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INTRODUCTION 
 

Despite a growing number of studies on survival into 

old (≥ 85 years) and advanced (≥ 90 years) age, factors 

influencing longevity (or lifespan) are still poorly 

understood. Human twin studies estimated that 20–30% 

of variation in survival into old and advanced age, 

besides maintaining a healthy life style, is determined 

by heritable genetic factors [1, 2].  

 

In order to determine these genetic factors, several 

genome-wide scans for linkage, genome-wide association 

studies (GWAS) and genome-wide association meta-

analyses have been carried out on panels of long-lived 

individuals. Variations in many loci, e.g. near the 

D4S1564 [3], MINPP1 [4], HLA-DQA1/DRB1 and LPA 

[5] genes, have been identified as contributing to survival  

 

into old age, but only single nucleotide polymorphisms 

(SNPs) in TOMM40/APOE and FOXO3 loci were found 

to robustly associate with longevity [6–11]. In a whole-

genome scan for genetic linkage performed by Kerber et 

al. [12] on individuals from the Utah Population 

Database, in which high levels of both familial longevity 

and individual longevity were exhibited, the strongest 

signal was observed in marker D3S3547 on chromosome 

3p24.1. In addition, a locus on chromosome 3p24-22, 

previously identified in [13], was found to link to 

exceptional longevity [12], strengthening the case that 

genes found in these regions play a role in the regulation 

of human lifespan. Boyden and Kunkel [13] have 

identified several additional loci as having significant 

association with longevity, e.g. on chromosomes 9q31-

34, 12q24 and 4q22-25. Recently, GWAS of parental 

longevity was performed on participants of European 

www.aging-us.com AGING 2019, Vol. 11, No. 23 

Research Paper 

Identification of novel genes associated with longevity in Drosophila 
melanogaster - a computational approach 
 

Bethany S. Hall1, Yvonne A. Barnett1,2, Jonathan J. Crofts1, Nadia Chuzhanova1 
 
1School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK 
2Current address: Faculty of Science and Engineering, Anglia Ruskin University, Cambridge, Cambridgeshire CB1 1PT, UK 
 
Correspondence to: Nadia Chuzhanova; email: nadia.chuzhanova@ntu.ac.uk  
Keywords: single nucleotide polymorphisms, longevity, Drosophila, networks, target genes 
Received: September 2, 2019 Accepted: November 18, 2019  Published: December 3, 2019 
 
Copyright: Hall et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 
(CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and 
source are credited. 
 

ABSTRACT 
 

Despite a growing number of studies on longevity in Drosophila, genetic factors influencing lifespan are still poorly 
understood. In this paper we propose a conceptually new approach for the identification of novel longevity-
associated genes and potential target genes for SNPs in non-coding regions by utilizing the knowledge of co-
location of various loci, governed by the three-dimensional architecture of the Drosophila genome. Firstly, we 
created networks between genes/genomic regions harboring SNPs deemed to be significant in two longevity 
GWAS summary statistics datasets using intra- and inter-chromosomal interaction frequencies (Hi-C data) as a 
measure of co-location. These networks were further extended to include regions strongly interacting with 
previously selected regions. Using various network measures, literature search and additional bioinformatics 
resources, we investigated the plausibility of genes found to have genuine association with longevity. Several of 
the newly identified genes were common between the two GWAS datasets and these possessed human 
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descent available via the UK Biobank [14]. Several 

previously known variants have been confirmed in this 

study. In addition, other common variants previously 

found by disease-specific GWAS to associate with e.g. 

cellular senescence, inflammation, lipid metabolism and 

cardiovascular conditions were also found to associate 

with parental longevity [14]. Their results suggest that 

human longevity is a highly polygenic trait influenced by 

many variants with a small effect size [14].  

 

Progress in studies of human longevity is being 

exacerbated by small sample sizes making model 

organisms, such as Drosophila melanogaster, 

increasingly important for studying and understanding 

genetic factors affecting longevity. The lifespan of 

Drosophila is affected by several factors including 

genetics, differences in environmental conditions, diet 

and overcrowding. In laboratory conditions under 

controlled environment the average lifespan is found to 

be 26 and 33 days for female and male Drosophila, 

respectively [15]. Mutations in several genes have been 

found to increase the lifespan of Drosophila. For 

example, a mutation in the mth (Methuselah) G protein-

coupled receptor gene, which leads to the partial loss-

of-function, has been found to extend the average 

lifespan by 35% [16]. Mutant versions of the Indy gene, 

which encodes an amino acid transporter, has been 

shown to double the average lifespan [17]. It was also 

shown that single gene mutations in the target of 

rapamycin (TOR) and the insulin/insulin-like growth 

factor (IIS) signaling pathways can slow down the aging 

process in model organisms including flies [18]. 

 

Up to date, Drosophila GWAS have identified millions 

of naturally occurring SNPs that potentially influence 

longevity. Burke et al. [19] compared allele frequencies 

in the oldest surviving Drosophila with the randomly 

selected individuals from the same “synthetic” 

populations, derived from eight inbred founders. Eight 

significantly divergent regions have been identified. A 

small proportion of genes, found in these regions, were 

enriched in Genome Ontology (GO) biological process 

terms ‘defense response’ and ‘glutathione metabolic 

process’ [19]. Ivanov et al. [20] used lines from the 

Drosophila melanogaster Genetic Reference Panel 

(DGRP) to perform GWAS and identified ~2 M 

common SNPs. However, none of the SNPs found 

reached genome-wide significance level prompting the 

hypothesis of a possible combined effect of common 

SNPs on longevity. Gene-based analysis with either 

gene regions or gene regions extended into ±5 Kb of 

flanking sequences had identified several top-ranked 

genes including the CG11523 and Neprilysin 1. The 

former was found to have a GSK3β interaction domain 

that is a crucial component of the TOR pathway in 

human cell lines [20]; the latter could be essential for 

female fitness [20]. Among the top-ranked 100 genes (p 

< 4.79×10-6) found in this study were Chrb, slif, mipp2, 

dredd, RpS9 and dm genes enriched in the ’TOR 

pathway’ GO term [20]. Several of the longevity 

associated genes found are involved in processes which 

are known to impact aging (e.g. carbohydrate 

metabolism), however the function of others (although 

not known) provided opportunity for further, promising 

experimental examination. Polygenic score analysis was 

also used to find the additive effects of common SNPs 

[20]. In the absence of the second dataset, cross 

validation was performed. It was found that a small 

proportion of the observed lifespan variation (~4.7%) is 

explained by the additive effect of common SNPs. 

Despite the success in identification of variants, associated 

with longevity, the functional role of the majority of them 

– especially the variants residing outside the gene coding 

regions – remains to be determined.  

 

In this paper we hypothesize that co-location of known 

longevity-associated genes with genes, not previously 

implicated in longevity, and their enrichment in the 

same biological function or pathway as known genes, 

make them novel candidate genes, potentially linked to 

longevity. We further hypothesize that both non-coding 

SNPs and their potential target genes also reside within 

co-located loci. To identify these novel genes/genomic 

regions we devised a computational approach based on 

analysis of networks of co-located loci, harboring both 

GWAS-identified variants and novel genes. Two 

datasets of SNPs generated by GWA studies [19–20] 

were used, comprising respectively ~1 million and ~2 

million SNPs and sharing 2139 SNPs residing within 

1515 (possibly overlapping) genes and 1044 non-coding 

SNPs. 

 

As a measure of co-location (or proximity) of two 

distinct loci, not necessarily on the same chromosome, 

we used inter- and intra-chromosomal contacts generated 

by chromosome conformation capture Hi-C technique for 

the Drosophila melanogaster genome [21]. Studies of 

chromosome conformations have revealed that three-

dimensional architecture of chromatin dictates the co-

location of specific genes within the nucleus, thereby 

prompting the hypothesis of existence of common 

mechanisms controlling their transcription in a tissue-

specific manner [22–23]. Recently, Won et al. [24] have 

demonstrated the advantages of using 3D chromatin 

maps for identifying target genes for schizophrenia-

associated SNPs, residing within non-coding reasons of 

the genome. The findings have shown that for many non-

coding SNPs their target genes were neither adjacent to 

SNPs nor in linkage disequilibrium, proving the point 

that many regulatory interactions are not captured by 

linear chromosomal organization. Analysis of intra-

chromosomal interactions showed more frequent and 
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stronger interactions within continuous genomic regions, 

called topologically associated domains (TADs), than 

with regions residing in other TADs [22–23]. TADs have 

been proven to play important roles in 3D organization of 

genomes and gene regulation and, when mutated, may 

lead to disease through disruption of gene regulatory 

pattern (reviewed in [25]).  

 

A network of interactions was created from the inter- 

and intra-chromosomal contacts with nodes 

representing genomic regions, connected by edges, 

weighted by interaction frequencies. We calculated 

various network measures (e.g. degree [26]) and 

identified communities (i.e. densely connected 

subnetworks) existing within the network with the aim 

of revealing influential nodes/regions and densely 

connected communities (clusters) within networks. 

Candidate regions and communities were further 

explored using FlyBase (http://flybase.org/) and 

FlyMine (http://www.flymine.org/) resources, and 

GeneAge database (http://genomics.senescence.info/ 

genes/models.html) to provide a body of evidence for 

genomic regions having genuine and/or previously 

unknown association with longevity.  

 

To explore the role that SNPs occurring in TAD borders 

play in longevity, we analyzed genes residing in close 

proximity to TAD borders and sharing both ‘long-lived’ 

and ‘short-lived’ phenotypes. We hypothesized that a 

SNP(s) in nearby TAD borders may lead to a disruption 

of a regulatory pattern of a gene resulting in one of the 

phenotypes, ‘long-lived’ or ‘short-lived’, whereas the 

opposite phenotype could be a consequence of SNPs 

residing within genes themselves.   

 

RESULTS AND DISCUSSION 
 

Choice of interaction frequency thresholds and 

genome-wide significance level 

 

To assess the strength of interactions between intra- and 

inter-chromosomal genomic regions, distributions of 

interacting frequencies were analyzed individually for 

each chromosome and between chromosomes. Only 1% 

of the strongest intra-chromosomal interactions 

corresponding to the tails of these distributions and 

resulting in frequencies greater than 247, 215, 1308 and 

342 for chromosomes 2, 3, 4 and X, respectively, were 

considered. The threshold for inter-chromosomal 

interaction frequencies, corresponding to 1% of strongest 

interactions, was 10. We refer to interactions with 

frequencies exceeding these thresholds as “strong” 

interactions.  

 

The genome-wide significance level, required for 

finding association between ~106 SNPs, is usually set to 

p < 5×10-8. This value corresponds to 0.05 level of 

significance after correction for multiple testing. In our 

case, each SNP was binned into a 80 Kb region. There 

are 1503 distinct 80 Kb regions recorded in the 

Drosophila Hi-C data. Taking this into account, we 

corrected the required significance level to 3.33×10-5. In 

the analysis of SNPs in non-coding regions the Hi-C 

data with finer resolution, 10 Kb, was used where 

interaction frequencies between 11,839 10 Kb bins were 

available [21]; in this case the genome-wide level of 

significance was set to 0.05/11839=4.22×10-6. 

Following [19], SNPs with D-values exceeding 7.9 

were deemed to be significant. 

 

Original networks of interaction based on Synthetic 

and DGRP GWAS data 

 

The original network of interaction based on the 

Synthetic GWAS data consists of 279 nodes each 

representing a 80 Kb region harboring at least one SNP 

with D > 7.9. In turn, the original network of interaction 

based on the DGRP GWAS data consists of 80 nodes 

corresponding to regions harboring SNPs with p-values < 

3.33×10-5. The original networks share 14 common nodes 

covering 1.12 Mb of the Drosophila genome and 

harboring 168 genes. Only five genes ‒ Rim2 (replication 

in mitochondria 2), GlyP (glycogen phosphorylase), aop 

(anterior open), HDAC1 (histone deacetylase 1) and Tpi 

(triose phosphate isomerase) ‒ were found in FlyBase 

database as having “long-lived” phenotype. The number 

of SNPs residing within these common regions and 

satisfying chosen thresholds was 91 and 19 for Synthetic 

and DGRP GWAS-based data, respectively. Among the 

genes with the highest number of SNPs recorded in both 

GWAS datasets were nmo, sima, axo, CG9967, eys, 

chinmo and dpr3 (for the full list of genes see 

Supplementary Table 1).   

 

Extended networks of interactions 

 

Original networks were further expanded to create 

extended networks by adding extra nodes, 

corresponding to 80 Kb fragments that interact with 

frequencies meeting interaction frequency thresholds 

with the nodes, already present in the original networks. 

Together with regions that harbor SNPs recorded in the 

corresponding GWAS datasets, the extended networks 

contain novel regions that may not be covered by 

techniques used for SNP identification. We refer to 

these networks as Synthetic and DGRP GWAS-based 

(extended) networks.  

 

The Synthetic GWAS-based extended network is fully 

connected and consists of 1099 nodes harboring ~75% 

(69,951) of SNPs recorded in the Synthetic GWAS 

dataset with 2,409 SNPs residing within genes. Among 

http://flybase.org/
http://flybase.org/
http://www.flymine.org/
http://www.flymine.org/
http://genomics.senescence.info/genes/models.html
http://genomics.senescence.info/genes/models.html
http://genomics.senescence.info/genes/models.html
http://genomics.senescence.info/genes/models.html
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13,838 genes residing within the network nodes 217 

genes were found to have “long-lived” phenotype as 

recorded in the FlyBase database. The node labelled 

547 (corresponding to region Chr2R: 20800000-

20880000) has the highest degree, 150.  

 

The DGRP GWAS-based extended network has six 

disconnected components and consists of 671 nodes 

harboring ~50% (1,093,533) of SNPs recorded in the 

DGRP GWAS dataset with 114 SNPs residing within 

genes. Among 8,929 genes residing within the network 

nodes 145 genes were found to have “long-lived” 

phenotype according to the FlyBase database. The node 

labelled 1183 (region Chr3R: 25920000-26000000) has 

the highest degree of 68.  

 

The extended networks share 527 common nodes 

covering 42.16 Mb of the Drosophila genome and 

harboring 7,413 genes among which 121 have “long-

lived” phenotype. Fifteen common regions do not 

harbor any genes. For approximately 30% and 3% of 

genes residing within common regions no SNPs were 

recorded in the Synthetic and DGRP GWAS datasets, 

respectively. Among the genes with the highest number 

of SNPs recorded in both GWAS datasets were Ptp61F, 

CG45186, kirre, Ptp99A and CG44153. Only a small 

proportion of genes found in regions common for both 

datasets were harboring SNPs meeting our significance 

threshold – 717 and 57 in the Synthetic and DGRP 

GWAS-based networks, respectively.  

 

Several novel regions with the highest degree were 

selected for further analysis and each of the 

subnetworks centered around these novel regions (i.e. 

together with all connected regions) were considered 

(Supplementary Table 2). Genes residing within these 

subnetworks were sought for enrichment in longevity-

associated GO terms. The results are summarized in 

Table 1.  

 

Genes residing within a subnetwork centered around 

node 928 (chr3R:5520000-5600000) in the extended 

Synthetic GWAS-based network were enriched in two 

GO terms, ‘apoptotic process’ and ‘nervous system 

development’ (Table 1). Among them the trbd and 

CG8412 genes that have ‘short-lived’ phenotype 

according to in FlyBase resources. The loss of the trbd 

gene, a negative regulator of the Drosophila immune-

deficiency pathway, has previously been observed to 

reduce lifespan [27]. A number of genes in this 

subnetwork, including dmt, hyd, CG16908 and CG9471, 

were found to have phenotypes ‘increased mortality’ 

and ‘lethal’. The MED6 gene was found to have a 

phenotype of ‘cell lethal’ and is known to be required 

for elevated expression of a distinct set of 

developmentally regulated genes. This gene is essential 

for viability and/or proliferation of most cells and 

mutants of this gene have previously been observed to 

fail to pupate, dying in the third larval instar with severe 

proliferation defects in imaginal discs and other larval 

mitotic cells [28]. Finally, this subnetwork also contains 

the FoxP gene, a protein that encodes a transcription 

factor expressed in the nervous system. This gene has 

recently been shown to be important for regulating 

several neurodevelopmental processes and behaviors 

that are also related to human disease [29].  

 

Many of the newly found genes (see Table 1) share the 

same biological function and co-locate with genes that 

have previously been reported to associate with 

longevity and/or aging, thus acting as a proof of 

concept. For example, the sidpn, hook and CG12935 

genes residing in subnetwork centered around bin 928 

(chr3R:5520000-5600000) were reported to have a 

‘short-lived’ phenotype. Loss-of-function mutation in 

the hook gene has been found to reduce maximum 

lifespan by up to 30% [30]. Mutant flies lacking 

mitochondrial Top3alpha gene have also been found to 

have decreased maximum lifespan by up to 25%, in 

which a premature aging phenotype was demonstrated 

and mobility defects were observed [31]. Several genes, 

e.g. RpL30, Eps-15, Nipped-B and RPA2, listed in Table 

1 were also found to have an ‘increased mortality’ 

phenotype according to the FlyBase resources.  

 

Five genes residing in a subnetwork centered around bin 

1220, were enriched in the ‘DNA repair’ GO term. 

Interestingly, this novel region is located on chr4: 960000-

1040000, a chromosome seen as an anomaly because of 

its small size in comparison to other chromosomes and its 

chromatin structure. Due to its size, this chromosome is 

often ignored, however it is known to harbor at least 16 

genes where many of them are thought to have male-

related functions [32]. Using a comprehensive database of 

Drosophila regulatory sequences available via RedFly 

database (http://redfly.ccr.buffalo.edu), several enhancers 

were found in this region that target lncRNA sphinx and 

the transcription factor toy residing within this novel 

region although for some enhancers their target genes are 

not known. One can speculate that these enhancers could 

target genes co-located in 3D, i.e. residing within the 

same subnetwork centered around bin 1220.  

 

In the extended DGRP network two novel bins, 2 and 

28, were found to have the highest degree. Seven and 17 

genes residing in subnetworks centered around bin 28 

(chr2L: 2160000-2240000) and bin 2 (chr2L:80000-

160000) were enriched in the ‘immune system process’ 

and ‘cellular response to stress’ GO terms, respectively. 

Some of these genes have previously been implicated in 

aging or have phenotypes which could be linked to 

longevity. For example, flies heterozygous for the 

http://redfly.ccr.buffalo.edu/
http://redfly.ccr.buffalo.edu/
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Table 1. Novel nodes with the highest degree in the Synthetic and DGRP GWAS-based networks harboring genes 
enriched in longevity-associated GO terms. 

Novel 

node 

Network GO term P-value Genes enriched in GO term Number of nodes 

harboring genes 

enriched in GO term/ 

total number of nodes 

928 Synthetic Apoptotic 

process  

2.27E-04 E2f2, lola*, egr, Ret, Vps25, TER94, ptc, 

eEF5(CG3186), snama, ninaA, yki, 

sigmar, l(2)tid, Mcm10 

7/16 

928  Synthetic Nervous system 

development 

4.37E-04 CG10339, amos, CG10431, Sidpn**, 

RpL30, hook, Dap160, enok, lola, dgo, 

egr, CG12935, Ret, Pka-R2, Eps-15, 

Galphao 

9/16 

1220 Synthetic DNA repair 0.0294 Top3alpha, PCNA2(CG10262), Nipped-

B, CG9272, RPA2 

4/21 

28 DGRP immune system 

process 

0.021515 Vps16B, Cad99C, aop, 

DPCoAC(CG4241), Stat92E, Mtl, GlyP 

4/8 

2 DGRP cellular response 

to stress 

0.006104 CG11498, Clbn, CG13473, CG14130, 

Sld5, mu2, Atg16, kay, CG3448, Rad9, 

Mtl, Grx1(CG6852), Cat, HipHop, BI-1, 

Wdr24(CG7609), Drice 

13/15 

* Genes residing within original nodes, i.e. harboring SNPs with D > 7.9 are underlined. 
**Genes previously found to have association with longevity as recorded in FlyBase or GeneAge resources are shown in bold. 

 

mutation in the Stat92E gene have been found to have 

maximum lifespan up to 30% shorter than those of 

wild-type control flies [33]. The mean lifespan of 

Drosophila was found to be increased through post 

developmental RNA interference of GlyP by up to 

17.1% [34]. Another gene listed in Table 1 found to 

have a positive effect on lifespan is Cat, where an 

overexpression of this gene results in an increase in 

lifespan by up to a third [35]. Searches in the FlyBase 

database show that several other genes have 

phenotypes associated with aging, e.g. Clbn and Atg16 

genes have a ‘short-lived’ phenotype, the BI-1 gene 

has both a ‘short-lived’ and ‘long-lived’ phenotype 

and genes kay and HipHop have phenotypes for 

increased mortality.  

 

Using the RedFly database, we found that the novel 

region on chr2L:2160000-2240000 (bin 28), which was 

added to the original nodes of the DGRL GWAS-based 

network on the basis of its strong interactions with the 

original nodes, harbors several enhancers. Some of 

these enhancers target CG34172, Uch and the 

transcriptional-repressor protein aop genes. The latter 

strongly associates with longevity and is found to be 

central to lifespan extension caused by reduced IIS or 

Ras attenuation [36]. For some enhancers their target 

genes were not specified. One can speculate that these 

enhancers could target other co-located genes residing 

within the subnetwork centered around bin 28.   

Clusters in the extended GWAS-based networks 

 

Community detection algorithm implemented in GEPHI 

which uses the Louvain modularity method [37] was 

performed to identify clusters in the Synthetic and 

DGRP GWAS-based networks. Selected clusters are 

shown in Figure 1. Complete sets of clusters for each 

network are shown in Supplementary Tables 3–4. A 

‘resolution’ parameter was set to 0.1, enabling us to 

identify more communities/clusters as compared with 

the smaller number of communities that could be 

obtained by using a greater value for this parameter 

[38]. These clusters were further explored with the aim 

of identifying novel genes that co-locate with known 

longevity-associated genes and are enriched in the same 

biological function as known genes. 

 

Clusters in the extended Synthetic GWAS-based 

network 

The Synthetic GWAS-based network was found to have 

81 communities/clusters with the smallest consisting of 

three nodes and the largest of 72 nodes (see 

Supplementary Table 3). Selected clusters with the most 

significant enrichment in longevity-associated GO 

terms are summarized in Table 2. Nodes constituting 

these clusters are listed in Supplementary Table 5. 

 

Six genes residing within five nodes of cluster 11 were 

enriched in the ‘DNA repair’ GO term (p-value = 0.022). 
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Figure 1. Selected clusters in the Synthetic (A) and DGRP (B) GWAS-based extended networks of interactions. 
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Table 2. Number of nodes in the selected clusters in the Synthetic GWAS-base network and genes enriched in 
longevity-associated GO terms.   

Cluster  GO term P-value Genes enriched in GO term Number of nodes harboring 

genes enriched in GO term/ 

total number of nodes 

4  cellular response to 

stimulus 

0.004503 Rab39, Tom40, santa-maria, Mnn1*, sem1, 

Pvf2, Gr28b, Pvf3, Ziz, RapGAP1, Wnt4, 

wg, Wnt6, Wnt10**, ninaC, CG5160, 

CG5181, mir-305 

6/9 

4  localization 0.007119 Rab39, Tom40, Sem1, Pvf2, CG13793, 

CG13794, CG13795, CG13796, CG31904, 

CG31907, CG33296, Pvf3, Ndae1, Wnt4, 

ninaC, Ntl, ATPsynGL, Nuf2 

5/9 

4  cell communication  0.023993 Rab39, santa-maria, Mnn1, Pvf2, Gr28b, 

Pvf3, Ziz, RapGAP, Wnt4, wg, Wnt6, Wnt10, 

ninaC, CG5160, mir-305 

7/9 

5  macromolecule 

modification  

0.003413 Atg1, Ptp69D, Cnot4, RluA-1, CG32847, 

CG33303, CG34183, CG42366, Fkbp59, 

CG4839, Ror, CG4968, Sps2, gny, STUB1, 

Sp27A, LManI, Bug22, Cdk1, Cand1, 

Usp14, CYLD, Utx, Pten, bsk, Dref, RluA-

2, LMannII, FBXO11 

9/11 

5  cellular catabolic 

process 

0.020971 Atg1, lft, CG32847, CG4592, CG4594, 

CG4598, yip2, Prosalpha6, RpS27A, 

CG5367, Usp14, Utx, Pten, CG5676, bsk, 

chico, CG5731, CG8526, FBXO11 

9/11 

11 DNA repair 0.021953 CG17329, ku80, CG31807, CG33552, 

EndoGI, CG5316 

5/21 

11  developmental 

process 

0.010492 cact, Cas, chif, cni, crp, dac, foxo, fzy, glu, 

goe, grp, heix, her, mdy, mir-9b, mir-9c, 

sing, squ, twe, wek, yellow-b, BicC, BuGZ, 

CG17328, CG32572, CG4793, CG5953, 

Ca-alpha1D, Cyp303a1, Cyt-c-d, EndoGI, 

GMF, Idgf1, Idgf2, Idgf3, Mhc, Npc2b, 

Syx5, TwdIX, TwdIY, TwdIZ, TwdIaplha, 

VhaSFD, beat-Ia, beat-Ib, beat-Ic 

14/21 

23  apoptotic process 0.033954 azot, tor, cathD, Cul1, fwe, mir-263b 4/9 

23  positive regulation 

of gene expression 

0.028920 CG12769, Rpt1, Kdm4A, udd, Nup50, nito, 

CG6244, Lpin, lig 

6/9 

29  negative regulation 

of transcription, 

DNA-templated 

0.024472 CG10038, spt4, wuc, Iz, seq, Kdm4B, sug, 

Psc, Su(z)2, Iswi 

7/14 

60  gene expression 5.6 × 10-4 CG10474, Rpb8, sa, CG11906, mip40, Pc, 

croc, barc, CRIF, Hr78, wbl, rib, Tsr1, eg, 

CycH, CG7414, Nopp140, mub, RpLPO, 

Cdk12, TfAP-2, rho-7 

9/14 

* Genes previously found to have association with longevity as recorded in FlyBase or GeneAge resources are shown in bold. 
**Genes residing within original nodes, i.e. harboring SNPs with D > 7.9 are underlined. 

 

DNA integrity and stability depend upon the ability  

of DNA repair mechanisms to detect and repair damaged 

DNA. A DNA repair gene ku80 is involved in repair of 

double-stranded DNA breaks [39] and was found to have 

a ‘short-lived’ phenotype. The EndoGI gene is involved in 

positive regulation of the Notch signaling pathway and 

associated with an ‘increased mortality’ phenotype. Notch 

signaling is important for cell-cell communication and 
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plays an important role in processes such as neuronal 

function and development (reviewed in [40]). The other 

four genes residing within this cluster, CG17329, 

CG31807, CG33552 and CG5316, are currently not fully 

characterized. One can speculate that close proximity of 

these genes within the cell nucleus and shared biological 

function with the ku80 and EndoGI genes, make them 

potential candidate genes, linked to longevity. In fact, the 

human ortholog of the CG5316 gene identified via the 

Integrative Ortholog Prediction Tool available at 

https://www.flyrnai.org/cgi-bin/DRSC_orthologs.pl, the 

APTX gene, which encodes the DNA strand-break repair 

protein aprataxin was found to have a broader role in 

DNA single-strand break repair in neurodegenerative 

disease (reviewed in [41]) that shortens lifespan. In a 

longitudinal study with 11 years of follow-up on survival 

in the oldest-old Danes, Soerensen et al. [42] have shown 

that rs705649 SNP in DNA repair protein XRCC5, which 

is the human ortholog of the ku80 gene, is associated with 

mortality in late life.  

 

Six genes, azot, tor, cathD, Cul1, fwe and mir-263b, 

residing in cluster 23 were enriched in the ‘apoptotic 

process’ GO term (p-value = 0.034). The apoptotic 

process has almost an opposite role to the previously 

discussed GO term ‘DNA repair’, whereby when DNA is 

damaged, the checkpoint protein p53 is activated and the 

decision is made as to whether replication should be 

stopped and the DNA repaired, or the cell made to die by 

apoptosis (reviewed in [43]). Studies have found that in 

mammals, at least in part, apoptosis plays an important 

role in the process of aging and tumorigenesis and that 

age-enhanced apoptosis may work as a protective 

mechanism against age-associated tumorigenesis [44]. 

The ahuizotl gene, azot, which encodes a calcium 

dependent protein responsible for the elimination of less 

fit cells, is known to play a role in delaying aging and 

extending lifespan. This gene has the ‘long-lived’ 

phenotype and was previously found to increase lifespan 

[45]. Another gene in this group, cathD, a gene with 

phenotypes that include those that associate with 

apoptosis such as ‘increased cell death’ as well as 

longevity associated phenotype ‘short-lived’. The human 

ortholog of this gene, CTSD, encoding cathepsin D was 

found to associate with cognitive abilities in both 

demented and non-demented individuals [46] and was 

also implicated in increasing the risk of developing 

Alzheimer's disease [47]. Another gene in this group, 

Cul1, belongs to the cullin family and has phenotypes of 

‘increased mortality’ and ‘neuroanatomy defective’. The 

fwe gene encodes a transmembrane protein that mediates 

win/lose decisions in cell competition and neuronal 

culling during development and aging; this gene has 

longevity related phenotypes - ‘increased mortality’ and 

‘lethal’. Given the longevity association that these genes 

in this cluster have, through both phenotypes and 

biological functions, one can speculate that other genes 

that are found to reside within this cluster 23 may also 

influence longevity in the same way as the genes 

discussed above, due to their close proximity and strong 

interaction in the genome.  

 

Four out of 19 genes enriched in the ‘cellular catabolic 

process’ GO term (cluster 5; Table 2) have been 

previously shown to have association with longevity or 

display phenotypes which associate with aging and, in 

most cases, with increased lifespan. This includes chico, a 

gene encoding an insulin receptor substrate that belongs to 

an insulin/insulin-like growth factor (IGF) signaling 

pathway and found to increase lifespan by up to 48% [48]. 

Koohy et al. [49] have identified transcriptional 

downregulation of components of the insulin-like growth 

factor signaling pathway in mouse, in particular 

downregulation of the mouse homolog of chico gene, 

IRS1, as a signature of aging in developing B cells. The 

overexpression of the Pten gene was found to delay the 

process of proteostasis and therefore resulted in a decrease 

in the loss of muscle strength during muscle aging, 

increasing maximum lifespan in Drosophila by up to 

7.7% in comparison with matched controls [50]. 

Interestingly, the human PTEN (phosphatase and tensin 

homolog) gene was found to encode upstream regulators 

for the FOXO3 gene [51], one of the few loci robustly 

associated with longevity in humans [10], stressing that 

longevity-associated SNPs may reside in regulatory 

regions as well as in protein-coding genes [52]. The 

Drosophila ortholog of the FOXO3 gene, foxo, a 

transcription factor involved in the regulation of the 

insulin signaling pathway, is a commonly known 

longevity gene [53–56]. The 80 Kb region harboring this 

gene interacts with the Pten region although the 

interaction frequency is below the threshold chosen in this 

study. The neuronal-specific upregulation of the Atg1 

gene was found to result in increased median lifespan of 

Drosophila by up to 25% [57]. The human ortholog of 

this gene, ULK1, involved in longevity-regulating 

pathways identified by the KEGG database [58]. Salas-

Pérez et al. [59] have shown that methylation level of the 

CpG region residing within this gene strongly associates 

with age-related obesity and metabolic syndrome traits, 

suggesting a role for DNA methylation in aging-related 

metabolic alterations. Another gene found to be enriched 

in the ‘cellular catabolic process’ GO term was the bsk 

gene which is involved in RNA interference. Such 

interference in intestinal stem cells results in short life due 

to impaired intestinal homeostasis and tissue regeneration 

and has been found to reduce mean lifespan by 16.4% and 

10.2% in males and females, respectively [60].  

 

Several genes residing within other clusters and enriched 

in longevity-related GO terms have been previously 

implicated in longevity. The overexpression of the 

https://www.flyrnai.org/cgi-bin/DRSC_orthologs.pl
https://www.flyrnai.org/cgi-bin/DRSC_orthologs.pl


www.aging-us.com 11252 AGING 

VhaSFD gene that encodes a regulatory subunit of the 

vacuolar ATPase proton pump (H+-ATPase) and Sugar 

baby (Sug) gene related to a maltose permease from 

Bacillus result in an increase in mean life span by 5–10% 

[61]. The mushroom–body expressed (mub) gene has 

previously been found to have an association with 

longevity when mutated; the insertion of a p-element in 

the gene resulted in an increased lifespan up to 21.4% 

[62]. On the contrary, the rho-7 gene was found to 

decrease lifespan; the knocked-out study showed that 

flies develop severe neurological defects as well as a 

greatly reduced lifespan [63]. Several genes in Table 1 

were found to display the phenotype ‘increased 

mortality’ according to FlyBase resources. These 

includes the CYLD gene, a cancer consensus gene 

responsible for tightly limiting the immune response 

duration [64]. A mutant of this gene, dCYLD, was proven 

to be essential for JNK (Jun-N-terminal Kinase)-

dependent oxidative stress resistance and normal lifespan 

and has also been indicated to play a critical role in 

modulating TNF-JNK-mediated cell death [65]. The 

Mnn1 gene that also play a role in the regulation of stress 

response in Drosophila [66] displays this phenotype. The 

association between stress and lifespan has often been 

made, and previous studies have observed differences in 

gene expression when comparing normal and stress 

conditions which has resulted in the identification of 

aging genes in Drosophila. The genes found to reside in 

the same clusters as the genes previously shown to play 

roles in biological processes associated with longevity 

were found to harbor a number of SNPs. Although not all 

SNPs residing within genes enriched in the same GO 

term had a significant D-value (D > 7.9), one can 

speculate that SNPs in one or several functionally-related 

gene(s) co-located within the cell nucleus may contribute 

collectively to the longevity phenotype.  

 

Clusters in the DGRP GWAS-based network 

The DGRP GWAS-based network comprised 61 

communities, where the smallest consisted of three 

nodes and the largest of 42 nodes (see Supplementary 

Table 4). Selected clusters with the most significant 

enrichment in longevity-associated GO terms are 

summarized in Table 3. Nodes constituting these 

clusters are listed in Supplementary Table 6. 

 

Thirteen genes in cluster 20 and eight genes in cluster 26 

were enriched in the ‘immune system process’ (p-value = 

0.036) and ‘regulation of immune system process’ (p-

value = 0.0195), respectively. Immune senescence is the 

deterioration of immune function with age. As well as 

resistance to infection, immunosenescence may also 

reduce resistance to cancer and chronic activation of the 

immune system, usually as a result of autoimmune 

diseases, cancer, HIV infection and other chronic 

infections. The changes in immune response were found 

to be very similar to the changes that occur in elderly 

individuals [67]. In response to aging most physiological 

functions are altered, e.g. the declination in cellular and 

humoral immunity. The most sensitive immune cells to 

aging appeared to be T cells, and the most critical 

component of immunological aging is known to be 

changes in the T lymphocyte compartment, concluded by 

studies on aging in humans [68], documenting significant 

changes in the functional and phenotypic profiles of T 

cells. Further analysis of literature has also suggested that 

the inability of the innate immune system to work 

efficiently is a contributing factor to the development of 

many diseases observed in the elderly [69].  

 

Several genes shown in Table 3 have been found 

previously to have association with longevity, with 

many of them being associated with a decrease in life 

span. It has been found that Drosophila, heterozygous 

for the tumor suppressor gene ft, had a shorter lifespan, 

where it was suggested that this mortality effect was 

associated with the interaction between this ft tumour 

suppressor and signal transduction pathways mediated 

by the Hippo pathway [70]. Phenotype searches for 

genes in this table found grim, Btk29A and tko to 

express the phenotype ‘increased mortality’ whereas 

Chmp1 was found to express the phenotype ‘short-

lived’. An increase in the proapoptotic protein grim has 

been shown to significantly reduce lifespan in female 

drosophila by up to 34% in median lifespan and 25% in 

maximum lifespan [71]. The Btk29A and Traf6 genes 

are FOXO targets in the JNK signaling pathway. This 

signaling pathway is stress-activated and involved in 

developmental and metabolic regulation, immune 

responses and lifespan extension [72–73].  

 

The Sod2 gene has been observed, in separate studies, 

to have both a positive and negative effect on lifespan in 

Drosophila. When overexpressed, the gene was found 

to result in a 20% increase in both mean and maximum 

lifespan [74] whereas RNA interference-mediated 

silencing of the Sod2 gene caused an increase in 

oxidative stress leading to early-onset mortality in 

young adults [75]. The PGRP-SA gene has also been 

observed as one of few genes to show age-related 

changes in expression without being affected by diet, 

allowing this gene to be considered a candidate marker 

of aging [76].  

 

SNPs in non-coding regions 

 

Total of 26,499 and 653,030 non-coding SNPs were 

recorded in the Synthetic and DGRP GWAS datasets, 

respectively. First, we explored whether these SNPs 

tend to occur within border regions separating adjacent 

topologically associated domains (TADs). Second, 

using intra-chromosomal Hi-C data with finer resolution
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Table 3. Number of nodes in the selected clusters in the DGRP GWAS-base network and genes enriched in longevity-
associated GO terms.   

Cluster GO term P-value Genes enriched in GO term Number of nodes 

harboring genes enriched 

in GO term/ total number 

of nodes 

4  development growth 0.030823 Elp3, ine, bdl, ft*, CASK, tsl 4/12 

18  nervous system 

process 

0.033071 Or59c, bw**, Gr59c, Gr59a, Gr59b, 

Gr59d, Gr59e, Gr59f, Or59b, Or59a, tko 

4/11 

20  organelle assembly  0.016230 Oseg2, Pp2A-29B, Rcd4, sls, Oseg4, 

CG42787, hts, Cnb, RpL11, Ar16, mtsh, 

RpL23A 

9/14 

20 immune system 

process 

0.035555 CG10764, asrij, HBS1, sls, Rap1, ac, ecd, 

cnk, Ostgamma, Bgb, Bro, Btk29A, par-1 

9/14 

26 regulation of immune 

system process 

0.019532 Traf6, PGRP-SA, CG1572, Cyt-b5, 

GNBP3, GstO2, Sod2, Spn42Dd 

8/14 

34  response to stimulus 0.031506 geko, skl, AstC-R2, Adf1, Dic4, Trap1, 

geminin, Bap170, Debcl, Chmp1, GNBP2, 

not, CG4306, rpr, grim, hid, CG6893, 

GNBP1 

8/11 

40  open tracheal system 

development  

0.001555 stumps, Cad88C, cv-c, grh, btsz, thr, put, 

scb 

5/14 

* Genes previously found to have association with longevity as recorded in FlyBase or GeneAge resources are shown in bold. 
**Genes residing within original nodes, i.e. harboring SNPs with p<3.33×10-5 are underlined. 

 

we explore potential target genes for SNPs residing in 

non-coding regions utilizing co-location of SNP- and 

gene-harboring loci.  

 

SNPs in Topologically Associated Domain (TAD) 

boundary regions 

Approximately 2% (11,982) of all SNPs recorded in non-

coding regions in the DGRP GWAS dataset were found 

in TAD boundary regions as compared to 9,321 SNPs in 

controls. Fisher’s exact test shows that TAD boundary 

regions are enriched in SNPs (p=1.0376×10-75). These 

SNPs were found in 998 (~35%) of all TAD boundary 

regions. On the contrary, just a small proportion of SNPs 

from the Synthetic GWAS dataset were found within 

TAD boundary regions.  

 

In the absence of individual genotype data, it is 

extremely difficult to assess the effect that SNPs in 

TAD borders may have on the genes residing within a 

given TAD. We assumed that one of the observed 

manifestations of latent changes in patterns of 

interactions between genomic regions could be in 

longevity-associated genes known to share both ‘long-

lived’ and ‘short-lived’ phenotypes. We hypothesized 

that a SNP(s) in nearby TAD borders may lead to a 

disruption of a regulatory pattern of these genes 

resulting in one of the phenotypes, either ‘long-lived’ or 

‘short-lived’, whereas the opposite phenotype could be 

caused by SNPs residing within genes themselves. 

Genomic positions were available for 124 out of 131 

genes recorded in FlyBase resources as sharing both 

‘long-lived’ and ‘short-lived’ phenotypes. We found 

that the majority of these genes, 106, were residing 

within 30 Kb regions spanning bins harboring a TAD 

border and including ±10 Kb of flanking regions (i.e. 

two adjacent bins). From these genes, 43 were found to 

reside in the vicinity of 51 TAD borders that harbor 

SNPs; 89 genes were found to reside in the vicinity of 

120 TAD borders that don’t harbor SNPs. Thirty of 

these genes were found in the vicinity of both mutated 

and non-mutated TAD borders. (Note that the length of 

the topologically associated domains in our dataset for 

Drosophila varies between ~2 and 436 Kb that leads to 

the same gene being in the vicinity of two or more 

borders depending upon its length). Seventeen genes 

including Charon, foxo, Jafrac1, mei-9 and sun 

occurred exclusively in the vicinity of mutated TAD 

borders (see Supplementary Table 7). Based on these 

observations one can speculate that SNPs residing in 

border regions of TADs may disrupt regulatory pattern 

of longevity related genes in the corresponding TADs 

by forming looping interactions with regulatory 

elements residing in the adjacent TADs potentially 

leading to the change of function, e.g. phenotype.   
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Target genes for SNPs in non-coding regions 

It is often assumed that a SNP residing in non-coding 

regions could potentially occur within a regulatory 

region(s) for a nearby gene(s).  In many cases, if this 

nearby gene carries out biological functions which are 

related to the disease being studied, the SNPs found are 

automatically become a subject of further investigations. 

However, various looping interactions could happen 

between seemingly remote DNA fragments. For 

example, Sahlén et al. [77] have observed looping 

interactions between different promoters and postulated 

that promoters can also have enhancer activity 

influencing the expression of other genes not necessarily 

the nearest ones [78].  

 

Analysis of the intra-chromosomal Hi-C data at 10 Kb 

resolution shows that in most cases interactions between 

adjacent bins are the strongest. This observation 

justifies the extension of gene boundaries to include 

SNPs residing within ±10 Kb of flanking non-coding 

regions as it is often done in analyses of GWAS data. 

However, there are regions harboring non-coding SNPs 

recorded in the Synthetic GWAS dataset and DGRP 

GWAS datasets for which the strongest interacting 

regions were as distant as 50 Kb and 100 Kb, 

respectively. Thirty of these top long-range interacting 

pairs in both datasets were selected for further 

investigation. The summary of these regions is given in 

Supplementary Tables 8–9.  

 

The calculated D-value for only one non-coding SNPs 

from the Synthetic GWAS dataset in the selected 

regions residing in bin 2006 (chr2L:20170000-

20180000; Supplementary Table 8) exceeded the 

significance level (D=12.009 >7.9). The strongest 

interacting region for this bin was found 30 Kb 

upstream of the SNP. Not a single SNP chosen from the 

DGRP GWAS dataset residing within the selected 

regions meets the genome-wide significance level 

which in this case was set to 4.22×10-6.   

 

A total of 73 and 59 genes were found in the top 30 

regions selected for SNPs from the Synthetic and 

DGRP GWAS datasets, respectively. Several bins, 

1165, 4366, 7816 and 7887, which correspond to 

regions chr2L:11,680,000-11,690,000, chr3L:380,000-

390,000, chr3R:10,760,000-10,770,000 and 

chr3R:11,470,000-11,480,000, respectively, were 

gene-less. Further analysis of potential target genes 

residing within long-range interacting regions using 

FlyBase resources have found many genes that share 

phenotypes that could be associated with longevity, 

e.g. ‘increased mortality’, ‘lethal’ and ‘immune 

response defective’ (Tables 4 and 5). Only one gene, 

AttC, encoding an immune inducible peptide 

homologous to antibacterial peptides having activity 

against Gram-negative bacteria was previously 

considered to be a candidate marker of aging [76]. For 

the interacting bins containing more than one gene 

with longevity related phenotypes, we can speculate 

that non-coding SNPs could reside in an enhancer and 

this single enhancer may target all these genes, 

influencing their expressions and phenotypes. 

Phenotypes of potential target genes and their human 

orthologs are summarized in Tables 4–5.  

 

Several genes with longevity-associated phenotypes 

were common between two datasets: CG45186, 

CG4611, jing, Ca-alpha1D, Hml, CG32298, SNCF, 

CG14107, AttC, CG4597 and CG43335. The first three 

genes in this list have matched human orthologs SVIL, 

PTCD1 and AEBP2, respectively. The Ca-alpha1D 

gene was found to match two human genes, CACNA1D 

and CACNA1S, whereas the Hml gene has four human 

orthologs: SSPO, VWF, OTOG and MUC5B. The 

human SSPO gene is involved in the modulation of 

neuronal aggregation and was suggested to be involved 

in developmental events during the formation of the 

central nervous system (https://www.uniprot.org/ 

uniprot/A2VEC9). Dysregulation of the CACNA1D 

gene and loss-of-function mutations in the SSPO gene 

were found to associate with age-related diseases such 

as Alzheimer’s [79] and Parkinson’s [80]. Although no 

other human orthologs have been previously implicated 

in longevity, one can speculate that SNPs in non-coding 

regions may target these genes remotely in a similar 

way as was found in Drosophila and play a role in 

longevity.  

 

CONCLUSIONS 
 

In this study we applied a conceptually new approach 

for identification of novel genes associated with 

longevity in Drosophila and provided the evidence for 

using co-location of genes/genomic regions governed 

by the 3D architecture of the Drosophila genome for 

predicting these novel genes. First, we created networks 

of interactions between genes and genomic regions 

harboring SNPs that meet a predefined level of 

significance for each GWAS dataset by using intra- and 

inter-chromosomal interaction frequencies (Hi-C data) 

as a measure of co-location. Then each of these 

networks was extended by adding regions that co-locate 

with the existing regions. We identified several genes 

residing within these newly added regions both known 

to associate with longevity and the novel ones that were 

not originally included in the analysis. Community 

detection algorithm identified several tightly-knit 

clusters in both networks. Genes residing within the 

same clusters were found to be enriched in longevity-

related GO terms including ‘DNA repair’, ‘apoptotic 

process’, ‘nervous system process’ and ‘immune system  

https://www.uniprot.org/uniprot/A2VEC9
https://www.uniprot.org/uniprot/A2VEC9
https://www.uniprot.org/uniprot/A2VEC9
https://www.uniprot.org/uniprot/A2VEC9
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Table 4. Phenotypes of genes, found in regions most strongly interacting with regions containing non-coding SNPs 
from the Synthetic GWAS dataset, and their human orthologs.  

SNP- 

harbouring bin 

Possible target 

gene 

Longevity related phenotypes Human ortholog 

4566 CG45186 lethal; increased mortality during development; increased 

mortality 

SVIL 

CG32298  partially lethal - majority die; flightless  

5660 SNCF  lethal - all die during P-stage  

CG14107  partially lethal - majority die; some die during pupal stage; 

lethal - all die during P-stage 

 

1608 Ca-alpha1D* increased mortality during development; lethal - all die 

before end of P-stage 

CACNA1D, 

CACNA1S 

2464 jing 16  locomotor behavior defective; cell death defective AEBP2 

3149 AttC 3  partially lethal; some die during pupal stage; neuroanatomy 

defective 

 

4840 CG4597  some die during pupal stage; partially lethal - majority die  

CG4611  lethal - all die during P-stage PTCD1 

5705 Hml  immune response defective SSPO, VWF, OTOG, 

MUC5B 

7886 CG43335 partially lethal - majority die; some die during pupal stage; 

partially lethal 

 

554 GluRIIA  locomotor behavior defective; neurophysiology defective; 

neuroanatomy defective; lethal 

 

554 GluRIIB  neuroanatomy defective; neurophysiology defective  

943 numb decreased cell number; some die during embryonic stage; 

increased mortality; increased cell number; lethal - all die 

before end of prepupal stage; flight defective; tumorigenic 

NUMBL 

996 bib  lethal - all die before end of pupal stage  

1176 crol  locomotor behavior defective; increased occurrence of cell 

division; increased mortality; cell death defective 

ZNF569, ZNF99, 

ZNF841,  

ZNF814 

* Genes previously found to have association with longevity as recorded in FlyBase or GeneAge resources are shown in bold. 

 

process’. Using literature search and additional 

bioinformatics resources we investigated the plausibility 

of genes found to have genuine association with 

longevity. Our network approach identified several novel 

genes (see Tables 1–3) with no prior known associations 

with longevity as well as genes with prior reported 

associations with longevity, acting as a proof of concept. 

Among these genes are the Vps16B, Cad99C, DPCoAC 

(CG4241) and Mtl genes residing within important nodes 

in the DGRP GWAS-based network and, together  

with the known longevity-associated genes aop, Stat92E, 

GlyP, being enriched in ‘immune system process’ GO 

term. The Cad99C gene, which encodes a member of the 

cadherin superfamily of transmembrane proteins, harbors 

an SNP (chr3R:25674492) which is present in both 

GWAS datasets. Another novel gene, CG5316, co-located 

with genes CG17329, CG31807, CG33552, EndoGI and 

the longevity-associated gene ku80 in the Synthetic 

GWAS-based network, was found to be enriched in 

‘DNA repair’ GO term. Although the function of this 

gene is unknown, its human ortholog ‒ the APTX gene ‒ 

was implicated in longevity [41]. A group of genes ‒ 

CG1572, Cyt-b5, GNBP3, GstO2 and Spn42Dd ‒ residing 

within the cluster 26 in the DGRP GWAS-based network 

together with the known longevity associated genes Traf6, 

PGRP-SA and Sod2 are also strong candidates for novel 

longevity genes. None of these genes harbor SNPs that 

reach genome-wide significance level in the DGRP 

GWAS dataset. One gene, the glutathione S transferase 

O2 gene GstO2, harbors one SNP with genome-wide 

significant D-value 8.38 in the Synthetic GWAS dataset. 

Interestingly, all these genes reside in close proximity (i.e. 

within 30 Kb region) to TAD borders. Three of the 

nearest TAD border regions harbor SNPs prompting 

speculations that these SNPs could influence longevity 

either separately or together with SNPs residing within the  
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Table 5. Phenotypes of genes, found in regions most strongly interacting with regions containing non-coding SNPs 
from the DGRP GWAS dataset, and their human orthologs.  

SNP- 

harbouring bin 

Possible 

target gene 

Longevity related phenotypes  Human 

ortholog 

2962 en lethal - all die during embryonic stage; size defective; planar polarity 

defective; increased cell death; some die during pupal stage; partially 

lethal - majority die 

 

2453 Pld developmental rate defective; partially lethal - majority die; some die 

during embryonic stage; neurophysiology defective; lethal - all die 

before end of embryonic stage 

PLD2 

2463-2464 jing  locomotor behavior defective; cell death defective AEBP2 

4366 trh  neuroanatomy defective; partially lethal - majority die; lethal; some die 

during embryonic stage; lethal - all die before end of embryonic stage 

NPAS1 

4566 CG45186 lethal; increased mortality during development; increased mortality SVIL 

CG32298  some die during pupal stage; partially lethal - majority die; flightless  

5660 SNCF lethal - all die during P-stage  

CG14107 partially lethal - majority die; some die during pupal stage; lethal - all 

die during P-stage 

 

1608 Ca-alpha1D* increased mortality during development; lethal - all die before end of 

P-stage 

CACNA1D, 

CACNA1S 

2286 RpL38 increased mortality; increased mortality during development; 

developmental rate defective 

RPL38 

2375 laccase2 lethal; partially lethal; lethal - all die during embryonic stage; HEPHL1, 

CP, HEPH 

3149 AttC partially lethal; some die during pupal stage; neuroanatomy defective  

4840 CG4597  some die during pupal stage; partially lethal - majority die  

CG4611  lethal - all die during P-stage PTCD1 

5705 Hml  immune response defective SSPO, VWF, 

OTOG, 

MUC5B 

7636 timeout 1  increased mortality; lethal - all die before end of P-stage; some die 

during P-stage 

TIMELESS 

7886 CG43335 partially lethal - majority die; some die during pupal stage; partially 

lethal 

 

8955 CG33970  lethal; sleep defective; flightless  

* Genes previously found to have association with longevity as recorded in FlyBase or GeneAge resources are shown in bold. 

 

genes. This observation could explain the enrichment of 

TAD borders in SNPs. Many of these newly found genes 

harbor SNPs that do not reach a predefined genome-wide 

significance level, leading to speculation that SNPs 

residing within genes enriched in the same GO term may 

influence longevity collectively (when one or several 

SNPs in these functionally-related genes occur in the 

same fly to cause a phenotype) rather than individually 

when a single SNP in one of these genes could cause a 

phenotype. Further, we explored potential target genes 

for SNPs in non-coding regions also assuming co-

location of SNP-harboring loci and target genes within 

cell nucleus. Several novel target genes for non-coding 

SNPs have been identified using our network approach 

(see Tables 4–5) including genes such as CG45186, 

CG4611, Ca-alpha1D, Hml, and AttC that are common 

between two datasets and have human orthologs 

associated with age-related diseases.  
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Further experimental validation is required in order to 

establish the functional significance of the genes and 

SNP-target gene pairs found. This computational 

approach promises to be a stepping stone to 

identification of novel genes and SNP targets linked to 

longevity in humans and further understanding of 

genetic factors associated with this phenotype. 

 

MATERIALS AND METHODS 
 

Drosophila GWAS data used in this study 

 

Two datasets of SNPs summary statistics generated by 

GWA studies reported in Burke et al. [19] and Ivanov 

et al. [20], containing respectively ~1 million and ~2 

million SNPs, were used in this study. The first 

dataset was obtained from a “synthetic” population of 

Drosophila derived from a small number of inbred 

founders. Two independent sets of seven inbred 

Drosophila lines with another founding line added to 

both sets, were crossed to initiate two synthetic 

recombinant populations, A and B. Populations A and 

B were then maintained as four independent large 

populations (A1/A2, B1/B2). Next-generation 

sequencing was used to identify allele frequencies in 

the ‘young’ control group, comprising 120 14-day-old 

females, and the last surviving ~2% of females from 

the remaining cohort (an ‘old’ group). The occurrence 

of SNP in each of the eight ‘old’ populations and 

eight ‘young’ control populations was recorded, 

resulting in ~1.2M SNPs in the A populations and 

~1.1M SNPs in the B populations (see [19] for 

details). The SNPs for both populations were 

combined; duplicated SNPs were recorded only once 

with haplotype allele frequencies combined. 

Henceforth, we will refer to this data set as the 

Synthetic GWAS data. 

 

The second dataset was obtained by GWAS performed 

on The Drosophila Genetic Reference Panel (DRGP), 

Freeze 2.0 [20], which comprises 205 D. melanogaster 

lines derived from 20 generations of full-sib mating 

from inseminated wild-type caught females from 

Raleigh, North Carolina. Lifespan data was available 

for virgin females for 197 DGRP lines, with ~25 

females per line. A total of 2,193,745 SNPs was 

recorded together with the corresponding p-values, 

quantifying association with lifespan. P-values were 

calculated using linear regression under an additive 

model with four first principal components and the 

presence of Wolbachia pipientis included as a covariate 

(see [20] for details). Henceforth, we will refer to this 

data set as the DRGP GWAS data. 

 

SNPs were considered to be in coding regions of certain 

genes if they resided between gene start and gene end 

positions as defined by BDGP Release 6/dm6 assembly 

[81] and recorded in FlyBase database (http://flybase. 

org/). All other SNPs were considered to reside within 

non-coding regions.  

 

Intra- and inter-chromosomal interaction (Hi-C) 

data  

 

A dataset of intra- and inter-chromosomal normalized 

contacts (interaction frequencies) between 1503 80 Kb 

regions (bins) obtained by Sexton et al. [21] was 

downloaded from GEO database (accession number 

GSM849422). In this dataset bins 1-287 correspond to 

Chromosome 2L, bins 288-551 to Chromosome 2R, bins 

552-858 to Chromosome 3L, bins 859-1207 to 

Chromosome 3R, bins 1208-1223 to Chromosome 4 and 

bins 1224-1503 to Chromosome X. In addition, a dataset 

of intra-chromosomal interaction between 11,839 10Kb 

regions was downloaded from the same GEO database.  

 

Dataset of Topologically Associated Domain (TAD) 

boundary regions 

 

For each of 2,847 TAD borders compiled by [82] 100 

bp of flanking sequences were added from both sides 

to create a dataset of TAD border regions. Using SNP 

position data, non-coding SNPs residing in each TAD 

border region in the GWAS datasets were counted. 

Matched control dataset was generated as follows. For 

each TAD border a random border was generated by 

randomly selecting a position on the matching 

chromosome and adding ±100 bp of flanking 

sequences not overlapping with any “real” border 

region. This process was repeated 100 times. The 

number of SNPs residing within generated control 

datasets were counted and averaged across 100 

control datasets. Fisher’s Exact Test was then used to 

assess the overrepresentations of SNPs within TAD 

borders.   

 

Pre-processing of Synthetic GWAS data 

 

To identify positions with divergent haplotype 

frequencies in the young (control) and old groups in this 

dataset, Euclidean distances between the control and old 

groups were calculated for haplotype data for 

populations A1/A2 and B1/B2 combined. All duplicates 

were removed. The distance, D, for a given SNP was 

calculated as suggested in Burke at al. [19]:  
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where ho,j is the haplotype frequency of the jth founder 

in the old samples, hY,j is the haplotype frequency of the 

jth founder in the young control sample, n is the number 

of haplotypes found at that position. For SNP positions 

with combined haplotype frequencies, the n in the 

equation used was altered accordingly. SNP positions 

with the largest calculated D values were those showing 

the largest differences between haplotype frequencies in 

the control and old groups, and it was therefore these 

SNPs that were indicated as most likely to have 

association with longevity. Following Burke et al. [19], 

𝐷 > 7.9 was considered to correspond to genome-wide 

significance p-value < 0.05.  

 

Identification of candidate longevity genes and 

potential regulatory regions 

 

To align SNP positions with Hi-C data, SNPs were 

binned into 80 Kb regions. Start and end positions of 

each bin and corresponding chromosomes are given in 

Supplementary Table 10.  Each region, harboring 

SNP(s) meeting the D > 7.9 threshold in the Synthetic 

GWAS data or a predefined p-value threshold (see in 

the Results and Discussion section) in the DRGP 

GWAS data, was identified and considered as a node 

of an original network of interactions. Links between 

the nodes were added to create a network of 

interactions when an intra- or inter-chromosomal 

interaction between two nodes was recorded in Hi-C 

data and the frequency of interaction exceeded a 

certain threshold. Further, the resulting network was 

expanded to create an extended network by adding 

extra nodes, corresponding to 80 Kb fragments that 

interact with the nodes, already present in the original 

network, with frequencies exceeding a predefined 

threshold. For each node in networks its degree, i.e. 

the number of connections a given node has with other 

nodes, was calculated with the aim of finding 

influential nodes/regions and novel genes not 

necessarily covered by GWAS SNP array. In addition, 

the Louvain modularity method [33] was used to 

detect communities within the resulting networks, i.e. 

groups of nodes/regions that are densely connected to 

each other within a given community but sparsely 

connected to nodes in other communities of the 

network. All measures were calculated using GEPHI 

software tool available at https://gephi.org/. 

 

Genes residing within important nodes/regions of 

interest were identified using genomic coordinates 

corresponding to the BDGP Release 6/dm6 assembly 

[81] downloaded from the FlyBase database 

(http://flybase.org/). To align the Hi-C data and 

GWAS SNP positions, all gene positions were lifted 

over to BDGP Release 5/dm3. This was done using a 

LiftOver tool (https://genome.ucsc.edu/cgi-

bin/hgLiftOver). 

 

Gene ontology enrichment analysis  

 

The FlyMine software (http://www.flymine.org/) was 

used to analyze the enrichment of the set of genes, 

residing within important nodes/clusters, in Gene 

Ontology (GO) terms for cellular component, biological 

process and molecular function. Each gene was also 

sought in the GeneAge database (http://genomics. 

senescence.info/genes/models.html) of longevity genes 

and FlyBase resources (http://flybase.org/) as having 

longevity-related phenotype.  
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SUPPLEMENTARY MATERIALS 
 

Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Table 1. 

 

Supplementary Table 1. Number of SNPs residing in regions common between the original GWAS-based networks. 
Genes with ‘long-lived’ phenotype are shown in bold.  
 

Supplementary Table 2. Selected subnetworks centered around novel nodes with the highest degree in the extended 
Synthetic and DGRP GWAS-based networks. 

Novel node Network All other nodes in subnetwork Degree 
Total number of 

genes 

1220 Synthetic 244, 245, 255, 262, 270, 271, 272, 273, 275, 276, 

277, 295, 302, 305, 334, 359, 799, 848, 920, 923 

20 188 

928 Synthetic 11, 233, 234, 238, 265, 343, 360, 361, 366, 370, 

409, 456, 536, 531, 545 

15 290 

28 DGRP 27, 29, 30, 1063, 1124, 1152, 1179 7 114 

2 DGRP 576, 655, 660, 670, 699, 736, 787, 1120, 1131, 

1132, 1152, 1178, 1179, 1183 

14 255 

 

Please browse Full Text version to see the data of Supplementary Tables 3 and 4. 

 

Supplementary Table 3. Nodes and interactions comprising each cluster of the extended Synthetic GWAS-based 
networks. 

 

Supplementary Table 4. Nodes and interactions comprising each cluster of the extended DGRP GWAS-based 
networks. 

 
Supplementary Table 5. List of nodes constituting selected clusters in the Synthetic GWAS-based network. 

Cluste

r 
Nodes in cluster 

Total number of 

nodes in cluster genes in cluster 

4 89, 90, 91, 92, 93, 94, 95, 97, 1319 9 92 

5 124, 125, 126, 127, 128, 129, 130, 131, 711, 740, 929 11 229 

11 
198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 

578, 916, 930, 982, 1049, 1431, 1436  
21 249 

23 330, 331, 332, 333, 334, 335, 336, 337, 749 9 141 

29 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 961, 1044, 1338 14 222 

60 313, 385, 476, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 1218 14 174 

67 502, 1078, 1079, 1080, 1081, 1082, 1083, 1084, 1085, 1086, 1386 11 150 
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Supplementary Table 6. List of nodes constituting selected clusters in the DGRP GWAS-based network. 

Cluster Nodes in cluster 
Total number of 

nodes in cluster genes in cluster 

4 53, 54, 55, 56, 57, 58, 59, 60, 61, 1078, 1079, 1338 12 125 

18 523, 524, 525, 526, 527, 528, 529, 530, 531, 560, 1253 11 155 

20 105, 478, 521, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 1227 14 256 

26 321, 329, 412, 445, 499, 658, 659, 660, 661, 662, 663, 1324, 1367, 1418 14 223 

28 330, 344, 366, 413, 669, 670, 671, 672, 673, 1419 10 177 

34 318, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785 11 103 

40 103, 426, 458, 983, 985, 986, 987, 988, 989, 990, 991, 992, 1210, 1336 14 156 

44 361, 429, 448, 1089, 1090, 1091, 1092, 1093, 1094, 1095 10 156 

49 63, 457, 1147, 1148, 1149, 1150, 1151, 1152, 1153, 1154, 1155 11 142 

 

Please browse Full Text version to see the data of Supplementary Table 7. 

 

Supplementary Table 7. Genes sharing ‘long-lived’ and ‘short-lived’ phenotypes found in close proximity to mutated 
and non-mutated TAD border regions. 
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Supplementary Table 8. Top 30 long-range interacting regions for non-coding SNPs from the Synthetic GWAS 
dataset.  

Non-coding SNP region Interacting region 

Bin number 
Number of SNPs 

in bin 

Highest recorded 

SNP’s  D-value 

Strongest 

interacting bin 
Distance (Kb) 

Number of 

genes in bin 

2367 3 2.727 2362 50 2 

3982 7 5.421 3987 50 16 

5470 9 5.765 5465 50 13 

2459 4 5.170 2463 40 6 

4370 12 7.189 4366 40 10 

4560 4 3.814 4566 40 10 

5656 9 6.284 5660 40 16 

11643 2 5.029 11647 40 6 

1605 7 7.657 1608 30 9 

2006 3 12.009 2003 30 7 

2461 1 4.592 2464 30 6 

3146 13 3.468 3149 30 13 

3447 1 2.160 3444 30 10 

4837 8 6.213 4840 30 15 

5702 1 3.582 5705 30 8 

6981 6 4.577 6978 30 4 

7819 4 3.189 7816 30 6 

7883 6 5.029 7886 30 11 

7884 4 5.989 7887 30 12 

8958 11 4.396 8995 30 11 

155 14 7.658 153 20 6 

229 7 7.550 227 20 10 

324 3 5.987 326 20 15 

556 11 6.606 554 20 10 

592 1 2.066 590 20 12 

945 6 4.168 943 20 10 

994 5 5.459 996 20 3 

1167 10 6.455 1165 20 13 

1173 7 6.222 1171 20 10 

1174 11 5.694 1176 20 9 
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Supplementary Table 9. Top 30 long-range interacting regions for non-coding SNPs from the DGRP GWAS dataset.  

Non-coding SNP region Interacting region 

Bin number Number of SNPs in 
Lowest recorded 

SNP P-value 
Strongest interacting bin Distance (Kb) 

Number of 
SNPs 

2388 8 0.3858 2378 100 168 

3644 26 0.1303 3637 70 190 

2458 34 0.06431 2464 60 171 

2367 53 0.05865 2362 50 74 

2957 16 0.06397 2962 50 228 

3982 256 0.007077 3987 50 205 

5470 280 0.003503 5465 50 420 

2457 28 0.08089 2453 40 81 

2459 73 0.5731 2463 40 120 

4370 297 0.008632 4366 40 192 

4560 88 0.02264 4566 40 280 

5656 222 0.002052 5660 40 307 

11643 51 0.05711 11647 40 138 

1605 95 0.0236 1608 30 230 

2006 64 0.01037 2003 30 153 

2124 14 0.0354 2121 30 22 

2283 17 0.1617 2286 30 62 

2372 68 0.01846 2375 30 128 

2456 44 0.01432 2453 30 81 

2461 32 0.04341 2464 30 171 

3146 377 0.006937 3149 30 295 

3447 44 0.13 3444 30 285 

4837 181 0.007141 4840 30 359 

5702 27 0.01703 5705 30 322 

6981 87 0.00301 6978 30 83 

7639 11 0.09939 7636 30 126 

7819 238 0.001871 7816 30 203 

7883 108 0.007967 7886 30 234 

7884 120 0.006706 7887 30 255 

8958 222 0.001062 8955 30 197 

 

Please browse Full Text version to see the data of Supplementary Table 10. 

 

Supplementary Table 10. Chromosome, start and end positions for each 80 Kb bin.  

 

 


