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Abstract
Objectives: With more than 300,000 patients per year in the United States alone, hip fractures are one of the most common injuries
occurring in the elderly. The incidence is predicted to rise to 6million cases per annumworldwide by 2050. Many fracture registries have been
established, serving as tools for quality surveillanceandevaluatingpatient outcomes.Most registries are basedonbilling andprocedural codes,
prone to under-reporting of cases. Deep learning (DL) is able to interpret radiographic images and assist in fracture detection; we propose to
conduct a DL-based approach intended to autocreate a fracture registry, specifically for the hip fracture population.
Methods: Conventional radiographs (n 5 18,834) from 2919 patients from Massachusetts General Brigham hospitals were
extracted (images designated as hip radiographs within the medical record). We designed a cascade model consisting of 3 sub-
modules for image view classification (MI), postoperative implant detection (MII), and proximal femoral fracture detection (MIII),
including data augmentation and scaling, and convolutional neural networks for model development. An ensemble model of 10
models (based on ResNet, VGG, DenseNet, and EfficientNet architectures) was created to detect the presence of a fracture.

Results: The accuracy of the developed submodules reached 92%–100%; visual explanations of model predictions were gen-
erated through gradient-based methods. Time for the automated model-based fracture–labeling was 0.03 seconds/image, com-
pared with an average of 12 seconds/image for human annotation as calculated in our preprocessing stages.
Conclusion: This semisupervised DL approach labeled hip fractures with high accuracy. This mitigates the burden of annotations in a
large data set, which is time-consuming andprone to under-reporting. TheDL approachmayprove beneficial for future efforts to autocreate
construct registries that outperform current diagnosis and procedural codes. Clinicians and researchers can use the developed DL
approach for quality improvement, diagnostic and prognostic research purposes, and building clinical decision support tools.
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1. Introduction

Hip fractures are one of the most common fractures in the elderly,
with more than 300,000 patients per year in the United States
alone, predicted to rise to an incidence of 6 million cases annually
worldwide in 2050.1 Many orthopaedic registries have been
established, serving as tools for both quality surveillance and
evaluating patient outcomes.2 Data collection is typically
conducted manually, through the use of registration forms, or

in an automated fashion by filtering diagnosis and procedural
codes in the medical record. Data collection is prone to human
error, and diagnosis and procedural codes may under-report or
misreport clinical conditions.3

Machine learning (ML) is rapidly advancing in almost every
field within health care. These methods have been shown to
outperform methods of data abstraction based on diagnosis and
procedural codes in free-text reports, which otherwise could have
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led to under-reporting.4 Computer vision using deep learning
(DL) algorithms outperforms clinicians at some radiology,
pathology, and dermatology diagnoses and helps avoid human
bias and limitations in more technical endeavors.5–7 In orthopae-
dic trauma, DL algorithms are already on par with humans at
recognizing wrist, hand, and ankle fractures on radiographs
obtained in the emergency department (83% accuracy) and will
likely improve.8–10 DL has also been used to detect, locate, and
classify proximal femoral fractures on conventional radiography
demonstrating comparable performance with radiologists and
orthopaedic surgeons.11,12

Because DL has shown to be successful in interpreting
radiographs and assisting in fracture detection, we, therefore,
aimed to implement a DL-based approach to create an image-
based fracture registry, focusing specifically on the hip fracture
population.

2. Methods

2.1. Data Source

This retrospective cohort study was approved and registered with
the institutional review board (IRB) prior study start-up. A search
in the Research Patient Data Registry (RPDR) by using
International Classification of Disease (ICD) codes was per-
formed to identify patients sustaining a proximal femur fracture
in our institutions from January 2010 through December 2018.
RPDR collects medical records from institutions within the
Partners Healthcare System and may be queried after IRB
approval. Our institutions accounted for 2 level I trauma centers
and 3 community (non-level I trauma) hospitals. Patients who (1)
presentedwith proximal femoral fracture, (2) had available injury
radiographs of adequate quality (that included the entire injury
and with adequate penetration; rotation and angulation issues
typical of initial postinjury radiographs were not a reason for
exclusion), and (3) were 18 years or older were included.

2.2. Data Preprocessing

In total, 106,381 images were retrieved. Of those, 82% (87,487
of 106,381 images) were other imaging modalities (eg, computed
tomography, ultrasound, magnetic resonance imaging, and
DEXA scan) than conventional radiography and, therefore, were
excluded for modeling. The remaining images (n5 18,834) were

derived from 2919 patients (Fig. 1), of whom 60.2% (1757
patients) were female, and most patients were 60 years or older
with 78.3% (2286 of 2919 patients) (Table 1).

All Digital Imaging and Communications in Medicine (DICOM)
images were converted into a Portable Network Graphics (PNG)
image and anonymized. Images were loaded in Python (Python
Software Foundation)withuint16. Image enhancement of all images
was conducted by applying Contrast Limited Adaptive Histogram
Equalization (CLAHE) to improve the visibility level of the images
with a clip limit of 5 and a tile grid size 4 by 4.13

2.3. Cascade Model

We designed a cascade model (Fig. 2) consisting of 3 submodules
for image view classification (MI), postoperative implant de-
tection (MII), and fracture detection (MIII). In total, 3100
radiographs (MI: 1,169, MII: 660, MIII: 1284) were manually
labeled by 2 clinical experts, assisted by manual chart review
(J.H.F.O., S.A-E.). The images were randomly divided into
training, validation, and test sets in a 60/20/20 split.

2.4. Module I: Image View Classification

The first task included classifying the image view into 3 classes:
anteroposterior (AP) view of the left proximal femur, AP view of
both proximal femurs (bilateral), and AP view of the right
proximal femur. In total, 1066 images were manually labeled by
physicians: AP view left 47.0% (n 5 501), AP view bilateral
29.6% (n 5 316), and AP view right 23.4% (n 5 249). A
convolutional neural network (CNN)-based model architecture
(Fig. 2) was used to determine whether the input image is a left,
bilateral, or right proximal femoral image. We trained the CNN
on the multiclassification task, meaning that the output is a
probability value for one of the 3 classes, representing the model’s
confidence in the prediction, and a rectified linear function
(ReLU) was used as the activation function.

2.5. Module II: Postoperative Implant or Internal
Fixation Detection

The second task included classifying images in the following 2
categories: images with an implant in the image (ie, hip
replacement or internal fixation) and images without in implant

Figure 1. Flow diagram for patient inclusion.
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in the image. In total, we manually labeled 536 images, of which
52.6% (n 5 282) contained a postoperative hip implant. The
images were randomly divided into a training, validation, and test
set in a 60/20/20 split.

A pretrained ResNet50 architecture was used for training on
the training set; and validation and evaluation were performed on
the validation and test sets. ResNet50 is a CNN that is 50 layers

deep, including one MaxPool and one Average Pool layer
(including 26 million parameters).14

2.6. Module III: Proximal Femoral Fracture Detection

The third, and most clinically relevant, task included distin-
guishing images with a proximal femoral fracture from those

TABLE 1
Baseline Characteristics of Patients With Medical Images (Conventional Radiography) for Analysis

Total Number of Patients
and Medical Images

Task 1: Image
View–Labeled Images

Task 2: Implant
Detection–Labeled

Images

Task 3 Teacher:
Fx Detection–Labeled

Images

Task 3 Student:
Fx Detection–Unlabeled

Images

Patients,
N (%)

Images,
N (%)

Patients,
N (%)

Images,
N (%)

Patients,
N (%)

Images,
N (%)

Patients,
N (%)

Images,
N (%)

Patients,
N (%)

Images,
N (%)

Total cohort 2919 18,834 612 1090* 466 820** 924 1284*** 595 874
Sex
Female 1757 (60.2%) 11,526 (61.2%) 377 (61.6%) 681 (62.5%) 296 (63.5%) 537 (65.5%) 347 (37.6%) 485 (37.8%) 237 (39.8%) 365 (41.8%)
Male 1162 (39.8%) 7308 (38.8%) 235 (38.4%) 409 (37.5%) 170 (36.5%) 283 (34.5%) 577 (62.4%) 799 (62.2%) 358 (60.2%) 509 (58.2%)

Age, yr
,50 347 (11.9%) 1876 (10.0%) 74 (7.8%) 137 (12.6%) 44 (12.3%) 68 (8.3%) 92 (10.0%) 123 (9.6%) 50 (8.4%) 63 (7.2%)
50-59 286 (9.8%) 1888 (10.0%) 47 (5.0%) 85 (7.8%) 36 (8.4%) 66 (8.0%) 84 (9.1%) 117 (9.1%) 65 (10.9%) 94 (10.8%)
60-69 471 (16.1%) 2998 (15.9%) 108 (11.4%) 174 (16.0%) 84 (19.6%) 141 (17.2%) 156 (16.9%) 231 (18.0%) 106 (17.8%) 151 (17.3%)
70-79 584 (20.0%) 4032 (21.4%) 123 (13.0%) 232 (21.3%) 106 (24.8%) 181 (22.1%) 190 (20.6%) 270 (21.0%) 123 (20.7%) 203 (23.2%)
80-89 809 (27.7%) 5254 (27.9%) 184 (19.5%) 323 (29.6%) 140 (32.7%) 266 (32.4%) 275 (29.8%) 375 (29.2%) 173 (29.1%) 250 (28.6%)
901 422 (14.5%) 2786 (14.8%) 76 (8.1%) 139 (12.8%) 56 (13.1%) 98 (12.0%) 127 (13.7%) 168 (13.1%) 78 (13.1%) 113 (12.9%)

Fx 5 fracture; N 5 number.
* AP view L 5 277 (25.4%); AP view bilateral 5 460 (42.2%); AP view right 5 353 (32.4%).
** Implant 5 424 (51.7%); no implant 5 396 (48.3%).
*** Noted as fracture/control: Teacher 5 879 (68.5%)/405 (31.5%).

Figure 2. Cascade model flow diagram for autocreating an image-based hip fracture registry.
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without fracture on AP view images. First, 1284 images were
manually labeled (derived from 1107 patients; 68.5% of the
images contained a proximal femoral fracture (n5 879 for 846
patients (;one image per person)) and 31.5% of the images
were control (n 5 405 images for 272 patients (;1.5 images
per person))). An ensemble model of 10 models (developed
based on ResNet, VGG, DenseNet, and EfficientNet architec-
tures) was created to detect the presence of a proximal femoral
fracture or not (ie, control vs. fracture). An ensemble method
was applied to optimizeMIII. The following 12 DL algorithms
were trained on the training set: 6 ResNet50 (same architec-
tures but with random weight initializations), 1 DenseNet201
(a pretrained CNN using dense connections between layers,
201 layers deep), 1 VGG19 (a pretrained CNN, 19 layers
deep), 1 EfficientNetB5 (a pretrained CNN applying a
compound coefficient, including 30 million parameters), 1
EfficientNetL2 (a pretrained CNN applying a compound
coefficient, including 480 million parameters), and 2 Efficient-
NetB7 architectures.

To improve themodel and automate the annotation forMIII in
a self-supervised manner, a student-teacher technique (ie, noisy
student15 with EfficientNetB5 as a Teacher and EfficientNetB7 as
a Student) was used. Then, 874 unlabeled images were presented
to the teacher model and the labels were predicted. Of those, all
images with a confidence lower than 80% (n 5 29 radiographs)
and 5% randomly selected images (n 5 40) were manually
checked (J.H.F.O.) (Fig. 2).

2.7. Model Performance Metrics

Each model was assessed using the following performance
metrics (on both the validation and test sets): area under the
receiver-operating characteristic curve (AUC-ROC), accuracy,
area under the precision-recall curve (AUC-PRC), sensitivity
(recall), specificity, positive predictive value (also known as
precision), negative predictive value, F1 score, positive likeli-
hood ratio, and negative likelihood ratio. The primary outcome
of interest was the AUC-ROC. The secondary outcomes of
interest were the other model performance metrics as men-
tioned above (Supplementary Table 1, http://links.lww.com/
OTAI/A84).

2.8. Model Performance Visual Explanations

Visual explanations of the model’s predictions were conducted
using gradient-based methods. Gradient-weighted class activa-
tion mapping (Grad-CAM) uses the gradients of any target
concept, flowing into the final convolutional layer to produce a
coarse localization map highlighting important regions in the
image for predicting the concept.16 A saliency map computes
pixel-level importance for a given prediction and gives color to the
contribution of the classification.17

3. Results

3.1. Module I: Image View Classification

The first model achieved 98.82% accuracy for the unseen test
data set (Table 2). However, one bilateral hip image was actually
misclassified initially as a right hip image and was later correctly
identified by Module I. Therefore, the actual accuracy of the
model is 100%. The time per the prediction of an image was on
average 0.03 seconds per image.

3.2. Module II—Postoperative Implant or Internal
Fixation Detection

The second model had an AUC-ROC of 0.95 and achieved an
accuracy of 100% (Table 2). The time per prediction of an image
was on average 0.03 seconds per image. An example of a heatmap
provided by the Grad-CAM method showed that the model is
identifying the implant or control cases accurately (Fig. 3).

3.3. Module III—Proximal Femoral Fracture Detection

The ensemble model yielded an AUC-ROC of 0.96 and accuracy
of 91.9% (Table 3). The single-teacher model (based on
EfficientNetB5) led to an AUC-ROC of 0.95 and accuracy of
92.3%. The unsupervised method applied in the student model
(EfficientNetB7) yielded an AUC-ROC of 0.97 and accuracy of
91.9%. Examples of the model’s output with saliency mapping
showed that the student model is identifying the fracture and
control cases accurately (Fig. 3).

When the 29 low-confidence unlabeled images were reviewed
by a physician, 8 images were flagged as a mismatch. Among
those, 4 images were subcapital fractures, 1 image was a severe
osteoarthritis case, and 1 image had a pubic rami fracture. The
5% subsampled radiographs were reviewed (Supplementary
Table 2, http://links.lww.com/OTAI/A85).

4. Discussion

The aim of this study was to develop a DL-based approach to
autocreate an image-based hip fracture registry. The semi-
supervised DL approach showed high accuracy, which may
mitigate the laborious burden of constructing a data set or
registry. The approach developed here may prove beneficial for
future efforts to construct broad DL-based orthopaedic registries
that outperform current diagnosis and procedural codes.

The results of this study should be viewed in light of several
limitations with the main issue of domain adaptation. Owing to
this issue, deep learning–based models need to be externally
validated to prevent data inconsistencies. In addition, we convert
DICOM images to PNG format in preprocessing (DICOM
images typically contain between 4096 and 65,536-pixel values
while PNG has only 256-pixel values). In the future, DICOM
format can be used to improve the model (a challenge would be
the computational power5GPU and CPU memory/time to train
the model).Moreover, in this study, we only evaluated the images

TABLE 2
Model Performance of M1 and M2 Tasks on the Hold-out Test Set

Task 1 Task 2

AUC-ROC — 95.5%
Accuracy 100% 100%
AUC-PRC — 95.3%
Sensitivity 100% 100%
Specificity 100% 100%
PPV 100% 100%
NPV 100% 100%
F1 score 100% 100%
LR 1 Inf Inf
LR - 0% 0%

AUC-PRC 5 area under the precision-recall curve; AUC-ROC 5 area under the receiver-operating
curve; CI5 confidence interval; LR-5 negative likelihood; LR15 positive likelihood; NPV5 negative
predictive value; PPV 5 positive predictive values.
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without considering any additional notes (eg, mechanism of
injury) or patients’ demographics (eg, sex and age), and using this
information may improve the accuracy and generalizability of the
model. Themechanism of injurymay differ based on age, sex, and
race, and having a model incorporating these nonlinear
associations (eg, age) might be beneficial in the future. A hip
fracture after low-energy trauma (ie, fall from standing height)

usually occurs in frail older patients, where younger patients
usually sustain a high-energy trauma (eg, motor vehicle accident
or fall from height). Incorporating multimodal data integration
may eventually contribute to improvement of risk-stratification
tools, supporting the decision-making process.18

Traditionally, computer vision systems were explicitly pro-
grammed. Currently, DL methods are used to automatically

Figure 3. Gradient-based methods for visual explanations. Oversaturated heatmaps (MII) can occur because of activation magnification, especially when the
activations are highly localized and concentrated in the case of an implant.

TABLE 3
Model Performance of the M3 Teacher Model

Accuracy Sensitivity Specificity PPV NPV F1 LR1 LR- AUROC AUPRC

Voting ensemble 89.3% 90.6% 85.7% 94.5% 77.1% 92.5% 6.35 0.11 50.0% 86.5%

Deep learning ensemble 91.9% 96.5% 79.4% 92.7% 89.3% 94.6% 4.68 0.04 96.2% 98.4%

Res50 voting ensemble 88.9% 88.3% 90.5% 96.2% 74.0% 92.1% 9.27 0.13 — —

Res50 84.6% 81.9% 92.1% 96.6% 65.2% 88.6% 10.32 0.20 96.2% 98.5%
Res50 88.5% 88.9% 87.3% 95.0% 74.3% 91.8% 7.00 0.13 96.0% 98.3%
Res50 89.7% 91.2% 85.7% 94.5% 78.3% 92.9% 6.39 0.10 96.2% 98.4%
Res50 87.6% 86.5% 90.5% 96.1% 71.2% 91.1% 9.09 0.15 96.4% 98.5%
Res50 88.5% 88.9% 87.3% 95.0% 74.3% 91.8% 7.00 0.13 96.4% 98.5%
Res50 89.3% 88.9% 90.5% 96.2% 75.0% 92.4% 9.33 0.12 96.6% 98.6%
Dense201 87.2% 89.5% 81.0% 92.7% 73.9% 91.1% 4.70 0.13 92.4% 96.1%
VGG19 88.5% 90.1% 84.1% 93.9% 75.7% 91.9% 5.67 0.12 95.6% 98.1%
EfficientB5 91.9% 96.5% 79.4% 92.7% 89.3% 94.6% 4.68 0.04 95.4% 98.1%
EfficientL2 90.2% 95.9% 74.6% 91.1% 87.0% 93.4% 3.78 0.06 95.7% 98.2%
EfficientB7 91.9% 97.1% 77.8% 92.2% 90.7% 94.6% 4.37 0.04 94.3% 97.2%
EfficientB7 90.2% 94.7% 77.8% 92.0% 84.5% 93.4% 4.26 0.07 93.8% 96.7%

LR 5 likelihood ratio; NPV 5 negative predictive value; PPV 5 positive predictive value; Res50 voting ensemble is a voting classifier based on only Res50 models.
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extract features from images. Promising computer vision models
using DL are increasingly incorporated into clinical practice. This
includes predicting the risk of breast cancer on mammographs19

and autolabeling of chest X-rays20 to interpret pathology on
whole-slide histopathology images.21 To the best of our
knowledge, this is the first study conducting a DL approach to
create an image-based medical registry. The results of this study
show that the developed approach may outperform current data
collection strategies for developing a hip fracture registry. Data
quality audits from current hip fracture registries worldwide
reveal a high rate of errors in data collection.22 In the literature,
the data accuracy of hip fracture registries (actual cases that are
found in the registry) ranged from 58% to 90%.23–25 In this
study, the cascade model was built to accurately capture hip
fracture cases for registry purposes. Future efforts can focus on
adding location-specific classifications to the image-based regis-
try for further evaluation of quality reporting and patient
outcomes. The current student-teacher technique framework
used for proximal femoral fracture detection (MIII) showed to
improve the model performance. The teacher network is first
trained on the task, and the student will then learn from the
teacher and step-by-step feedback.

In summary, clinicians and researchers can use the developed
DL model approach for quality improvement, diagnostic and
prognostic research purposes, and building clinical decision
support tools.
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