charge and electron holes is 
balanced, since it is assumed that the concentration of 
electron holes and charge is conserved, so that for all 
x, dqx

dt
= −

d(Q−qx)
dt

 where Q is the constant charge 

 capacity of the biofilm.
The partial differential Equation  6 is discretized 

using the method of lines to produce a system of N or-
dinary differential equations for the numerical analysis. 
The homogeneous model is simply the case of N = 1, 
for which Equation 6 simplifies to:

Equations  7 and 10 include three functions of u. 
f(u) and g(u) are hill repression functions defined as 
follows:

 

and I(u) is the current density using the Butler– Volmer 
relation.

where j0, F, R, T and eta are the exchange current den-
sity, Faraday constant, molar gas constant, temperature 
and electrode overpotential, respectively.

R(u) models the coupling of substrate consumption 
and extracellular electron transport as a single step:

where Qox is a oxidized electron transfer protein in the 
biofilm and Qred is a reduced electron transfer protein  
(q is the concentration of Qred). This is a simplified de-
scription of a process that is in reality a result of com-
plex metabolic activity and electron transport machinery 
(Hirose et al., 2019).

The meanings of the parameters introduced in the 
above equations are summarized in Table 1.

Numerical simulation and code availability

For numerical simulation, Equation 6 was discretized 
using the method of lines to obtain a system of ordi-
nary differential equations. A second- order central 
difference scheme was used to discretize the spatial 
dimension x.

The model was defined using the ‘ModelingToolkit’ DSL 
Julia package (https://mtk.sciml.ai/stabl e/). All numeri-
cal simulations were performed using the Rosenbrock 
method ‘Rodas5’ in the ‘DifferentialEquations’ Julia pack-
age (https://diffeq.sciml.ai/stabl e/).

I– V response curves were calculated by finding 
steady states of the ordinary differential equations for 
different initial conditions. The steady states them-
selves were found using a dynamic steady- state 
method, again with the solver ‘Rodas5’.

The code used to generate the figures is made pub-
licly available at https://github.com/Bioco mputa tion- 
CBGP/An- elect rogen etic- toggl e- switc h- design, and 
can be run using Julia 1.7 or greater.

(1)
du0

dt
= R

(
u0

)
.

(2)f(u) =
�1a

2

a2 + K2
1

= Substrate conversion rate,

(3)g(u) =
�2q

2

q2 + K2
2

= Genetic expression rate,

(4)I(u) = j0

(
qexp

(
�F

2RT

)
− (Q − q)exp

(
− �F

2RT

))
,

(5)Substrate +Qox → Qred,

https://mtk.sciml.ai/stable/
https://diffeq.sciml.ai/stable/
https://github.com/Biocomputation-CBGP/An-electrogenetic-toggle-switch-design
https://github.com/Biocomputation-CBGP/An-electrogenetic-toggle-switch-design
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RESULTS

The diagram in Figure  1A shows the information flow 
throughout the electrogenetic toggle switch design. The 
inputs to the system are controlled by modifying the po-
tential of the electrode (V), and the output is measured 
as the current (I) generated by the biofilm. In our model, 
bistability was achieved in the relationship between 
these two values (I– V) –  in a similar way to bistability in 
the original genetic toggle switch (Gardner et al., 2000), 
which was characterized by the level of the output (a 
fluorescent protein) as related to the inputs (chemical 
inducers). Inputs are processed into outputs by the inter-
play between a synthetic gene network (a) and charge 
transport (q). Specifically, this interplay was designed to 
be a negative feedback loop (Figure 1B); in what follows 
we describe the conditions under which the dynamics of 
the feedback loop facilitates the emergence of bistability.

Monostable input– output dynamics

The current output (I) of an electroactive biofilm attached 
to an electrode depends on the potential of the elec-
trode (V). By simulating the steady- state current output 
at different potentials, an I– V response curve can be 

obtained like that shown in Figure 1C. This kind of re-
sponse is typical of an electroactive biofilm of Geobacter 
Sulfurreducens feeding on a single electron donor sub-
strate, where I tends to increase with V and asymptotically 
approaches a maximum current output (Kato, 2017). The 
I– V response in Figure  1C was obtained from numeri-
cal simulations of the model outlined in Figure 1B. The 
model includes three important steps in current produc-
tion. In step one, the electron donor substrate (s) diffuses 
through the biofilm and becomes available to the elec-
trogenic bacteria. Step two includes the oxidation of s by 
the bacterial metabolism, the transfer of an electron e− to 
the electron transport pathway, and the resultant export 
of charge (q) to the surrounding biofilm. In step three, q 
is transported through the biofilm to the electrode, where 
electrochemical reactions take place at a rate dependent 
on the electrode potential V to generate electrical current 
I. Modelling these three steps can predict the evolution 
of I over time given V and can be used to generate I– V 
response curves as in Figure 1C.

Bacteria as electro- genetic interfaces

In the model presented here, it is the activity of the 
bacteria that processes the electronic input V into the 

TA B L E  1  Parameters of the mathematical model and their default values

Parameter Unit Value Description

D m2mol−1 s−1 - Diffusion coefficient matrix

D1,1 m2mol−1 s−1 1 Diffusion coefficient for charge (Korth 
et al., 2015)

D2,2 m2mol−1 s−1 5.5

Δx2
Diffusion coefficient for substrate (Korth 

et al., 2015)

D3,3 m2mol−1 s−1 0 Diffusion coefficient for repressor

j0 mols−1 3 × 10−2 Heterogeneous electrochemical rate 
constant

F Cmol−1 96,485.3 Faraday number

R Jmol−1 K−1 8.314 Molar gas constant

T K 313 Temperature

Η V – Overpotential of electrode

Q mol m−3 10 Charge capacity of biofilm (Schrott 
et al., 2011)a

α1 mol m−3 s−1 – Maximal substrate conversion rate

α2 mol m−3 s−1 – Maximal genetic expression rate

d3 s−1 – Degradation/dilution rate of a

K1 mol m−3 – a concentration at half- maximal 
repression

K2 mol m−3 – q concentration at half- maximal 
repression

β1 – – Hill coefficient of repression substrate 
conversion

β2 – – Hill coefficient of repression of a

aSee Appendix S1 for details.
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electronic output I. Specifically, it is the rate of step two 
(Figure 1B) that ultimately determines I for a given V. We 
can therefore think of the I– V response as a biocom-
putation as shown in Figure 1A. Here electronic inputs 
and outputs V and I are transduced into the chemical 
signal q by the biofilm. q affects the rate of step two, the 
rate at which the bacteria produce q to process input 
into output. In the case of Figure 1C, the transformation 
of V into I is relatively simple. However, it is possible 
that more complicated dependencies of the rate of step 
two on q, based on synthetic biological networks, could 
produce a wide variety of different I– V responses and 
be used for more complex biocomputations.

Bistable input– output dynamics

The electrogenetic toggle switch allows current produc-
tion I of the electroactive biofilm to be switched between 
high and low states by induction using electrode poten-
tial V. This switching behaviour is a fundamental step 
toward more complex computations. To implement the 

switch, the I– V response function shown in Figure 1C 
must be engineered to be bistable as in Figure 1D. In 
this bistable system, there is a range of V for which two 
possible stable steady states of I are possible. For ex-
ample, in Figure 1D, at V = 0.3, I may be either ‘high’ at 
around 0.65 or ‘low’ at around 0.05. In order to obtain 
this bistability, we introduced into the model the regula-
tory dynamics of a gene a, whose expression inhibits 
the rate of step two (i.e., the conversion of substrates 
to charge q). If the rate of step two is higher than the 
rate of charge transfer in the biofilm, q will accumulate 
higher concentrations and inhibit the expression of a. 
This mutual inhibition produces a negative feedback 
loop that admits the emergence of bistability, but not for 
all values of parameters for the genetic network. That 
is, not all genetic parts would be suitable for achieving 
bistability. The range of values of V for which two stable 
steady states exist is the bistable region of the system, 
and it will be important to determine the existence, size 
and position of the bistable region for different param-
eters of the genetic networks in order to engineer a ro-
bust switch.

F I G U R E  1  An overview of the electrogenetic toggle switch design. (A) Diagram showing the key components of the system and 
information flow at a high level. Inputs to the system are provided by an electronic device controlling the potential (V) of an electrode which 
is transmitted by the biofilm to a gene network. The gene network processes the input to produce output as a variable level of charge 
by converting substrate s to charge q at a rate inhibited by a gene a. The output is the electronic current (I) generated by the biofilm. (B) 
Detailed model of the negative feedback loop responsible for the emergence of bistability: The product of gene a inhibits the rate at which 
s is converted into q, and its own concentration is itself inhibited by charge q. Charge is transmitted back to the electronic device by the 
biofilm for measurement as electronic current I. The process was divided into three main steps: (1) s diffuses through biofilm, (2) s is 
consumed and q generated by cells, and (3) q reaches the electrode to generate I. (C) Without the feedback loop (i.e. wild- type cells),  
the response of I to V is that of a monostable curve, which increases and asymptotically approaches a maximum current output. (D) With 
the addition of the mutually inhibitory synthetic network shown in (B) a bistable response of I to V emerges: There is a range of V (0.3 in the 
graph) for which two possible stable steady states of I (high and low) are possible.
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Mathematical model description

In order to identify parameter sets suitable for the 
emergence of bistability, a mathematical model of the 
electrogenetic toggle switch was developed.

The electroactive biofilm is modelled in a single 
spatial dimension x, with the interface between elec-
trode and biofilm at x = 0 and the interface between 
the biofilm and the bulk at x = L. The concentrations 
of charge q, substrate s and repressor a are modelled 
at each position x in the biofilm by reaction– diffusion 
equations (Equation 6) describing their evolution over 
time.

where ux is a state vector tracking the q, s and a concen-
trations at position x in the biofilm at a given time. We also 
use the shorthand notation qx, sx and ax to refer to the 
concentrations of q, s and a at position x.

The first term of the right hand side of Equation 6 ac-
counts for transport of the reactants through the biofilm 
driven by concentration gradients, where D is a diag-
onal matrix of apparent diffusion coefficients for each 
of the reactants transport, and reactants tend to move 
from positions with high concentrations to positions 
with low concentrations.

The second term R
(
ux

)
 describes how concentra-

tions change due to reactions at each position in the 
biofilm. In the interior of the biofilm, that is, for 0 < x < L, 
those are the intracellular reactions related to step two 
and the genetic network which expresses a.

Step two is modelled as occurring in a single step:

as is the expression and degradation of a:

These reactions are described mathematically using 
the assumption of mass action kinetics (Gesztelyi 
et al., 2012) in Equation 7.

where the parameter d3 is the dilution/degradation rate 
of a that balances its expression rate. f(u) is a hill func-
tion describing how the rate of step two changes with the 
concentration of a.

where Q is the maximum capacity of the biofilm for hold-
ing charge q, α1 is the maximum substrate consumption 
rate, K1 is the concentration of a for which step two is 
half- maximally inhibited, and β1 is the hill coefficient of 
the inhibition. f(u) tends to be zero with higher concen-
trations of a.

g(u) is another hill function describing how the ex-
pression rate of a changes with charge concentration 
q. Again, g(u) tends to be zero with higher concentra-
tions of q.

where α2 is the maximum expression rate of a, K2 is 
the concentration of q at which expression of a is half- 
maximally inhibited, and β2 is the hill coefficient of the 
inhibition.

At x = 0, electrochemical reactions at the electrode– 
biofilm interface affect the charge concentration, where 
electrons are exchanged between the biofilm and elec-
trode in both directions at a rate that is proportional 
to the electrical current at the electrode. This adds an 
extra term in the expression for the rate of change of q 
in Equation 7.

where I(u) is the electrical current at the electrode and F 
is the Faraday constant. I(u) is modelled using the Butler– 
Volmer relation as outlined in Methods and depends both 
on the concentration of charge in the biofilm and potential 
of the electrode.

The mathematical description is completed with 
boundary conditions which specify the solution of 
Equation  6 at the edges of the biofilm at x  =  0 and 
x = L. There is no movement of reactants across the 
electrode interface:

At the interface between the biofilm and the bulk 
substrate, we set sL to be equal to the concentration of 
the substrate in bulk at all times. Other reactants do not 

(6)�ux

� t
= D

�2ux

�x2
+R

(
ux

)
,

ux =

⎛
⎜⎜⎜⎝

Charge concentration at x

Substrate concentration at x

Repressor concentration at x

⎞
⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎝

qx
sx
ax

⎞
⎟⎟⎟⎠
.

sx
f(u)
→ qx ,

�
g(u)
→ ax ,

ax
d3
→ ∅ .

(7)R(u) =

⎛
⎜⎜⎜⎝

Rate of change in q

Rate of change in s

Rate of change in a

⎞
⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎝

sf(u)

−sf(u)

g(u)−d3a

⎞
⎟⎟⎟⎠
,

(8)f(u) =

(
Q − u1

)
�1K

�1
1

K
�1
1

+ u
�1
3

,

(9)g(u) =
�2K

�2
2

K
�2
2

+ u
�2
1

,

(10)R(u) =

⎛
⎜⎜⎜⎝

sf(u)−
I(u)

F
−sf(u)

g(u)−d3a

⎞
⎟⎟⎟⎠
,

(11)
�u0

�x
= 0.
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cross this interface and are not affected by their bulk 
concentrations:

 

 

where S is the concentration of substrate in the bulk 
solution.

Obtaining bistability in a spatially 
homogeneous model

Reduction to a spatially homogeneous model reduces 
dimensionality and makes identification of suitable 
parameters easier. Spatial homogeneity means that 
we assume that the state vector ux is identical for all 
values of x. That is, depth in the biofilm does not in-
fluence the concentrations of q, s or a. If we further 
assume the concentration of s is not limiting and that 
I is linear in the concentration of q, then simplification 
and non- dimensionalization of Equation  6 (derivation 

in Supplementary Information) yield a pair of coupled 
ordinary differential equations (ODEs) in two variables.

 

where the dimensionless variable A is a scaled level of 
expression of a and the dimensionless variable B is a 
scaled concentration of charge q. τ is dimensionless 
time, and P1, P2, P3 and P4 are a new set of dimension-
less parameters whose values must be selected so as to 
produce bistability. In this reduced model, desirable pa-
rameter values can now more easily be found by inspec-
tion of the geometry of the curves shown in Figure 2A. 
These curves are the nullclines of Equations 15 and 16, 
which are the points at which the rates of change of A 
and B are zero. The intersections of these curves are 
fixed points of the entire system, and three intersections 
are required for bistability.

Fixing the values of the dimensionless parameters 
such that there are three intersections, as in Figure 2A, 
produces a bistable response in B as parameter P4 
is varied (Figure  2B). It also fixes the relationships 
between the dimensionless parameters that encode 

(12)
�qL
�x

= 0,

(13)
�aL
�x

= 0,

(14)sL = S,

(15)dA

d�
=

P1

1 +B2
− P2A,

(16)
dB

d�
=
P3 −B

1 + A2
− P4B,

F I G U R E  2  System performance assuming spatial homogeneity. (A) The nullclines of the dimensionless model of Equations 15 and 16  
where the derivatives with respect to each variable are zero. At the intersections of the nullclines are the fixed points (steady states) of 
the dimensionless model. Bistability requires three intersections, and this can be achieved by inspecting the curves and adjusting the 
dimensionless parameters. (B) Bifurcation analysis after parameter adjustment with a bistable region marked in grey. Bistability is shown 
as the performance of B when parameter P4 changes. (C) Bistable region in the I– V response when these dimensionless parameters 
were mapped back to the original model parameters. As shown, bistability preserved. (D) Time- course simulation of the model where the 
electrode potential V is used to switch between On/High and Off/Low current states of the switch successfully for this set of parameters.
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design principles, which can be followed to obtain 
bistability in the model with the original parameter set. 
In particular, in the bistable example from Figure 2A, 
two relationships hold that are related to parameters of 
the synthetic gene network.

 

Equation 17 says that K1, the concentration of a that 
half- maximally inhibits step 2, is 10 times less than 
the maximum steady state of a. Equation 18 says that 
K2, the concentration of q that half- maximally inhibits 
the expression of a, is five times less than the max-
imum capacity of the biofilm for q. Using these pa-
rameter relationships in the spatially homogeneous 
model produces a bistability in the I– V response curve 
shown in Figure 2C, whose bistable region starts at 
around 0.3  V and ends at around 0.33 V. There is 
freedom in the values of the individual parameters as 
long as their relative values satisfy the relationships 
of Equations 17 and 18, in which case the switch op-
erates as in the time- course simulation in Figure 2D. 
The switch is initially in the ‘On’ state and produces 
around 0.8I at an V of 0.3, which is within the bistable 

region. In order to flip the switch to the ‘Off’ state, V is 
increased to 0.4 for a short time, inducing the system 
to move into a region of monostability in Figure 2C. 
After V is returned to the bistable region at 0.3, I re-
mains low, and the system produces around 0I at 
0.3  V. The system will remain in this ‘Off’ state in-
definitely, but can be switched back to ‘On’ by induc-
tion with a temporary step change in V, as is seen at 
around 40 hours in Figure 2D.

Challenges due to spatial heterogeneity

Gradients of charge and substrate in the biofilm must 
be taken into account when engineering the electro-
genetic toggle switch (Figure  3). The previous model 
assumed that the biofilm is a spatially homogeneous 
environment where gradients of q and s do not exist. 
However, previous studies suggest that this assump-
tion is not appropriate (Bonanni et al.,  2013; Snider 
et al., 2012), especially for thicker biofilms of more than 
around 10 μm depth. For thicker biofilms, charge trans-
port, substrate diffusion, or both may be limiting the 
limiting factors for current production I. Therefore, in 
practice we can reasonably expect gradients of charge 
and substrate concentration in the biofilm. We choose 
a spatial model with a single dimension x in which to 

(17)
�2

d3
= 10K1,

(18)Q = 5K2.

F I G U R E  3  Impact of spatial heterogeneity on switch performance. (A) Spatial model, where the biofilm was discretized for numerical 
simulation. Adding a spatial dimension to the homogeneous model incorporates charge (q) transport and substrate (s) diffusion processes 
and allows for the possibility for gradients of charge and substrate to form. (B) Result of numerical steady- state analysis of such a model, 
showing that the bistability present in the homogeneous case can collapse into monostability when spatial gradients are considered.  
(C) Dynamics of substrate (s) gradients. The blue line plots the gradient obtained in a simulation with low activity of the bacteria  
(�1 = 10

−7) and the orange line plots the gradient with high activity of the bacteria (�1 = 10
−5). (D) Dynamics of charge (q) gradients for the 

same simulations as (C).
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model these gradients, and make the assumption that 
gradients in other dimensions can be neglected.

It is not immediately obvious how this will affect 
the performance of the switch or whether bistabil-
ity can emerge in the presence of these gradients. 
Consideration of biofilm gradients in the electrogenetic 
toggle switch is complicated by the fact that the magni-
tude of the gradients are dependent on the parameters 
of the system. For example, Figure 3C,D shows how 
the magnitude of the gradient of q and s gradient differ 
depending on the activity of the bacteria (in this case, 
the parameter α1). When this activity is low, there exists 
almost no gradient of q or s (blue lines). However, in 
the case where activity is high, s tends to be higher 
and deeper in the biofilm, away from the electrode. The 
same is true for the gradient of q, although the shape of 
the gradient differs. Since we expect the electrogenetic 
toggle switch to have ‘High’ and ‘Low’ activity states, 
the dependence of the gradient on the activity means 
that gradients in the toggle switch will be dynamic. 
That is, gradients will change during the operation of 
the switch depending on the switch's state. This added 
complexity motivates further the development of math-
ematical models and the numerical analysis of the sys-
tem as a whole.

In order to identify the impact of biofilm gradients, we 
performed numerical simulations of Equation 6 with the 
same parameters that produced the bistable dynamics 

in Figure 2. The result is the monostable I– V response 
shown in Figure 3B and a system which does not oper-
ate as a switch. In order to recover bistable dynamics, 
it is necessary to adjust the parameters of the synthetic 
gene network.

Obtaining bistability in a spatially 
heterogeneous model

By adjusting the parameters of the synthetic biological 
network in the electrogenetic toggle switch, bistable dy-
namics can be recovered even if gradients exist in the 
biofilm. We first considered how to adjust parameters for 
the case of limiting charge transport only. That is, gradi-
ents in q are possible, but s is assumed homogeneous 
and constant throughout the biofilm. Using the same pa-
rameters identified for the homogeneous model, the I– V 
response in the presence of charge gradients is mon-
ostable as shown in Figure 4A. We investigated how the 
parameters of the inhibition of a by q described by 
Equation 9 might be changed to recover bistability in this 
case. Equation 9 has two parameters, the hill- coefficient 
β2 and the half- maximal inhibition constant K2, and is 
plotted for β2 = 2 and K2 =

Q

20
 in Figure 4D. With β2 = 2, 

we varied K2 and plotted the impact on both the shape of 
Equation  9 and the I– V response of the switch. In 

F I G U R E 4  Numerical analysis of the model under limiting charge transport at different values of K2. The bifurcation diagrams of (A– C) 
match their corresponding hill- repression transfer functions of plots (D– F). (A, D). The bifurcation diagram shows the monostable response 
obtained when the hill- repression transfer function from q to a is generated with K2 =

Q

20
. (B, E) The bifurcation analysis shows how bistability 

can be recovered by engineering of the genetic circuit such that K2 =
3Q

20
, which modifies the transfer function as indicated by the black arrow. 

(C, F) The bifurcation diagram shows that the emergence of bistability is sensitive to higher values of the parameter K2 and the size of the 
bistable region decreases as the transfer function becomes more linear.
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Figure  4B,E, K2 is increased to flatten the inhibition 
curve in Figure 4E and obtain a bistable region around 
0.3 V –  recovering the function of the switch. A further 
increase in K2 flattens the inhibition curve further 
(Figure 4F) and shifts the bistable region to around 0.2 V 
but also significantly decreases the size of the bistable 
region and the robustness of the switch. In these analy-
ses, the bistable region was sensitive to changes in na-
ture of the inhibition between q and a. The curves in 
Figures 4D– F describe how the expression of a is inhib-
ited as a function of charge q. The model predicts that 
even small changes in these curves, for example, be-
tween Figure 4D,E, make the difference between a func-
tional and non- functional electrogenetic toggle switch.

Figure 5 presents a similar numerical analysis for the 
switch in the case where gradients of both charge q and 
substrate s can exist. Figure 5A shows the monostable 

I– V response that is obtained using the parameters 
from the homogeneous model. As in Figure  4, vary-
ing the parameter K2 can recover bistable dynamics. 
In Figure  5B, there is a qualitatively new kind of be-
haviour, in that the bistable region extends past reason-
able values of V. For these parameters, the monostable 
region that is present at high V in Figure 2C disappears. 
Further increase of K2 yields bistability with the high 
V monostable region intact, but with a relatively small 
bistable region.

K2 is not the only parameter of the synthetic biologi-
cal network that might be engineered. In Figure 5D– F, 
analyses with different values of β1 and β2 are shown. 
These parameters are the hill coefficients of the inhibi-
tion interactions between q and a and between a and 
the rate of step two. Starting with β1,2  =  2 and fixing 
K2 =

Q

5
 as in Figure 5C, the bistable region grows as 

F I G U R E  5  Numerical analysis of the model under both limiting charge and substrate transport in the biofilm. (A– C) The same analysis 
of K2 as in Figure 4 but with the addition of limiting substrate diffusion. The result in (B) shows a qualitative change in behaviour, in that 
for values of V over around 0.35, there exists a bistable region that extends to more positive potentials and does not seem to return to 
monostability for any reasonable value of V. (D– F) Analysis of the effect of the parameters β1 and β2 (the cooperativity of the promoters in 
the genetic circuit) on the size of the bistable region. Simulations were performed taking the response curve from (C) The corresponding 
transfer functions from q to a are shown in (G– I) respectively.
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β1,2 is increased in Figures 5E,F. Figure 5E represents 
the most robust switch found in this analysis, with a 
large bistable region spanning from around 0.1  V to 
0.35 V. This is despite the relatively subtle effect of the 
parameters β1,2 on the inhibition interactions, shown in 
Figure 5G– I.

Our analysis predicts that all parameters of the in-
hibition interactions in the model can be used to tune 
the performance of the electrogenetic toggle switch. 
Our initial exploration of this parameter space has pre-
dicted that the largest bistable region, which shown in 
Figure 5F, would be achieved by engineering the inhi-
bition interaction between q and a to resemble the hill 
equation plotted in Figure 5I. The higher hill coefficient 
in this hill equation signifies a highly non- linear inhibi-
tion interaction. Non- linearity was also an important as-
pect in the analysis of the original genetic toggle switch, 
in which the hill coefficient was also an important pa-
rameter for increasing the size of the bistable region. 
Although we found that parameters that admit bista-
bility in a spatially homogeneous model do not neces-
sarily produce bistability in a spatially heterogeneous 
model, the parameters of the synthetic gene network 
can be adjusted to recover function.

DISCUSSION

The model and analyses presented here predict that 
an electrogenetic toggle switch could be engineered 
in an electroactive biofilm using a synthetic biological 
network. The switch produces different steady- state 
current in the ‘High’ and ‘Low’ (or ‘On’ and ‘Off’) states 
and can be switched between states using transient 
changes in electrode potential to which the biofilm is at-
tached. Of fundamental importance to this switch is the 
feedback loop implemented by the inhibition of gene 
a by charge q and the inhibition of electrogenic activ-
ity by the gene's expression product (Figure 1B) –  the 
model represents these inhibitions as hill equations. 
In this case, the electrogenetic toggle switch could be 
built by designing synthetic gene networks for exoelec-
trogenic bacteria (Ueki et al., 2016) that modify their I– V 
response to be bistable (Figure 1D).

We found it is important to model the impact of 
spatial heterogeneity that may arise in the biofilm on 
the performance of the electrogenetic toggle switch. 
Although heterogeneous conditions are key to the nor-
mal function of both single cells (Stoof et al., 2019) and 
biofilms (Charlton et al.,  2019), spatial homogeneity 
is an assumption that reduces model complexity and 
often works well in mathematical models of synthetic 
biological systems (Stoof & Goñi- Moreno, 2020). The 
electrogenetic toggle switch interacts with the biofilm, 
and there is good evidence that gradients of charge 
concentration can exist in electroactive biofilms as a 

result of charge transport becoming a limiting step in 
the production of current (Snider et al., 2012). For this 
reason, we chose to include biofilm transport of sub-
strate and charge in the model and perform simulations 
to predict the switch's performance under conditions 
where transport is a limiting step. The results presented 
in Figure 3 show that the same synthetic gene network 
that produced bistability in the spatially homogeneous 
biofilm failed to do so in this new context. In the case of 
limiting charge transport only, and homogeneous distri-
bution of substrate in the biofilm, Figure 4 shows how 
function can be recovered by adjusting the value of a 
single parameter in Equation 9. This adjustment rep-
resents changes to the genetic components that imple-
ment the inhibition of a by q, using synthetic biological 
design tools and techniques, which could be guided by 
the model presented here.

Implementations of the electrogenetic toggle switch 
rely on the simultaneous genetic control of current out-
put and the control of gene expression in response to 
the redox state of the biofilm (concentration of q). It has 
already been demonstrated in Geobacter that a syn-
thetic biological gene network controlling expression 
of a single gene (gltA) can be used to modulate their 
current output (Ueki et al., 2016). This gene effects the 
activity of the TCA- cycle and acetate metabolism, mak-
ing acetate a good candidate for s.

However, it is more difficult to propose a particular 
system for sensing and responding to the redox state of 
the biofilm in Geobacter. Systems such as the SoxRS 
regulon have been used in E. coli and might also func-
tion in Geobacter, but also rely on exogenous media-
tors to take the role of q and diffuse through the biofilm 
(Tschirhart et al., 2017). Another option is to engineer 
a two- component system such as Arc into Geobacter, 
which is a system which has been shown to link redox 
state of the quinone pool to gene expression in E. coli 
(Georgellis et al., 2001). It might be necessary to show 
that the redox states of biofilm- bound electron transfer 
proteins such as OmcB and OmcZ are linked to the 
redox state in the quinone pool in order for this ap-
proach to work, in which case the concentrations of the 
reduced forms of these proteins can be good candi-
dates for q.

Fortunately, there is evidence that Geobacter nat-
urally sense and respond to redox potentials (Levar 
et al., 2017). If the sensing mechanism can be identified 
and co- opted in a synthetic gene network, it may be 
a good candidate for implementation of the electroge-
netic toggle switch. In any case, the genetic regulatory 
components of the chosen systems should be engi-
neered and connected together to provide the mutually 
inhibitory interactions that the model predicts will yield 
bistability.

The predictions of the model presented here suggest 
that it will be important to consider biofilm gradients in 



   | 557
bs_bs_banner

AN ELECTROGENETIC TOGGLE SWITCH MODEL

the design of the electrogenetic toggle switch. The state 
of the biofilm in the presence of gradients is dependent 
on the depth in the biofilm, yet the toggle switch design 
hosted by the exoelectrogens is identical at any depth. 
As a result the system- level state of electrogenetic tog-
gle switch is made up of the states of many switches, 
which is operating under different conditions, as this 
impacts the emergence of bistability for the overall sys-
tem. Moreover, since we expect the switch to function 
correctly in both the ‘On’ and ‘Off’ states with high and 
low electrogenic activity, respectively, we require the 
switch to operate both in the presence and absence of 
biofilm gradients.

The model also predicts that multiple gradients in 
the biofilm can impact the performance of the elec-
trogenetic toggle switch further. This is especially im-
portant since a gradient of one substance in the biofilm 
can induce a gradient in another. If substrate diffusion 
through the biofilm is modelled alongside charge trans-
port, we found that performance differs qualitatively 
(Figures 4B and 5B), despite the same synthetic gene 
network operating in both contexts. Changes to this 
network (Figure 5) recover function and eventually pro-
duce a more robust bistable response (Figure 5F). It is 
also possible that the qualitative behaviour of the switch 
can change in the presence of multiple gradients in the 
biofilm. This may cause unwanted behaviours, as in 
Figure 5B where the I– V response is bistable, but only 
one monostable region exists at electrode potentials 
below that of the bistable region.

The magnitude of the gradients in the biofilm de-
pend on the activity of the electrogenic bacteria, which 
changes during the operation of the switch. Also, the 
formation of gradients depends on transport in the 
biofilm being a rate- limiting step in current production. 
However, the magnitude of gradients appear to de-
crease with the metabolic rate of the electrogens as 

shown in Figure 3C,D, where simulations with high ac-
tivity of the bacteria produced large biofilm gradients 
and simulations with low activity did not exhibit gradi-
ents. This coupling of the biofilm gradient to current 
output has also been observed experimentally (Snider 
et al., 2012).

The interplay between heterogeneity, exoelectro-
genic activity and electrode potential builds a very 
dynamic system. The network topology of the electro-
genetic toggle switch, which is based on the genetic 
toggle switch, was not designed with heterogeneity in 
mind. We found that in general, the bistability electro-
genetic toggle switch in a homogeneous setting is not 
indicative of the presence of bistability in a heteroge-
neous setting such as an electroactive biofilm. This 
complexity further motivates the use of modelling and 
numerical simulation to inform the design of the elec-
trogenetic toggle switch.

Although biofilm depth was a fixed parameter in our 
model, we carried out the initial analysis on the impact 
of biofilm growth in the performance of the electroge-
netic toggle switch (Figure 6). In thicker biofilms, we not 
only expect higher overall levels of electrogenic activity, 
but also that the charge produced in the deeper parts of 
the biofilm will take longer to be transported to the elec-
trode. This promotes gradient formation in the biofilm 
and impacts the performance of the switch as shown 
in Figure 6, where the size and position of the bistable 
region changes as the biofilm increases in depth from 
10 to 40 μm. The fundamental challenge here is that the 
biofilm will naturally grow and shrink during operation of 
the switch, meaning the performance of the switch will 
change over time. To overcome this, methods of con-
trolling biofilm depth could be explored, for example, 
by controlling biofilm formation and dispersion (Hong 
et al.,  2012) using synthetic biological approaches. 
An alternative is to engineer the bioelectrochemical 

F I G U R E  6  Numerical analysis for the model at various biofilm depths. The simulation of a model of the same genetic circuit and with 
identical parameters predicts different behaviours depending on the depth of the biofilm. In this example, if the biofilm grow to double 
in depth from 10 to 20 μm, the size of the bistable region increases. However, doubling again to 40 μm produces a qualitative change in 
behaviour, where the system is bistable beyond a certain V, but does not return to monostability as for the other biofilm depths. This new 
behaviour is similar to that shown in Figure 5B.
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systems themselves, for example, by using rotating 
electrodes of flow cells, to control mass transfer rates 
in the biofilm (Babuta & Beyenal,  2014). Future work 
might also consider adding biofilm growth to the model 
in order to predict which designs are the most robust to 
changes in the depth of the biofilm.

The model presented here aims to identify general 
guidelines for engineering an electrogenetic toggle 
switch. In particular, the focus is on the characteristics 
of the inhibitions represented in Equations  8 and 9.  
Previous efforts in building synthetic biological net-
works to control gene expression with electronic sig-
nals (Tschirhart et al.,  2017), and vice- versa (Ueki 
et al.,  2016), offer a great toolkit for the future imple-
mentation of the system. The analysis presented here 
is a first step toward the rational engineering of a syn-
thetic biological electrogenetic toggle switch.
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