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Circulating tumor cells (CTCs), which are now defined as the “break away” cancer cells

that derive from primary- or metastatic-tumor sites and present in the bloodstream,

are considered to be the precursors of metastases. Considering the key role of

CTCs in cancer progression, researchers are committed to analyze them in the past

decades and many technologies have been proposed for achieving CTCs isolation and

characterization with highly sensitivity and specificity until now. On this basis, clinicians

gradually realize the clinical values of CTCs’ detection through various clinical studies. As

a “liquid biopsy,” CTCs’ detection andmeasurement can supply important information for

predicting patient’s survival, monitoring of response/resistance, assessment of minimal

residual disease, evaluating distant metastasis, and sometimes, customizing therapy

choices. Nowadays, eliminating CTCs of the blood circulation has been regarded as

a promising method to prevent tumor metastasis. However, research on CTCs still faces

many challenges. Herein, we present an overview to discuss the current concept of

CTCs, summarize the available techniques for CTCs detection, and provide an update

on the clinical significance of CTCs in gastrointestinal malignancies, especially focus on

gastric and colorectal cancer.

Keywords: circulating tumor cells, gastric cancer, colorectal cancer, detection, identification, clinical application

INTRODUCTION

According to the GLOBOCAN 2018 reports, cancer is estimated to rank as the leading cause of
death worldwide (1). Gastrointestinal (GI) malignancies, an important component of solid tumors,
bear a heavier cancer-associated burden (2). At present, metastasis remains the main cause for GI
malignancy-related deaths (3). Even for the early-stage patients who underwent curative resection,
a considerable portion suffer metastatic disease within 5 years of surgery (4). This evidence implies
that an occult metastatic process is parallel with primary tumor development (5) or that tumor
cells with metastatic potential have entered the bloodstream from the primary tumor site during
surgery and cause subsequent distant metastasis in the aforementioned patients (6). These cells are
termed circulating tumor cells (CTCs), which have been proposed to be the important mediators
of hematogenous metastasis of solid malignant tumors (6, 7).

CTCs, first reported by Ashworth in 1869 and further demonstrated by Engell in 1955, are now
defined as the “break away” cancer cells that derive from primary or metastatic tumor sites and
present in the blood circulation (8). These cells shed intermittently from the tumor site, circulate
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within the bloodstream, potentially seed into distant organs
and finally form vital metastases (8). Therefore, research on
CTCs can provide more insights into metastasis-associated
progression. However, the extremely low concentration in
the peripheral blood (one CTC in millions of blood cells)
makes CTCs detection a technical challenge (9), which in
turn greatly limits in-depth studies on the biological properties
of CTCs (10). Nevertheless, given the critical role of CTCs
in tumor progression, many researchers have expended much
effort to explore efficiently capture CTCs (9). Consequently, a
considerable amount of scientific literature has published over
the past decade, occurring in parallel with technical progress
that has propelled this field forward. To date, a number of
technologies based on the biological or physical properties of
CTCs have been developed for achieving CTCs isolation and
identification (9, 11–13), which lay the technical foundation for
conducting more clinical research to explore the clinical value
of CTCs detection in predicting patient survival, customizing
therapy choices, monitoring response/resistance, and evaluating
distant metastasis in numerous types of cancer (14). Over the
past few years, our group has been working on CTCs detection
methods and has developed a variety of methods based on
the different biophysical characteristics of CTCs (15–24); these
studies have enabled us to efficiently capture CTCs in the
peripheral blood and to further analyze the prognostic value
of quantitative and qualitative CTCs analysis in gastrointestinal
(GI) malignancies (25–27).

In this review, we aim to outline the current status of
CTCs detection techniques, the clinical implications, and the
limitations and opportunities in GI cancers, including gastric
cancer (GC) and colorectal cancer (CRC); we then provide
new insights into the applications of CTCs detection to guide
clinical practice.

ISOLATION AND ENRICHMENT
TECHNOLOGIES OF CTCS

Although the primary tumor or metastasis site releases tumor
cells into the blood at all times, most of them are eliminated
by the body’s immune system, and only a few CTCs survives in
the blood circulation. Therefore, the number of CTCs is sparse
(∼1 CTC per ml of blood) compared to the number of other
cellular components in the peripheral blood (5). This situation
poses a high technical challenge for us to accurately isolate CTCs
from millions of blood cells, indicating that an ideal technology
for CTCs separation needs to have the following characteristics:
(1) the ability to isolate all heterogeneous CTCs; (2) the ability
to exclude the background interference caused by normal blood
cells; and (3) the ability to accurately identify all candidate CTCs.
At present, it has been well-recognized that the biological and
physical characteristics of CTCs are obviously different from
those of other cells in the blood (8). Consequently, many capture
and identification technologies based on different CTCs features
are gradually being developed to pursue the ultimate goal of
achieving CTCs enrichment with high specificity and sensitivity
(9, 11–13). For CTC enrichment, the isolation of CTCs is usually

the first step, and the characterization of CTCs (the second step)
further distinguishes the CTCs from the remaining normal blood
cells. As shown in Figure 1, we presented an overview of the
technologies utilized for CTCs isolation and characterization,
and these technologies are commonly used in GC and CRC.

Immunoaffinity-Based Technologies of
CTCs
Immunoaffinity-based technologies, including positive or
negative selection assays, achieve CTCs isolation with an
antibody-immobilized inert surface combined with magnetic
beads (28). Among these assays, positive selection assays
frequently rely on two types of antigens, either single or a
combination, that include the epithelial- or tumor-specific cell
surface antigens (12). In the process of GC- and CRC-CTCs
isolation, the most commonly used epithelial-specific cell surface
antigens are cytokeratins (CKs) 18, 19, 20 and epithelial cell
adhesion molecules (EpCAMs). CKs are intermediate filament
keratins found in the cytoskeletons of epithelial cells (29).
EpCAM is a human cell surface glycoprotein involved in cell-to-
cell adhesion, which overexpresses in epithelial cancers and has
been extensively used in proof-of-concept studies (30). Among
tumor-specific cell surface antigens, carcinoembryonic antigen
(CEA) has been largely utilized to isolate CRC-CTCs (31), and
human epithelial growth factor receptor-2 (HER-2) was used for
GC-CTCs isolation (32). Currently, several platforms, such as the
CellSearch R© System and AdnaTest R© kit, have been developed
for GC- and CRC-CTCs detection based on positive selection,
and are now have achieved for commercially available (27, 33).
Conversely, negative selection assays generally remove white
blood cells (WBCs) from blood samples by targeting leukocyte
surface-specific antigens (e.g., CD45 and CD61) that are not
expressed in CTCs to achieve GC- and CRC-CTCs enrichment;
the kits and techniques include the EasySep R© Human CD45
Depletion Kit (34) and MACS R© (35). Notably, Nagrath et al.
developed the “CTC-Chip” platform by combining microfluidic
technology with positive selection methods 10 years ago, and
this method was able to selectively and efficiently isolate CTCs
from whole blood using anti-EpCAM-coated posts with this
microfluidic chip (36). Microfluidic devices are promising
technologies for CTC isolation, which allow the separation of
CTCs from small fluid volumes under laminar flow and eliminate
the need for pre-labeling or sample processing (32). The Isoflux R©

System (Fluxion Biosciences Inc., South San Francisco, CA)
was another classic automated EpCAM-based immunoaffinity
functionalized microfluidic system that used immunomagnetic
beads to facilitate the use of single or multiple capture antibodies
to target cells of a specific pathology, providing near-perfect
isolation efficiency (37). Although, given that there are no 100%
tumor-specific antibodies, the false-positive (specificity) and
false-negative (sensitivity) of CTCs isolation continue to impose
shackles on immuno-magnetic detection techniques.

Among the commercially available semiautomated devices,
the CellSearch R© System (Veridex LLC, Raritan, NJ, USA) is
the most reported immunoaffinity (EpCAM-based) method for
CTCs isolation and counting, which has been approved by
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FIGURE 1 | Overview of technologies for circulating tumor cells (CTCs) capture, enrichment, and characterization. Immunoaffinity-based enrichment technologies

capture CTC by positive or negative selection, typically using antibodies bound to the device surface or to magnetic beads. Positive selection is based on the specific

targeting of CTCs epithelial biomarkers, whereas negative selection depletes hematopoietic cells by targeting cell-surface antigens not expressed in CTCs.

Functionalized microfluidics platforms can combine the advantages of microfluidic and the characters of positive capture and negative enrichment. Biophysical

methods are label-free technologies relying on cell size, shape, density, and electric charge differences between CTC and other blood constituents. Density gradient

centrifugation relies in the separation of different cell populations based on their relative densities. Microfiltration consists on size-based cell separation using pores or

three-dimensional geometries. Inertial focusing relies on the passive separation of cells by size, through the application of inertial forces that affect positioning within

the flow channel in microfluidics devices. Electrophoresis separates cells based on their electrical signatures, using an electric field. The methods of CTCs

characterization include immunocytochemistry (ICC)-based approaches and molecular assays. Of which, ICC-based approaches are consist of immunofluorescence

and immunohistochemistry technology, and molecular assays are consist of fluorescent in situ hybridization (FISH), real-time polymerase chain reaction (RT-PCR),

genomic analysis, and RNA sequencing.

the Federal Drug And Food Administration (FDA) for use in
metastatic breast and colon cancer patients (38). Additionally, it
has also been widely used in the capture of GC and CRC-CTCs
in recent years (27, 31). As one of the immunoaffinity assays,
the major advantages of the CellSearch R© System are the direct
visualization and quantification of CTCs and the detection of
living cells without the need for cell lysis. However, there is a non-
negligible fact that CellSearch detects a relatively low number
of CTCs from the peripheral blood of patients with cancer, and
this low sensitivity may be because the system captures solely
EpCAM-positive CTCs that are significantly reduced or absent
in certain CTCs subpopulations, especially for those undergoing
epithelial-to-mesenchymal transition (EMT); this characteristic
is still considered a major pitfall of this device (38).

Previously, our group also reported several immunoaffinity-
based technologies for CTCs detection. First, we developed a
new CTCs detection platform by using an electrospun TiO2
nanofiber-deposited substrate grafted with anti-EpCAM, which
achieved high efficiency in CTCs detection from the blood of GC
and CRC patients (15). Meanwhile, a new CTCs capture platform
based on the transparent and biocompatible TiO2 nanoparticle
spin coated on a glass substrate conjugated with anti-EpCAM
also was successfully used to capture GC- and CRC-CTCs (16,
17). However, preparation of the above nanostructures requires
either specialized equipment or complex process control, which

limits its high-throughput fabrication. Moreover, the non-
transparent nature makes them incompatible with many optical
imaging systems (such as immunocytochemical techniques),
which also constrains further application. Therefore, our group
further used a hydroxyapatite/chitosan (HA/CTS) material as a
nano-substrate, which was characterized by transparency and
excellent biological compatibility, and conjugated this material
with anti-EpCAM to develop simple but efficient CTCs detection
platforms (18, 22). More importantly, the enumeration of CTCs
by these platforms in GC patients could predict the clinical
response to anticancer therapy (19). Furthermore, we coated
anti-CD45 and anti-EpCAM onto the surface of the above
nano-substrate to develop a combined negative and positive
enrichment assay, exhibiting equally high capture efficiency and
excellent purity for CRC-CTCs detection (21).

Biophysical Property-Based Technologies
of CTCs
Considering the bias and narrow capture spectrum presented
by the aforementioned immunoaffinity-based approaches in
CTCs isolation, researchers began to develop a variety of CTCs
isolation technologies based on the biophysical properties of
CTCs to achieve a wide-scale and high-performance capture
of CTCs (39). Biophysical CTCs enrichment technologies,
characterized as “label-free,” isolate CTCs from the blood based
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on the biophysical property differences, such as density, size,
deformability, and electrical charge, that present among CTCs
and other blood cells for CTCs separation and capture (40).
Recently, there have been commercially available reagents
and platforms based on the above different principles for
separating GC- and CRC-CTCs, including density gradient
centrifugation (Ficoll-Pauqe R©; OncoQuick R©; RosetteSep R©

CTC), microfiltration (ScreenCell R©; ISET R©), inertial focusing
(Vortex R©), and electrophoresis (DEPArray R©) (41). The most
common biophysical CTCs enrichment technology is size-based
microfiltration, which assumes that CTCs can be isolated from
blood cells due to their larger volume and more rigid shape,
and this technology has been improved by the introduction
of nano to micron-sized filter pores (42). Currently, new
lab-on-a-chip microfluidics devices have gradually appeared
and significantly improved the GC- and CRC-CTCs yields
compared with the conventional membrane microfiltration
and EpCAM-based immunoaffinity assays (43, 44). Moreover,
these technologies have provided improved in situ platforms for
molecular analysis by fluorescent in situ hybridization (FISH)
or immunofluorescence (IF) (45), as well as for the extraction
of biomolecules for downstream genomic and transcriptomic
sequencing (43). In addition, these platforms also provide the
opportunity for CTCs release and ex vivo expansion, which lays
an important foundation to further understand the biological
characteristics of CTCs (46).

Previously, our group reported several biophysical property-
based assays of CTCs detection.We fabricated a label-free wedge-
shaped microfluidic chip (named CTC-1chip) based on the
size characteristics of CTCs, which exhibited high performance
in capturing GC-CTCs and a great potential clinical value
(24). Additionally, our group co-operated with YZY Medical
Science and Technology Company (Wuhan, China) to develop
a novel isolation by size of epithelial tumor cells device named
CTCBIOPSY R© (Wuhan YZY Medical Science and Technology
Co., Ltd., Wuhan, China), which achieved CTCs isolation
and identification through a polymer membrane made by
biocompatible parylene andWright’s staining (23). As a one-stop
ISET device, CTCBIOPSY R© exhibited excellent performance
in capturing patients’ CTCs and has now been approved by
the China Food and Drug Administration (CFDA) for clinical
application in cancer management (23, 26).

Molecular (RNA-Based) Assays of CTCs
(Without Prior Enrichment)
The aforementioned immunoaffinity- or biophysical property-
based technologies of CTCs detection need to separate GC-
and CRC-CTCs from blood cells before identification. Molecular
assays, represented by RT-PCR, can directly achieve the detection
and characterization of CTCs by analyzing the expression of GC
and CRC-CTCs-related genes without prior CTCs enrichment
(47, 48). In contrast to enrichment technologies, RT-PCR has the
advantages of being rapid, well-implemented, sensitive, and cost
effective (41). Previously, our group conducted a series of meta-
analyses to explore the clinical role of CTCs detected by RT-PCR
in GC and CRC and summarized the commonly usedmarkers for

GC-CTCs (including CK19, CK20, CEA, hTerT, c-MET, MUC1,
VEGFR-1, Survivin, uPAR, B7-H3, and STCs) and CRC-CTCs
(including CK19, CK20, CEA, PLS3, CD133, hTerT, EphB4,
LAMγ2, andMAT) detection (25, 49). Using these cancer-related
genes for CTCs detection is of great value in evaluating the
prognosis of patients with both GC and CRC (25, 49). However,
tumor-derived circulating RNAs (such as miRNAs and lncRNAs)
present in the blood of cancer patients may affect the accuracy of
RT-PCR for CTCs detection, contributing a major limitation of
this technology (41).

Molecular Characterizing Technologies of
CTCs
After enrichment by the above platforms, the candidate
CTCs need to be further identified as “true” CTCs. Currently, the
identification andmolecular characterization of CTCs is achieved
by (a) immunocytochemistry (ICC)-based assays, including
IF and immunohistochemistry (IHC), and (b) molecular
approaches, including RT-qPCR, FISH and next-generation
sequencing (NGS) (41). The most commonly used assay for
the identification of GC- and CRC-CTCs from contaminating
cells is IF, which achieves CTCs identification by staining and
visualizing related-antibody biomarkers. Such biomarkers can
be specific for nuclear content, epithelial proteins (i.e., CKs),
mesenchymal proteins (i.e., vimentin), and hematopoietic
markers (i.e., CD45). A common immunocytological
CTC definition is nucleus+/CK+/vimentin–/CD45–
cell for epithelial-CTC, nucleus+/CK–/vimentin+/CD45– cell
for mesenchymal-CTC, and nucleus+/CK+/vimentin+/CD45–
for epithelial/mesenchymal-CTC (50). However, the detection of
CTCs by classical IF, which is typically performed by pathologists
through the visual observation of stained CTCs based on the
above principles, is time consuming and subjective-dependent.
By contrast, PCR-based molecular assays provide objective
and quantifiable CTCs measurements with the advantages
of automated, sensitive, relatively low-cost and amenable to
quantifiable quality control. Moreover, these methods require a
small amount of cells for analysis, which is also in line with the
fact that the amount of CTCs is less (51). However, since the
molecular characterization of CTCs by PCR assays is based on
the detection of mRNA markers that are specifically expressed
in CTCs but not in leukocytes, the risk of false-positive results
might be increased due to the non-specific amplification of
RNA (50–52).

Notably, nucleic acid-based technologies, as improvements
to non-fixating enrichment procedures, allow the use of RT-
PCR and qRT-PCR to amplify single or multiple gene transcripts
for CTCs detection, and these technologies have provided an
alternate avenue for the molecular characterization of GC- and
CRC-CTCs (53–55). In particular, recent emerging single-cell
sequencing techniques, including DNA and RNA sequencing,
have turned the research direction toward analyzing the genetic
characteristics of individual CTCs to assist in exploring tumor
metastasis mechanisms, finding drug targets, monitoring therapy
responses, and assessing drug resistance (54). Although, because
single-cell CTC analyses are limited by the heterogeneity between
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FIGURE 2 | Overview of the CTCs detection technologies and the potential clinical applications of CTCs in gastric and colorectal cancer.

cancer subtypes, the usefulness of these analyses has hindered the
discovery of universal markers (54).

CLINICAL VALUE OF CTCS DETECTION IN
GASTROINTESTINAL CANCER

In recent years, the clinical applications of CTCs detection via
various technologies have been gradually involved in multiple
aspects of GI cancers, including early diagnosis, treatment
planning, efficiency evaluation, prognostic stratification, and
metastasis monitoring (56) (summarized in Figure 2). Despite
this, there is still no universally applicable “gold standard”
method so far (41, 56). Therefore, the aforementioned assays
must be validated in clinical trials to achieve clinical validity and
utility in the future.

Prognostic Stratification
The role of CTCs in the prognostic stratification of patients
with GC and CRC, as the most studied aspect of CTCs’ clinical
value, has been demonstrated by numerous studies (26, 57–
91). For both GC and CRC, CTCs detection is considered
to be significantly correlated with disease progression and
patient’s prognosis (56). Previously, our group conducted a
prospective cohort study that recruited 138 patients with stage
I–III CRC to assess the prognostic value of the change in
CTCs counts before and after curative surgery. The results
found that postoperative CTCs-positive but not preoperative
CTCs-positive is an independent indicator of poor prognosis
for CRC patients, and the patients with preoperative CTCs-
positive that normalized after surgery have similar outcomes to
patients with preoperative CTC-negative (26). Meanwhile, our
clinical study demonstrated that combining the preoperative
controlling nutritional status score and circulating tumor cell
status could strongly predict the prognosis for CRC patients

treated with curative resection (92), which indicated that the
state of CTCs in the blood is closely related to the nutrition
and immune status of the host. In addition, a series of
meta-analyses conducted by our group also provided strong
evidence for the prognostic significance of CTCs detection in GI
malignancies, which showed that CTCs-positive predicts a poor
patient prognosis and unfavorable clinicopathological factors
for both GC and CRC, regardless of whether the detection
method was RT-PCR, CellSearch or cytological methods (25,
27, 49, 93). In these processes, an unneglectable fact is that
CTCs detection at different time points during treatment might
exhibit different prognostic significance (14). The reason is that
a cancer (or a minimal residual disease) evolves with time,
treatment, selection pressure from surgery, chemotherapy and
radiotherapy and that tumoricidal immunity could stimulate
the expansion of tumor subclones, leading to a change in the
number and molecular characteristics of CTCs (94). In the
future, repeated CTCs detection may be necessary to capture
the changing genetics attributed to anticancer therapies. In the
present review, we summarized the prognostic value of CTCs
detection using different methods at different time points in
GC and CRC (summarized in Table 1). As shown in Table 1,
although there are many CTCs detection methods, none of
them are generally accepted and could be really applied to
clinical practice. At the same time, the cut-off values of the
same CTCs detection method are different from study to study.
Therefore, it is necessary for larger clinical studies to further
validate whether CTCs are used in clinical practice to guide
prognostic assessment. Of course, this may still have a long way
to go.

Therapeutic Implications
Currently, there is limited evidence showing that CTCs detection
at baseline can predict the response to systemic therapy in
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TABLE 1 | CTCs detection for prognosis of gastric and colorectal cancer.

Cancer types Cut-off value Technique Patients (n) HR for death (95% CI) HR for progression/recurrence (95% CI) References

Before treatment After treatment Before treatment After treatment

Gastric cancer ≥2.8 CTCs ISET Non-metastatic

GAC (88)

– – – – (57)

≥5 CTCs CellSearch® Resectable GC

(93)

– – – – (67)

>17 CTCs IsoFlux® Stage II–IV EGC

(43)

3.7 (1.2–12.4) – – – (58)

≥1 CTCs ISET Stage II–IV GC (86) 2.96 (1.25–7.04) - 3.94 (1.38–11.27) – (68)

>2 CTCs CELLectionTM Stage II–IV GC (59) 3.59 (1.66–7.82) 0.77 (0.27–2.25) 2.81 (1.31–6.00) 6.58 (1.37–31.6) (63)

≥4 CTCs SE-iFISH Advanced GC (31) – – – – (62)

>5 CTCs GFP

fluorescence

Stage II–IV GC (65) 0.90 (0.29–2.59) – 1.97 (0.47–8.86) – (59)

≥3 CTCs CellSearch® Advanced EGC

(106)

– 3.46 (1.82–6.58) – 2.15 (1.11–4.16) (61)

≥2 CTCs Cytometry, FISH Advanced EGC

(60)

4.30 (0.82–22.90) – 6.70 (1.43–31.03) – (64)

≥1 CTCs CellSearch® Advanced GC

(136)

1.37 (0.68–2.77) – 2.14 (1.09–4.20) – (65)

≥5 CTCs CellSearch® Advanced GC

(100)

2.58 (1.57–4.27) – 2.06 (1.26–3.38) – (60)

≥1 CTCs CellSearch® Resectable GC

(148)

1.73 (1.08–2.77) – – – (66)

Colorectal

cancer

≥3 CTCs Cyttel+imFISH Advanced CRC

(121)

– 2.68 (1.19-6.03) – 2.79 (1.01–7.71) (69)

≥4 CTCs CellSearch® Non-metastatic

CRC (63)

41.03

(0.00–102.40)

– 17.6 (3.7–82.6) – (70)

≥1 CTCs ISET Non-metastatic

CRC (138)

– – 2.17 (0.75–6.31) 2.82 (1.39–5.75) (26)

≥1 CTCs Immunomagnetic

selection

mCRC (77) 0.32 (0.72–2.79) 0.35 (0.12-0.99) – – (71)

≥1.92 CTCs CEACAM5

RT-PCR

mCRC (436) 2.1 (1.3–3.2) – 1.6 (1.1–2.5) – (72)

≥6 CTCs CanPatrolTM Stage I-IV (66) 59.7 (0.002–1.6 ×

106)

– 7.42 (1.06–51.74) – (73)

>30 CTCs Vita-AssayTM Stage I-IV (88) 1.04 (1.01–1.06) – – – (74)

≥2 CTCs CellSearch® mCRC (79) 2.51 (0.69–9.09) – 3.28 (1.24–8.67) – (75)

>30 CTCs Negative

selection

mCRC (55) 2.61 (1.39–4.93) – 4.94 (2.60–9.39) – (76)

(Continued)
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TABLE 1 | Continued

Cancer types Cut-off value Technique Patients (n) HR for death (95% CI) HR for progression/recurrence (95% CI) References

Before treatment After treatment Before treatment After treatment

NR Multiparameter

flow cytometry

mCRC (152) 6.46 (1.46–28.56) – – – (77)

≥1 CTCs ISET Stage II-IV (98) – 1.15 (0.68-1.94) – 1.99 (1.14–3.48) (78)

≥1+ PCR test

out of 3

CK20 RT-PCR Resectable colon

cancer (299)

1.94 (1.0–3.7) – 1.94 (1.1–3.7) – (79)

≥1 CTC CellSearch® Stage I–III CRC

(239)

5.5 (2.3–13.6) – 12.7 (5.2–31.1) – (80)

Stage I–IV CRC

(287)

5.6 (2.6–12.0) – 7.8 (3.9–15.5) –

≥1 CTC CellSearch® Stage III CRC

(519)

– 0.96 (0.56-1.65) – 0.97 (0.65–1.45) (81)

≥2 CTCs CellSearch® Resectable CRC

LM (194)

2.48 (1.40–4.38) – 2.32 (1.26–4.27) – (82)

>0.1 ng/µL for

≥1 out of 3 gene

AdnaTest® Metastatic

RAS-BRAF wt

CRC (38)

9.32 (2.63–33.1) – 6.24 (2.54–15.3) – (83)

≥1 CTC CellSearch® Resectable colon

cancer (183)

2.88 (1.46–5.66) – 1.96 (1.06–3.61) – (84)

≥3 CTCs CellSearch® Metastatic KRAS

wt CRC (63)

2.08 (1.16–3.73) – – – (85)

≥1 CTC CellSearch® mCRC (119) – – 2.05 (1.29–3.28) – (86)

≥3 CTCs CellSearch® mCRC (180) 1.54 (1.00–2.37) – 1.47 (0.98–2.22) – (87)

≥3 CTCs CellSearch® mCRC (64) – 1.44 (1.14–1.82) 1.06 (0.98–1.15) 1.21 (1.09–1.34) (88)

All markers

positive

CK19, CK20,

CEA, CD133

RT-PCR

Resectable CRC

(315)

3.20 (1.67–6.31) – 3.04 (1.79–5.22) – (89)

≥3 CTCs CellSearch® mCRC (467) 1.9 – 1.4 – (90)

>3 CTCs CellSearch® mCRC (430) 2.45 (1.77–3.39) 9.35 (5.28–16.54) 1.74 (1.33–2.26) 3.64 (2.10–6.30) (91)

CTCs, circulating tumor cells; HR, hazard ratio; CI, confidence interval; ISET, isolation by size of epithelial tumor cells; GAC, gastric adenocarcinoma; GC, gastric cancer; EGC, esophagogastric cancer; FISH, fluorescent in situ hybridization;

CRC, colorectal cancer; mCRC, metastatic CRC; RT-PCR, real-time polymerase chain reaction; CK, cytokine; CEA, carcinoembryonic antigen; wt: wild type; LM, lung metastasis; NR, not reported.
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TABLE 2 | CTCs as predictive factors for cancer therapy efficacy in gastric and colorectal cancer.

Cancer types Cut-off value Technique Patients (n) Treatment Conclusions References

Gastric cancer ≥1 CTC 3D-IF-FISH method Unresectable

metastatic or recurrent

GC (15)

1st-line CT +

trastuzumab

ORR was 53.3% in CTCs-HER2 positive patients at

first response evaluation (6 weeks) vs. 7.7% in

CTCs-HER2 negative patients (p = 0.016)

(98)

≥3 CTCs CellSearch® Advanced GC (106) 1st-line CT ORR was 30.0% in CTCs-negative patients at first

response evaluation

(61)

≥5 CTCs CellSearch® Metastatic GC (100) ≥1st-line CT Chemotherapy response (CR or PR or SD) was

76.6% in CTCs-negative patients vs. 40.0% in

CTCs-positive patients (p = 0.004)

(60)

≥1 of the marker

genes positive

EpCAM + RT-PCR Advanced GC (61) 1st or 2nd-line CT 100% of progressive patients were CTCs-positive at

baseline vs. 73.5% of non-progressive patients

(p = 0.003)

(96)

Colorectal

cancer

2 + PCR results RT-PCR LARC (79) CRT + surgery After CRT, CTCs were detected in 54.4% of the

non-responders vs. 27.2% of the responders

(p = 0.030)

(95)

≥1 CTC CellSearch® LARC (85) CRT + surgery pCR/downstaging/downsizing rate was 80% in

baseline CTCs-negative patients vs. 40% in

CTCs-positive patients (p = 0.02)

(97)

≥1 out of 3

CTCs markers

AdnaTest® Metastatic RAS-BRAF

wt CRC (38)

≥1st-line CT ORR in unfavorable and favorable CTCs-changes

profiles were respectively 0% and 59% (p < 0.0001)

(83)

≥3 CTCs CellSearch® Metastatic KRAS wt

CRC (61)

3rd-line CT ORR was not different between the high and the low

CTCs groups (27.7 vs. 18.36%, p = 0.498)

(85)

≥3 CTCs CellSearch® mCRC (180) 1st-line CT CTCs negativity after 3 cycles of CT was associated

with higher ORR (OR, 3.22; 95% CI 1.25–9.43)

(87)

≥3 CTCs CellSearch® mCRC (60) 1st or 2nd-line CT CTCs positivity at 8–12 weeks was 2% in non-PD

patients vs. 43% in PD patients (p = 0.004)

(88)

≥3 CTCs CellSearch® mCRC (307) 1st-line CT ORR was 40% in patients with low CTCs count at

1–2 weeks vs. 11% in patients with high CTCs

count (p = 0.022)

(90)

≥3 CTCs CellSearch® mCRC (430) 1st, 2nd, or 3rd CT CTCs positivity at 3–5 weeks was 7% in non-PD

patients vs. 27% in PD patients

(91)

CTCs, circulating tumor cells; GC, gastric cancer; CRC, colorectal cancer; mCRC, metastatic CRC; LARC, localize advanced rectum cancer; IF, immunofluorescence; FISH, fluorescent in situ hybridization; EpCAM, epithelial marker

epithelial cell adhesion molecule; HER2, human epidermal growth factor receptor 2; RT-PCR, real-time polymerase chain reaction; CT, chemotherapy; CRT, chemoradiotherapy; CR, complete response; PR, part response; SD, stable

disease; ORR, overall response rate = complete response + partial response; OR, odds ratio.
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GI cancers (60, 61, 83, 85, 87, 88, 90, 91, 95–98). However,
a few studies have demonstrated the predictive value of CTCs
detection during chemotherapy (summarized in Table 2). Li
et al. conducted a single-center, prospective study to measure
the level of CTCs before and at 6 weeks of chemotherapy
in 136 patients with newly diagnosed advanced GC, and the
results showed that the posttherapy CTCs levels may help
evaluate the therapeutic response; in addition, the changes in
CTCs following therapy may be useful in rapidly identifying
ineffective treatments for patients with advanced GC (61).
Similarly, a study including 430 patients with metastatic
CRC also found that there were significantly higher disease
progression rates among patients who were CTCs-positive after
3–4 weeks of chemotherapy (91). Additionally, CTCs have
also been used as a vehicle to assess genotyping changes
in primary tumor and metastatic lesions; this is relevant
for patients for whom a targeted therapy against known
resistance-causing mutations is available, such as HER2-directed
treatment for GC and EGFR-directed treatment for CRC (14).
Overall, although the therapeutic predictive value of CTCs
is not as well-studied as their prognostic value, using CTCs
detection for determining the choice of systemic treatment
and monitoring the treatment effects is promising, illustrating
the possibility of liquid biopsy assessments to change future
cancer management.

Early Diagnosis
In the early stage of the disease, tumor cells may separate
from the primary tumor and enter the bloodstream; this
circumstance provides a theoretical basis for CTCs detection
as a tool for early diagnosis. Over the past few years, several
studies have explored the early diagnostic value of CTCs
detection based on different methods in GI malignancies,
and the results found that the fraction of patients positive
for CTCs is generally considered too low to obtain sufficient
sensitivities for true early diagnosis (66, 99–101). Therefore,
screening general populations with a CTCs assessment
is not logistically realistic, but may be realistic in the
high-risk groups, such as those with a family history of
GI cancers.

CONCLUDING REMARKS

Although the detection and measurement of CTCs is expected to
become a promising tool as prognostic, predictive, and diagnostic
markers for patients with GC and CRC, CTCs have yet to be
realized owing to residual surmountable challenges. To achieve
this goal, a CTCs detection device that is universally accepted,
fast, and low-cost with low false-negative and false-positive
results is first needed; simultaneously, standard procedures for
CTCs detection must also be established. Then, clinical research
into CTCs as a circulating marker needs to be performed, and
issues and promising results should be validated in large-scale,
long-term follow-up, prospective clinical trials to ensure clinical
applicability. Furthermore, conducting more basic research to
gain an in-depth understanding of cancer biology may provide
new insights into how and when to perform CTCs detection
with the best clinical use. Despite these obstacles, we still have
enough reason to believe that, with advances in detection and
subsequent analytical techniques, CTCs will provide abundant
useful information for the diagnosis and therapy in clinical
practice for patients with GI cancers in the near future.
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