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Abstract

Motivation: Position-specific probability matrices (PPMs, also called position-specific weight matrices) have been
the dominating model for transcription factor (TF)-binding motifs in DNA. There is, however, increasing recent
evidence of better performance of higher order models such as Markov models of order one, also called adjacent
dinucleotide matrices (ADMs). ADMs can model dependencies between adjacent nucleotides, unlike PPMs. A mod-
eling technique and software tool that would estimate such models simultaneously both for monomers and their
dimers have been missing.

Results: We present an ADM-based mixture model for monomeric and dimeric TF-binding motifs and an expect-
ation maximization algorithm MODER2 for learning such models from training data and seeds. The model is a mix-
ture that includes monomers and dimers, built from the monomers, with a description of the dimeric structure (spac-
ing, orientation). The technique is modular, meaning that the co-operative effect of dimerization is made explicit by
evaluating the difference between expected and observed models. The model is validated using HT-SELEX and gen-
erated datasets, and by comparing to some earlier PPM and ADM techniques. The ADM models explain data slightly
better than PPM models for 314 tested TFs (or their DNA-binding domains) from four families (bHLH, bZIP, ETS and
Homeodomain), the ADM mixture models by MODER2 being the best on average.
Availability and implementation: Software implementation is available from https://github.com/jttoivon/moder2.
Contact: jarkko.toivonen@cs.helsinki.fi or esko.ukkonen@helsinki.fi
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Transcription factors (TFs) regulate the expression of their target
genes by binding to specific DNA sequence segments (motifs) in
the promoter and enhancer areas of the targets. Binding TFs may
form clusters of two or more factors which makes the regulation
combinatorial by nature (De Val et al., 2008; Gordân and Siggers,
2013; Jolma et al., 2015; Morgunova and Taipale, 2017; Panne
et al., 2007; Rodda et al., 2005). Therefore it is of interest to de-
velop models and learning algorithms of TF-DNA-binding motifs
not only for monomeric binding but also for dimeric (and possibly
higher order) co-operative binding of pairs of TFs. Such pairs can
consist of two instances of the same factor (homodimer) or instan-
ces of two different factors (heterodimer). Models that represent
dimeric motifs are composed of models for the monomeric motifs

involved, plus a description of the structure of the dimer. Such a
description represents the preferred relative spacings and orienta-
tions of the monomeric components of the dimer as well as mod-
els the co-operative effects.

Position-specific probability matrix (PPM) and the related pos-
ition-specific weight matrix have been the standard model types for
monomeric motifs (Stormo, 2000; Stormo et al., 1986), and they
have been used for modeling the dimers, too (Bi et al., 2008; Bi and
Rogan, 2004; Jankowski et al., 2014; Kazemian et al., 2013; Lu
et al., 2017; Whitington et al., 2011). For example, a modeling pro-
cedure coMOTIF (Xu et al., 2011) learns a comprehensive mixture
model for motifs composed of two PPMs. Similarly, the method of
Toivonen et al. (2018) learns a mixture composed in a modular fash-
ion from one or more PPMs such that the structure of their preferred
dimers is made explicit.
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The standard PPM is an inhomogeneous Markov chain of order
zero. PPM is a very simple model as it assumes that the bases in each
individual position of the motif would contribute to the binding
strength independently of each other. However, there can be
dependencies between bases for various reasons [e.g. stacking inter-
actions (Rohs et al., 2010), amino acids may contact multiple bases
simultaneously (Luscombe et al., 2001), sequence-dependent mul-
tiple binding modes of a factor (Fordyce et al., 2012; Meijsing et al.,
2009; Zuo and Stormo, 2014)]. Hence there has been a long-
standing debate of whether PPMs suffice or should the motif model
also represent dependencies between the bases (Benos et al., 2002;
Bulyk et al., 2002; Man and Stormo, 2001; Zhao et al., 2012).
Markov models of order higher than zero are obvious candidates for
more advanced models, capable of representing dependencies be-
tween two or more adjacent bases. There is accumulating evidence
of better performance of higher order Markov models (Georgi and
Schliep, 2006; Hannenhalli and Wang, 2005; Huang et al., 2006;
Maaskola and Rajewsky, 2014; Xing et al., 2004; Zhao et al.,
2012). Very recently, Siebert and Söding (2016) give a robust ex-
pectation maximization (EM) algorithm (BaMM) for learning high-
order Markov chains for monomeric motifs and demonstrate their
superiority to order-zero models for several factors on ChIP-seq
data. Models representing dependencies between any pair of posi-
tions, not only adjacent ones, have also been proposed, with evi-
dence of superior performance in some cases (Barash et al., 2003;
Ben-Gal et al., 2005; Omidi et al., 2017; Santolini et al., 2013;
Sharon et al., 2008; Siddharthan, 2010). On the other hand, the role
of intra-motif dependencies might have been overestimated and the
binding affinity interferences between multiple motifs should be
given more emphasis (Eggeling, 2018).

This article presents a motif model for monomers and their
dimers and the associated learning algorithm MODER2 that uses as
its basic building blocks (inhomogeneous) first-order Markov
chains. To the best of our knowledge, MODER2 is the first learning
algorithm and software tool that uses first-order Markov modeling
and discovers both monomeric and dimeric motifs. Matrices repre-
senting first-order Markov chains are called adjacent dinucleotide
matrices (ADMs). Our motif model is a probabilistic mixture that
includes one or more monomeric ADMs and all their dimers, with a
description of dimer structure (spacing and orientation).

Modeling technique is modular in the sense that it uses an expli-
cit representation of how each observed dimeric motif deviates from
what is expected were the dimer motif just a ‘product’ of independ-
ent monomers, that is, the co-operative effects (multimotif interfer-
ences) of dimerization on binding affinities are discovered. This
feature is consistent with recent observations in a number of dimeric
cases of TF binding, that the specificity of the dimeric motif differs
notably from what would be expected if the two factors would bind
to DNA independently of each other (Isakova et al., 2016; Jolma
et al., 2013, 2015).

MODER2 learns all components of the motif model in the same
probabilistic framework, hence utilizing all training data symmetric-
ally. Accurate learning of monomeric motifs is possible such that the
noise from dimeric instances is minimized. This differs from the
common way of learning motifs, in which one tries to discover only
one motif at a time. Then, if the training data contains instances of
dimeric motifs with the monomer as a half-site, the resulting model
for a monomeric motif becomes an average of the instances from
monomers and various dimers and hence can be inaccurate.

The MODER2 learning algorithm belongs to the EM algorithms,
with additional techniques to improve the convergence, modularity
and robustness of the search. Most important of these is the restric-
tion of learning to a Hamming neighborhood of a seed (Toivonen
et al., 2017), which is here generalized for first-order Markov
chains. Initiated by Lawrence and Reilly (1990), the EM algorithm
has been extensively utilized for learning TF-binding motifs (Bailey
et al., 2009; Bailey and Elkan, 1995; Cardon and Stormo, 1992; Li,
2009; Mercier et al., 2011; Quang and Xie, 2014; Reid and
Wernisch, 2014; Xu et al., 2011; Zhang et al., 2013).

To validate MODER2, we report some motif discovery experi-
ments using generated data as well as data from HT-SELEX. To

demonstrate modular analyses possible with MODER2, we analyze
TFs HNF4A and ARGFX. For HNF4A, we construct dimeric bind-
ing motifs of order one in three different ways and compare with the

corresponding order-zero motifs. Then we compare the performance
of MODER2 with MODER (order-zero models), BaMM [models of

order one and two (Siebert and Söding, 2016)] and InMoDe [vari-
able order models (Eggeling et al., 2017)] on 314 HT-SELEX data-
sets for 233 TFs (or their DNA-binding domains) from four families

(bHLH, bZIP, ETS and Homeodomain). The higher order models
are observed to explain training data on the average better than the

order-zero models.
While our validation tests use HT-SELEX data, MODER2 can

be used on other training data such as ChIP-seq datasets as well.
The training data should only be big enough to avoid over-fitting as
the motif models learned can have quite a high number of

parameters.

2 Motif model

Our model for TF-binding motifs is a probabilistic mixture com-
posed of models for monomeric motifs and of models for dimeric

motifs that are built from the monomeric models. We model mono-
meric motifs with inhomogeneous Markov chains of order one, rep-

resented as matrices we call ADMs. Each dimeric motif included in
the mixture is represented as an ADM that is composed of a pair of
monomeric ADMs, with associated information on the relative

orientation and spacing of the two monomeric ADMs, and with the
gap between the ADMs filled with the background model. The

monomeric components of a dimer need not be spatially separate
but their sites may overlap; such overlaps have been observed, for
example in Jolma et al. (2015) and LaRonde-LeBlanc and

Wolberger (2003).
If the two monomers of a dimer do not overlap and have a long

gap in between (say, at least four as in our implementation), then
the dimeric distribution is just the ‘product’ of the two monomer
ADMs, that is, the model assumes that there is no co-operative inter-

ference affecting the independence of the two binding profiles.
However, if the monomers overlap or the gap between them is short,

then the binding profiles of the two monomers do not necessarily re-
main independent. The components of a dimer may interact because
the components physically contact each other, or the interaction is

DNA mediated (Jolma et al., 2015). Therefore the model allows
deviating from pure reduction to monomer ADMs. In this case it

also represents, using the deviation component, how the ADM
learned from data differs from the ‘product’ of monomer ADMs
which would be the expected dimer model were there no

interactions.
More formally, our probabilistic mixture model is specified by

parameters g ¼ ðh;w; kÞ where h gives the monomeric ADMs and
the background model used as the basic building blocks of the mix-

ture, w gives the bridging component that models the bridging areas
in the middle of dimers, and is used for discovering deviations from
the expected model within dimers, and k gives the mixture parame-

ters that specify the relative strengths of the components of the mix-
ture. Model g defines a probability distribution for sequences in the
alphabet R of the model. We will use the DNA alphabet R ¼
fA; C; G; Tg as default. Parametrization of the dimeric structures
of the model has the alternatives HT, HT, TT, TH for the relative

orientation o of the two components of a dimer (for homodimers
only HT, HT, TT) as well as a parameter d giving the spacing be-
tween the components. Figure 1 gives an illustration of the

parametrization.
The three parameter groups of g ¼ ðh;w; kÞ are as follows; see

Supplementary Section S1 for full details.
Parameter h ¼ ðh0; . . . ; hpÞ gives the background distribution h0

and p monomeric ADMs hk. Background h0 gives occurrence proba-
bilities for alphabet symbols in sequence locations that are outside
motif instances. Each ADM hk, k 6¼ 0, is a 16� ‘k matrix
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hk ¼ ðhab;h
k Þa;b2R;h¼1;...;‘k ;

that represents an order-one Markov chain ðX1; . . . ;X‘k Þ. The prob-
ability of a sequence a ¼ a1a2 � � � a‘k given by ADM hk is

PðX ¼ aÞ ¼
Q

1� h� ‘k PðXh ¼ ahjXh�1 ¼ ah�1Þ
¼
Q

1� h� ‘k hah�1ah ;h:

A dimeric ADM model composed of monomer ADMs hk1
and

hk2
, with orientation o and spacing d, is denoted as sk1k2od. In the in-

dependent case d is � d where threshold d has default value 4. Then
sk1k2od is composed of hk1

and hk2
in relative orientation o and with

d columns of background in between. In the dependent case, d is less
than d and w gives the so-called bridging ADMs that model the seg-
ment of dimeric motifs in which we anticipate deviations from inde-
pendence of monomer motifs. The jdj þ 2 columns in the middle of
sk1k2od constitute the bridging ADM model, given by parameter
wk1k2od, and the rest of sk1k2od comes from the flanks of hk1

and hk2
.

The actual value of a deviation jk1k2od is a derived parameter
obtained as the difference of wk1k2od and the expected model.

Mixing parameters k ¼ fkk : k 2 monomers and dimersg give the
probability of each component of the mixture. For each two monomer
motifs, hk1

and hk2
, the array ðkk1k2odÞ of mixing parameter values for

different orientations o and spacings d of their dimers is called the co-
operative binding table (COB table) of motifs hk1

and hk2
. The values

in a COB table indicate the orientation and spacing preferences of the
dimeric structures that are composed of hk1

and hk2
.

Figure 2 illustrates our model for binding motifs of TF LHX8.
Note that we visualize both s and j.

This modeling framework can be varied by specifying explicitly
the pairs hk1

and hk2
of monomer ADMs whose dimers are included

in the mixture. In the dimeric mode, there is at least one such pair,
in the monomeric mode there is no pair, that is the model is a mix-
ture of monomeric ADMs only.

3 Materials and Methods

3.1 EM algorithm for learning the model
Given a set of training sequences that contain enriched motif instan-
ces, MODER2 (MOtif DEtectoR) learning algorithm finds the

parameters ðh;w; kÞ of all model components simultaneously, by
optimizing the alignment of the training data with the model using
maximum likelihood estimation. The ZOOPS (zero or one occur-
rence per sequence) model of alignment is used (Bailey and Elkan,
1995). The EM search is initialized with user-given seed sequences
for the monomeric motifs to be learned, and the search is restricted
to a user-given range of spacings and orientations of dimers.

A detailed description of the MODER2 algorithm is given in
Supplementary Section S2.

3.2 Implementation
In this section, we give practical details of our software implement-
ing the MODER2 algorithm and provide some modifications to im-
prove its efficiency. The implementation includes both order-one
(ADM) and order-zero (PPM) versions of the method.

Input MODER2 takes the following input data:

1. Training data X that consists of DNA sequences X1;X2; . . . ;Xn,

with lengths jXij ¼ Li for i ¼ 1; . . . ;n.

2. Seeds s1; s2; . . . ; sp. Each sk is an IUPAC sequence of length

jskj ¼ ‘k. Seeds should be high-affinity representative sequences,

one for each monomeric motif to be learned. They will be used

for constructing initial values for ADMs hk.

3. Set R � f1;2; . . . ;pg2 of pairs that gives the TF combinations to

be learned. Only dimers of monomeric motifs hk1
and hk2

such

that (k1, k2) is in R will be learned; for each (k1, k2) in R, param-

eters dminðk1;k2Þ and dmaxðk1;k2Þ give the interval of spacings of

such dimers (default interval is ½�minð‘k1
; ‘k2
Þ=2; 10�); and par-

ameter d � 0 (default value 4) gives the minimum spacing such

that the monomer motifs of a dimer are assumed independent if

the gap of a dimer is � d. If R is empty, then we have the mono-

meric mode and otherwise the dimeric mode of learning.

4. Maximum number of EM iterations, maxiter (default value

150) and the convergence threshold for parameter change in

consecutive EM iterations, � (default value 0.001).

5. Hamming radius q (default value 2 for PPMs and 3 for ADMs)

used in seed-driven pruning of the EM search (see Pruning the

search section).

Output MODER2 outputs the following results:

1. Monomer ADMs h1; . . . ; hp,

2. Monomer fractions k1; . . . ; kp,

3. Deviation matrices jk1 ;k2 ;o;d for all ðk1;k2Þ 2 R, orientations o,

and spacings d < d,

4. The COB tables ðkk1 ;k2
Þ for all ðk1; k2Þ 2 R.

3.2.1 Pruning the search

The implementation has some modifications to the pure EM frame-
work in order to speed-up the search and to utilize prior knowledge
of data quality as follows, more details given in Supplementary
Section S3.

• At the start of the EM search, the mixture to be learned includes

all dimers that are possible within the user-given range of gap

lengths. Many of them are eventually not present in the training

data. As soon as the mixing parameter of a dimer gets very small,

such a weak dimer is removed from the mixture.
• Monomeric ADMs are not learned from the full data but only

from monomeric occurrences of the monomers and from dimeric

occurrences of the monomer such that the spacing between the

components is large enough, the smallest such spacing given by

input parameter d. Such isolated occurrences within a dimer are

supposed to give the best data for a monomer ADM, not dis-

torted by close-by other sites such as the other component of a

(a)

(b)

(c)

Fig. 1. Parametrization of dimeric structures. Parameter d is the spacing (signed distance

from the right end of the first monomer to the left end of the second monomer) of a

dimer. Parameter d is the lower bound such that monomers separated by a space d � d
are assumed independent. Monomers are assumed dependent if d < d. In this case, to

represent monomer interferences, the model includes the bridging component w that cov-

ers the bridging segment, marked with the dotted box, of the dimer. (a) A dimer with

overlapping monomers. Spacing d is negative and the length of the overlap is jdj.
Orientation between monomer ADMs h1 and h2 is head-to-tail (HT). Shorthand notation

of this dimer is 1; 2;HT; d. (b) A non-overlapping but still close-by dimer in tail-to-tail

(TT) orientation. Shorthand notation is 1; 2;TT; d. The first monomer ADM h�1
1 is the

reverse complement of h1. (c) A dimer in tail-to-head (TH) orientation. The first ADM

h�1
1 is the reverse complement of h1, and the second ADM h�1

2 is the reverse complement

of h2. The fourth possible orientation HH is not illustrated in the figure
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dimer. If the input parameter R is empty, that is no dimers are

learned, then the full data are used for learning the monomeric

ADMs.
• A TF may have two different binding motifs whose consensus

sequences are only a few Hamming steps apart. To minimize dis-

turbance from such similar motifs and from the background,

MODER2 restricts the learning of ADMs to high-affinity train-

ing sequences. Such sequences are identified by the heuristic rule

that they are in small Hamming neighborhood of the consensus

sequences (sequences with highest probability) of the ADMs of

the previous EM iteration (Toivonen et al., 2017). The radius q

of the Hamming neighborhood is a user-given parameter (default

value 2 for PPMs and 3 for ADMs). Derivation and pseudocode

of the method are given in Supplementary Section S3.

3.2.2 Visualization and post-processing tools

The MODER2 algorithm is implemented in Cþþ and is available
from GitHub. The package also contains tools to visualize the bind-
ing models and COB tables. Moreover, a post-processing tool is pro-
vided that selects from the model learned by MODER2 a submodel
that consists of the strongest components of the mixture. Given a
threshold (default 85%), the tool constructs a submodel by selecting
the components of the original mixture in decreasing order of their
mixing parameter k until the fraction of the signal covered by the
selected components reaches the threshold. The submodel is the final
result of the motif learning procedure. With a suitable ADM scan-
ning tool (e.g. Korhonen et al., 2016), it can be applied for predict-
ing putative motif instances elsewhere.

4 Results

4.1 Sanity checks with generated data
As an initial sanity test, we generated a dataset using a motif model,
and checked that MODER2 is able to learn the model back from the

generated data. We took monomeric ADM of HOXB13 (obtained
earlier from SELEX data with MODER2 using seed
CYMRTAAAA) and created homodimeric ADMs HT 4, HH 4, HH
2, TT 2 and HH 5 as the expected models (see Supplementary
Section S4). To dimers HH 4 and HH 2, we further added deviation
from the expected model by hand (see Supplementary Fig. S1).
Three variants of this model were used, with different total signal
fractions 0.03, 0.30 and 0.90. As an example, for total signal frac-
tion 0.30 the model had the following component strengths: uni-
form background (k ¼ 0:70), and ADMs for homodimers HT 4
(k ¼ 0:061), HH 4 (0.055), HH 2 (0.068), TT 2 (0.034) and HH 5
(0.082); see Supplementary Figure S1, panel (i).

Using this model, 100 000 sequences of length 40 bp were gener-
ated. Given a seed CYMRTAAAA and Hamming radii q ¼ 2;3; . . . ; 9,
and1, MODER2 accurately relearned the model from this data when
total signal fraction was 0.3 or 0.9: the learned parameters differed
from the original at most by 0.188 (for q¼3) in weighted maximum
norm (Supplementary Section S1), and for larger radii, the difference
was smaller, radii 7 and 8 giving the smallest differences; see
Supplementary Table S2. For the low signal fraction 0.03, separating
the signal from the background sometimes failed (q ¼ 5; 7;1).

Next we demonstrated that restriction to a small Hamming neigh-
borhood may improve results. Data were generated using five models,
each being a mixture of two ADMs. The ADMs were selected such
that their consensus sequences are close to each other (Hamming dis-
tance at most 4 in most cases). Using each model, five datasets with
respective monomer fractions 0.005, 0.015, 0.05, 0.15 and 0.45 were
generated. From each dataset, MODER2 learned back the generating
two monomer ADMs, using Hamming radii 2, 3, 4 and 5. The results,
shown in Supplementary Figure S2, indicate that for low signal frac-
tion, the restriction to a small Hamming neighborhood gives the most
accurate results while for high signal fraction this effect disappears.

4.2 ADM versus PPM motifs of HNF4A and ARGFX
4.2.1 HNF4A

Next we compare order-one and order-zero binding motifs of TF
HNF4A and analyze what is the most economical representation of

(a) (b)

(c) (d) (e) (f)

Fig. 2. Mixture of ADMs for factor LHX8. The model was learned by MODER2 from a HT-SELEX dataset (ERR194392, 277 692 reads of length 40). ADMs are visualized

as ‘river-lake logos’ (Morgunova et al., 2015) in which nucleotides are shown within a circle whose radius is proportional to the probability of the nucleotide, and the edges

connecting adjacent nucleotides have thickness proportional to the probability of the corresponding dinucleotide. (a) Monomeric ADM h1 with original seed NTAATTAN. (b)

Heat map of COB table ðk1;1;o;dÞ for homodimers of LHX8, giving the break-down into individual dimers and indicating that s1;1;TT;�2 (panel e), s1;1;HT;2 (panel f) and s1;1;HT;3

are the strongest dimers. The values in the table are given in integer multiples of 0.001, horizontal axis gives the spacing d, and cells with no value indicate that the correspond-

ing dimeric cases were pruned during the EM search; see Pruning the search subsection. (c) Background ADM h0. (d) Mixture breakdown into one monomer, all dimers, and

background. For example, 0.65 is the sum of dimeric mixing parameters kk that are in COB table b. (e) Dimeric ADM s1;1;TT;�2 with (above) the combined seed and arrows

indicating the orientation, and (below) horizontal bar indicating the bridging segment, and deviation j1;1;TT;�2 with positive values visualized in blue and negative values in

red. For example, the right-most red edge for dinucleotide TA indicates that the quite high probability of the dinucleotide in the expected model vanishes in the observed

model. (f) Dimeric ADM s1;1;HT;2 and its deviation
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the underlying signal. HNF4A is known to bind as a dimer, predom-
inantly as direct repeats with spacing of one nucleotide (or rarely
two) (Badis et al., 2009; Ellrott et al., 2002; Jiang and Sladek,
1997). ADM models for HNF4A motifs were learned by MODER2
from HT-SELEX data ERX169045 [Jolma et al. (2013), 655 432
reads of length 40]. To eliminate boundary effects due to the bar-
code and primer sequences flanking the random window of 40
bases, we included 6 and 3 bases long constant flanks in the begin-
ning and end of the reads, respectively, making them 49 bases long.

We made three different analyzes with the following seeds.

(E1) Two monomers and their dimers. Seeds RGKYCA and

AGTCCA for the monomers, that is possibly different monomers

represent the left and right half-sites of the dimer. This is similar

to the PPM analysis of HNF4A in (Toivonen et al., 2018).

(E2) One monomer and its dimers. Seed RGKYCA for the mono-

mer, that is the same monomer represents both half-sites.

(E3) One long monomer without dimers. Seed

RGKYCANRGKYCA of length 13, that is the only monomer is

intended to represent the strongest dimer with half-sites of length

6 and a gap of one nucleotide in between.

Figure 3 illustrates the ADM model resulting from case (E1).
Supplementary Figure S3 repeats the PPM model from earlier ex-
periment (Toivonen et al., 2018) for comparison. Results for (E2)
and (E3) are shown in Supplementary Figures S4 and S5. The quality
of models is measured and illustrated in scatter plots using correl-
ation (R2) between occurrence counts and model scores of 8-mers of
HT-SELEX data, as explained in Supplementary Section S5.

Experiment (E1) produces a model with largest number of
parameters and also the highest correlation R2 ¼ 0:96. The same
correlation is achieved by (E3), and third is (E2) with R2 ¼ 0:83.

Hence the only monomer of (E3), that in effect represents the stron-
gest dimer found by (E1) and (E2), reaches alone an R2 that is as
good as or better than the R2 of the richer mixture models of (E1)
and (E2).

When comparing the PPM model (Supplementary Fig. S3) with
the ADM models, one observes that the only ADM of (E3) presents
quite accurately the three dimeric PPMs of the PPM model, because
the three strongest paths through that ADM give the dominant
sequences of the PPMs.

4.2.2 ARGFX

ADM and PPM models for TF ARGFX were learned from HT-
SELEX data ERX1081111 [Yin et al. (2017), 131 066 reads of
length 40]. Figure 4 illustrates the ADM model and Supplementary
Figure S6 the PPM model. Full mixture model is the most accurate
model in both bases, with clear difference to individual components
of the mixture and to the expected model. ADM and PMM models
have the same consensus sequences, ADM being more accurate.

4.3 Performance comparison of MODER2, BaMM and

InMoDe
Here, we compare the accuracy of motif models learned by
MODER2 (models of order one and zero, Toivonen et al., 2018),
BaMM (models of order one and two) and InMoDe (variable order
models of order at most 2). BaMM is a recent higher order Markov
learning algorithm that compares favorably with several earlier ones
(Siebert and Söding, 2016). InMoDe learns inhomogeneous parsi-
monious Markov models with varying context lengths (Eggeling
et al., 2017).

We took the HT-SELEX datasets published with associated seeds
in Yin et al. (2017) from which we selected all datasets in the
bHLH, bZIP, ETS and Homeodomain families. These families were
selected as by the analysis of Jolma et al. (2013) these are the largest
monomer-rich and dimer-rich families, large families giving enough
data for finding possible differences between model accuracies with-
in each family. We ignored the large ZnF family as its HT-SELEX
success rate was low, meaning that the available data would not rep-
resent the family well. Moreover, if the seed of a dataset was an ob-
vious dimeric seed (with IUPAC Ns in the middle), we split it into
two seeds for half-sites as our tool is for finding dimers that are com-
posed of monomers. Finally, if a dataset had several associated
seeds, we only used the shortest one with highest count in the data.
After this, we had 314 datasets (number of reads in a dataset be-
tween 95 485 and 1 294 346, read length always 40 bp), of which
67, 49, 33 and 165 datasets belong to bHLH, bZIP, ETS and

(a)

(b) (c)

Fig. 3. Modularity analysis of HNF4A using two monomers, ADM case. (a)

Monomer ADMs h1 and h2 (k1 ¼ 0:020; k2 ¼ 0:002) and the COB tables in units of

integer multiples of 0.001, as learned from data by MODER2. Since all the mixing

parameters are in the same scale, comparison of k values is possible between COB

tables. Also shown is R2 correlation analysis for the two monomer models. (b) The

85% rule gives final mixture that includes the dimeric ADM s1;2;HT;1 only. Its devi-

ation is depicted below the ADM logo. The mixture has the same correlation as its

only component. (c) Correlation analysis as in (b) but for the ADM E1;2;HT;1 that is

expected under the independence assumption. The R2 values for the learned and

expected ADM differ remarkably, reflecting the large deviation between the learned

and the expected ADMs. The expected model does not detect the AAA sequence

connecting the half-sites

(a)

(b) (c)

Fig. 4. Modularity analysis of ARGFX, ADM case. (a) Monomer ADM h1

(k ¼ 0:188), the COB table in the units of integer multiples of 0.001, and R2 correl-

ation analysis. (b) Dimeric ADM s1;1;HH;�5, its deviation and R2 correlation ana-

lysis. The 85% rule gives mixture that includes the monomeric ADM of (a) and the

dimeric ADM of (b) (k ¼ 0:166). The R2 analysis of the mixture. (c) Correlation

analysis as in (b) but for the ADM E1;1;HH;�5 that is expected under the independ-

ence assumption. Correlation analysis of the mixture as in (b) but with E1;1;HH;�5 in-

stead of s1;1;HH;�5
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Homeodomain families, respectively. Details of the 314 datasets are
given in Supplemental File Data-and-Experiments.

For these datasets, order-one and order-zero models were learn-
ed by MODER2, both in monomeric mode (mixture of monomers)
and in dimeric mode (mixture of monomers and their dimers),
order-one and order-two models were learned by BaMM, and vari-
able order models were learned by InMoDe. The quality of all mod-
els was measured using correlation (R2) between occurrence counts
and model scores of 10-mers of training data (see Supplementary
Section S5).

Figure 5 gives the median R2 values for the seven models learned,
in the 314 datasets and in each of the four TF families.
Supplementary Table S4 gives numeric values (and average R2 val-
ues). Supplementary File Data-and-Experiments gives R2 values for
each model and each dataset. Supplementary File All-Models gives
matrices representing 314 dimeric models of order 1 learned by
MODER2.

In Figure 5, the performance differences between the tested
methods are quite small in general. The order-one dimeric models
by MODER2 have consistently the highest median R2, InMoDe
being the next, and the order-zero monomeric models by MODER2
(i.e. classic PPMs) having expectedly the lowest R2, sometimes (e.g.
in Homeodomain) quite clearly.

It should be emphasized that the modeling techniques compared
above are qualitatively different: MODER2 discovers in dimeric
mode mixture models (mixtures of monomers and their dimeric
combinations) that represent more complex motif structures than
the one-motif models produced by BaMM and InMoDe. Therefore
the above comparison that uses the same R2 framework for all mod-
els can only indicate how well different models fit the training data
but it ignores essential qualitative differences.

5 Discussion

We presented a modeling framework and an EM learning algorithm
MODER2 for de novo detection of TF-binding motifs, represented
as inhomogeneous order-one Markov chains. Our motif model is a
probabilistic mixture of one or more monomeric motifs and their
combinations (dimers), all learned simultaneously. Markov chains
of order one have increasing evidence of outperforming the classic
PPMs (Markov chains of order zero). Here they are used for the first
time in full-fledged combinatorial modeling of motifs which uses
monomeric motifs as basic modules and builds dimeric models from
them.

Software implementation of the method (written in Cþþ on
Linux platform and available in GitHub) is reasonably fast and can
process quite large datasets. For example, it took 1 h 25 min 9 s
wall-clock time and 11 h 00 min 47 s CPU time when run in parallel
on eight cores to learn the model for HNF4A in Figure 3 from a
13 854 211 bp long HT-SELEX dataset. Seeds for initialization of

the EM search can be taken from existing PPM motifs in databases
or they can be extracted from the training data with seed-finding

tools. One could simply take as the seed the most frequent ‘-mer of
the data where ‘ is the anticipated length of the motif.

Our modeling technique was validated using generated and HT-
SELEX data for model training. Versatility of the technique was
demonstrated by comparing order-one and order-zero motifs of TF

HNF4A and ARGFX. We also compared order-one and higher-
order motif models of four families of TFs and found that the order-

one models are on average more accurate than order-zero models
while models of order higher than one seem not to give much
improvement.
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