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As humans move through parts of their environment,
they meet others that may or may not try to interact
with them. Where do people look when they meet
others? We had participants wearing an eye tracker walk
through a university building. On the way, they
encountered nine “walkers.” Walkers were instructed to
e.g. ignore the participant, greet him or her, or attempt
to hand out a flyer. The participant’s gaze was mostly
directed to the currently relevant body parts of the
walker. Thus, the participants gaze depended on the
walker’s action. Individual differences in participant’s
looking behavior were consistent across walkers.
Participants who did not respond to the walker seemed
to look less at that walker, although this difference was
not statistically significant. We suggest that models of
gaze allocation should take social motivation into
account.

Introduction

Imagine someone walking into her office on a busy
workday. She navigates crowds with ease, avoids people
absorbed in their phone, greets her coworkers, shakes
hands, and exchanges a “pleasure to meet you” with
a potential customer. When navigating such varied

situations, there are many potential interactions that
may occur between two persons, ranging from mutual
collision avoidance to engaging in a full-fledged
conversation. Such interactions can have widely varying
outcomes, depending on whether, and how, one engages
in the interaction.1 In this article, we are interested
in how the visual system, and in particular looking
behavior (where one looks and when), is engaged during
such potential interactions. Accurate descriptions
of looking behavior across a wide range of human
interactions are not only relevant for understanding
and modeling human social interaction at large
(Hessels, 2020) but also for theories of gaze control
and active vision (see, e.g., Land & Furneaux, 1997;
Hayhoe, 2000). Moreover, descriptions of how looking
behavior supports human interaction have important
applications in gaming, human-computer interaction,
and social robotics (e.g., Skantze, Hjalmarsson, &
Oertel, 2014; Ruhland et al., 2015), as well as in
pedestrian and evacuation dynamics (Kitazawa &
Fujiyama, 2010) and outdoor lighting design (Fotios,
Yang, & Uttley, 2015).

Where do people look when they encounter another
person and potentially engage in interaction with that
person? One could conceive several components to
this question that have been addressed in previous

Citation: Hessels, R. S., Benjamins, J. S., van Doorn, A. J., Koenderink, J. J., Holleman, G. A., & Hooge, I. T. C. (2020). Looking behav-
ior and potential human interactions during locomotion. Journal of Vision, 20(10):5, 1–25, https://doi.org/10.1167/jov.20.10.5.

https://doi.org/10.1167/jov.20.10.5 Received April 28, 2020; published October 2, 2020 ISSN 1534-7362 Copyright 2020 The Authors

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

mailto:royhessels@gmail.com
mailto:j.s.benjamins@uu.nl
mailto:andrea.vandoorn@gmail.com
mailto:koenderinkjan@gmail.com
mailto:g.a.holleman@uu.nl
mailto:i.hooge@uu.nl
https://doi.org/10.1167/jov.20.10.5
https://creativecommons.org/licenses/by-nc-nd/4.0/


Journal of Vision (2020) 20(10):5, 1–25 Hessels et al. 2

research. Where does one look at other humans and
human faces? Where does one look during locomotion
or crowd navigation? We briefly summarize important
findings from previous work addressing these questions
before we introduce our specific research questions.

Looking behavior to humans and human faces

Since the pioneering work by Buswell (1935) and
Yarbus (1967), it has often been assumed that humans
have a bias to look at the bodies and faces of other
humans. In a recent review, Hessels (2020) concludes
that when no restrictions are placed on observers on
where to look or what to do, there is a tendency to fixate
humans rather than objects, human faces rather than
human bodies, and eyes rather than, for example, the
nose or mouth. Looking behavior to human bodies and
faces further depends on a number of different factors,
including at least (a) the task given to the observer, (b)
the content of the portrayed face, and (c) the individual
whose looking behavior is investigated.

That the task given to an observer affects looking
behavior to human bodies and faces was shown by, for
example, Birmingham, Bischof, and Kingstone (2008)
and Buchan, Paré, and Munhall (2007). Birmingham
et al. (2008) presented participants with photographs
of one or multiple people in different settings. One
participant group was tasked to “look at, and then
describe each image” (p. 346), while another participant
group was tasked to “describe where attention is being
directed in the scene” (p. 346). The group that was
tasked to describe the image looked more at the bodies
and less at the eyes of the portrayed persons than the
group that was tasked to determine the direction of
attention of the portrayed persons. In a similar vein,
Buchan et al. (2007) investigated the effect of different
tasks on looking behavior to the face and facial features.
They showed that their participants looked more
often and longer at the eyes of a face when judging its
emotion than when having to report what the face was
saying. Task-relevant areas are thus actively sought out
by the observer.

Even in the absence of a specific task given to an
observer (free-viewing), looking behavior to human
bodies, faces, and facial features furthermore depends
on what the portrayed persons are doing. Võ, Smith,
Mital, and Henderson (2012) had participants conduct
a free-viewing experiment with videos portraying
faces. When the portrayed faces were talking and
audible, participants’ fixations were distributed
over the eyes, nose, and mouth. When the videos
were muted, fewer fixations to the mouth occurred
(although see Foulsham & Sanderson, 2013). When
the portrayed face looked straight into the camera,
the eyes were fixated more often. Finally, when
the face moved quickly, the nose was fixated more.

Võ et al. (2012) proposed that looking behavior to
faces can be considered an information-seeking process
where observers seek out parts of the scene that are
relevant. In a similar vein, Scott, Batten, and Kuhn
(2019) presented participants with videos of an actor
carrying out various behaviors (holding a monologue,
manual actions, and misdirection). They showed that
the actor’s face was looked at most during monologues,
while the actor’s hands were looked at most during
manual actions and misdirection. When the actor spoke,
the actor’s face was looked at more, but interestingly,
gaze was then directed more to the eyes than to the
mouth.

A more recent observation is that looking behavior
to faces is highly idiosyncratic (see, e.g., Peterson &
Eckstein, 2013; Mehoudar, Arizpe, Baker, & Yovel,
2014; Kanan, Bseiso, Ray, Hsiao, & Cottrell, 2015;
Arizpe, Walsh, Yovel, & Baker, 2017). While on average
there is a bias to fixate the eyes, some people tend to
predominantly look at the eyes, while others tend to
look at the mouth. Interestingly, these preferred fixation
locations represent observer-specific optimal viewing
locations in order to judge facial identity (Peterson
& Eckstein, 2013). Idiosyncratic patterns of looking
behavior are further task specific (Kanan et al., 2015)
and stable over periods of 1.5 years (Mehoudar et al.,
2014).

Importantly, the studies above have been conducted
using photographs or videos of human bodies or faces.
As other researchers have pointed out (e.g., Kingstone,
2009; Risko, Richardson, & Kingstone, 2016), one
should not assume that these findings generalize to
physical situations where there is a possibility for
interaction. One potential reason for this is that there is
an ontological difference between the world depicted in
photographs or videos that one observes and the world
that an active agent is engaged in (whether virtual or
real; see, e.g., Bracker, 2017). In a virtual or physical
world, one’s actions may have consequences. Looking
another in the face may have dire consequences, for
example when that person is aggressive. To investigate
participants’ looking behavior when in the presence
of another person, Laidlaw, Foulsham, Kuhn, and
Kingstone (2011) placed participants in a waiting room
with a live confederate or with a videotaped confederate
displayed on a screen. They showed that participants
are keen to look at a videotaped confederate in a waiting
room but not at a live confederate (for recent work on
this topic, see Holleman, Hessels, Kemner, & Hooge,
2020). The phenomenon of not looking at other people
out of courtesy has been well described by Goffman
(1966). It is known as “civil inattention,” and is an
important phenomenon to consider in encountering
others that may or may not engage one in interaction.

Once one is engaged in interaction with another,
civil inattention plays no clear role anymore. Dyadic
conversation is a clear example, and much observational
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(Kleinke, 1986) and eye-tracking work (e.g., Ho,
Foulsham, & Kingstone, 2015; Hessels, Holleman,
Kingstone, Hooge, & Kemner, 2019) has been
conducted on this topic. As it is not concerned with
looking behavior during the initiation of potential
interactions, we will not address it here further.

Looking behavior during locomotion and crowd
navigation

Another topic of research that is crucial for our
research question is that of the role of the visual
system in locomotion and crowd navigation. This
research topic has a long history (see, e.g., Gibson,
1958; Warren, 1998), with an emphasis on, for example,
how locomotion is controlled by visual information
and how crowd behavior emerges from visual control
of locomotion of multiple individuals (Moussaïd,
Helbing, & Theraulaz, 2011; Bonneaud & Warren,
2012; Warren, 2018).

Studies investigating looking behavior during
locomotion and crowd navigation have necessarily been
conducted in contexts where actions have consequences,
that is, where one can potentially bump into another
agent (whether virtual or real). Croft and Panchuk
(2018), for example, showed that participants’ looking
behavior was related to which pedestrian-avoidance
strategy they employed (passing behind the pedestrian
or rushing ahead). In other work, Jovancevic-Misic and
Hayhoe (2009) showed that participants quickly learned
which other pedestrians were likely to be on a collision
course with them and fixated these potential colliders
proactively in subsequent encounters. In a more recent
virtual reality study, Meerhoff, Bruneau, Vu, Olivier,
and Pettré (2018) showed that walking agents that were
at risk of colliding with the participant-controlled
agent were often fixated. These walkers were then
subsequently avoided. These studies combined show
that gaze is directed at other agents that are particularly
relevant (e.g., those that are on a collision course).
Furthermore, where gaze is directed in the world and
when (i.e., at oncoming pedestrians or not) can predict
where one will walk.

Toward an integration: Looking behavior and
potential interaction

As the opening example of our article makes clear,
there is more to encounters with other people than
simply avoiding them. Often, one needs to engage
in interaction with other people or vice versa. For
example, one might need to ask for directions, or
one is approached by a street marketeer. Where do
people look in such situations? Here, it is paramount
to stress that one’s gaze direction serves not only
visual-information seeking (e.g., Võ et al., 2012) but

may also be considered as a signal to somebody else.
For example, looking someone in the eye for a long
time may be perceived as aggressive. Thus, the question
becomes when and where do people look when they
simultaneously have to (a) navigate one’s surroundings,
(b) perceive what nearby agents might be up to, and (c)
engage in or refrain from interactions effectively?

With regard to navigating one’s surrounding while
perceiving what nearby agents may be up to, we recently
conducted a study (Hessels, van Doorn, Benjamins,
Holleman, & Hooge, 2020). We investigated whether
gaze needs to be directed to other people in order to
navigate human crowds effectively or whether gaze can
be flexibly directed to other people to seek out potential
social affordances (e.g., does a person afford potential
interaction or not?). Participants had to walk through a
lab center in the opposite direction from three groups
of walkers (i.e., actors carrying out a particular walking
instruction). Participants were first instructed to avoid
any collisions. Next, they were instructed to avoid
collisions and assess whether oncoming walkers made
eye contact with them. We found that participants’
gaze location in the world was task dependent. When
instructed to assess eye contact, participants looked
more to the heads of oncoming walkers than when they
were instructed only to avoid collisions. Interestingly,
the increased number of fixations to the walkers’ heads
came at the cost of looking at the walkers’ bodies. Thus,
during crowd navigation, there is enough flexibility
to fixate different parts of the body of oncoming
pedestrians to seek out social affordances.

With regard to engaging or refraining from potential
interaction while navigating one’s surroundings,
Foulsham, Walker, and Kingstone (2011) instructed
participants to walk around campus while their gaze
direction was measured with a wearable eye tracker.
They found that participants looked more at people
when they were far away than when they were near the
participant. One explanation the authors give is that
this was due to the social context: Participants might,
for example, have looked away at near distances to avoid
engaging in interaction with oncoming pedestrians. In
other work, Gallup, Hale, et al. (2012) have shown that
people tend to shift their gaze based on where others
in their proximity look but that this occurs more often
when those people are oriented away from the person
(Gallup, Chong, & Couzin, 2012). The authors stated
that “it appears that pedestrians do observe these cues
but choose either not to use this information to direct
their own gaze since this may enhance the possibility of
social interaction, or do so in a more covert manner”
(p. 522). In sum, these studies suggest that looking
behavior may help to avoid potential interactions during
locomotion.

In the present study, we extend these studies by
investigating where people look during locomotion
while they encounter others who may engage them in
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interaction. We are interested in the similarities and the
differences in looking behavior across participants and
whether differences in looking behavior predict whether
one engages in interaction. Our specific research
questions are as follows.

First, we investigate whether looking behavior during
locomotion depends on the potential to interact with
an oncoming person. We operationalize this by having
different walkers carry out behaviors that vary in
their potential to interact, from ignoring a participant
to greeting him or her or handing out a flyer. We
investigate whether and how looking behavior differs
across the different walker-behaviors: How much, when,
and where do participants look at an oncoming walker
depending on what behavior he or she is carrying out?
While previous research with videos has shown that
gaze location depends on the behavior of the depicted
agent, we are unaware of studies investigating looking
behavior to real people carrying out different behaviors.

Second, we investigate whether participants’ looking
behavior is idiosyncratic and consistent across the
different walker-behaviors. Previous research has shown
that whether individuals look predominantly at the
upper, middle, or lower part of the face generalizes from
static pictures to people engaged in the world (Peterson,
Lin, Zaun, & Kanwisher, 2016). Yet, no studies have
thus far investigated idiosyncratic looking behavior to
walkers across different behaviors carried out by those
walkers.

Finally, we investigate whether looking behavior
predicts engagement in interaction with the walker.
Previous studies (Foulsham et al., 2011; Gallup, Chong,
et al., 2012, Gallup, Hale, et al., 2012) have suggested
that gaze may be directed in such a way that potential
interactions during locomotion are avoided, but no
studies have investigated the relation between looking
behavior and the subsequent engagement of individuals
in the interaction.

These research questions combined will allow us
to discuss what a theory or model of gaze during
locomotion and potential human interaction needs
to consider and address how this may be achieved
in existing theories. Because our interest is in the
phenomenon that models of gaze behavior during
locomotion and potential human interaction need to be
able to explain, we take a predominantly descriptive (or
exploratory) approach in this study.

Methods

Participants

Participants were recruited at the Faculty of
Social and Behavioral Sciences of Utrecht University.
Twenty-three people volunteered (8 male, 15 female,

Figure 1. Schematic overview of the lab center with the starting
positions of all walkers (orange arrowheads, with first walker in
green arrowhead) and participant (light blue arrowhead).
Arrowheads point into the walking direction. Note that one
walker was actually a couple of walkers (see description of the
walker-behaviors). The black arrows indicate the route of the
participant. Headquarters (HQ) indicate where the eye-tracking
glasses were fitted. Each starting position is characterized by its
number. The corridors are between 40 and 45 m in length and
approximately 2.25 m wide.

mean age = 23.9 years, range 22–31 years). Written
informed consent was obtained from all participants
prior to the start of the study. The study was approved
by the Ethics Committee of the Faculty of Social and
Behavioral Sciences at Utrecht University (protocol
number FETC18-075) and adhered to the Declaration
of Helsinki.

Apparatus and setup lab center

Participants’ eye movements were measured
with the Tobii Pro Glasses 2 (firmware version
1.25.3-citronkola) and the Tobii Pro Glasses Controller
(version 1.95.14258) running on an HP Pavilion X2
with Windows 10. The Tobii Pro Glasses 2 were, apart
from practical reasons of availability, used as the data
quality of this device is less susceptible to slippage
of the eye tracker with respect to the head compared
with other wearable eye trackers (Niehorster, Santini,
et al., 2020). The Tobii Pro Glasses 2 recorded eye
movements at 50 Hz. The scene camera of the Tobii Pro
Glasses 2 recorded the view in front of the participant
at 25 Hz. The recordings were conducted in the lab
center of the Faculty of Social and Behavioral Sciences,
through which each participant walked one round. The
lab center consists of four corridors at 90◦ turns (see
Figure 1). The corridors are between 40 and 45 m long
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and 2.25 m wide. While walking a round through the lab
center, participants would encounter seven individual
walkers and one walker couple at regular intervals.

The nine walkers each carried out one of eight
behaviors (two walked together as a couple) as they
approached and walked past the participant. The
following behaviors were scripted (see Figure 2 for
staged photographs of these behaviors). Each is
characterized by a letter.

A. Pass the observer while looking at your phone.
B. Pass the observer while looking straight ahead and

saying nothing.
C. Pass the observer and say hi when you are about

3 m from him or her.
D. Confuse the observer about which side you are

going to pass (passing dance).
E. Walk toward the observer and stop (stand still)

when you are about 3 m from him or her. Once the
observer passes, continue walking.

F. Hand out leaflet to the observer.
G. Walk toward the observer and say “cool glasses!” to

the observer while pointing at your own eyes when
you are about 3 m from him or her.

H. Pass the observer while you are talking to your
fellow walker (suggestions for topics: work
experience, favorite holiday destinations, hobbies).

Each walker would begin at one of eight starting
positions, indicated in Figure 1 by S for starting position
and a number. The two walkers forming the talking
couple obviously started from the same position. For
each starting position, instructions were given for when
the walker should start walking:

S1. Start walking when the participant starts walking.
S2. Start walking when the walker ahead starts.
S3. Start walking when the walker ahead turns the

corner.
S4. Start walking when the walker ahead starts.
S5. Start walking when the walker ahead turns the

corner.
S6. Start walking when the walker ahead starts.
S7. Start walking when the walker ahead turns the

corner.
S8. Start walking when the walker ahead is halfway

through the corridor.

Note that the walker(s) located at S1 were hidden
partly behind a pillar so that they could observe the
participant without being easily seen. No instructions
were given on which side of the corridor the walker
should walk. However, most walkers, except for the
walker trying to engage the participants in a passing
dance, walked on the right side of the corridor. All
walker-behaviors and starting positions were trained
1 week before the experiment took place.

Figure 2. Staged photographs of the eight behaviors carried out
by the walkers in the present study. In this staged example, the
participant wears a yellow sweater, while the walkers wear gray,
blue, or black sweaters. Behaviors are depicted from three
sides. Letters correspond to the following walker-behaviors:
looking at a phone (A), looking straight ahead (B), saying “hi”
(C), passing dance (D), standing still (E), handing out a leaflet
(F), saying “cool glasses” (G), and the talking couple (H).

Randomization
In order to relate differences in the participants’

looking behavior to the walker-behavior, we need to
ensure that these differences cannot be ascribed to the
order in which each behavior is encountered or the
specific walker carrying out the behavior. Therefore,
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each walker was trained to carry out two of the eight
behaviors. Furthermore, the starting position of each
walker was varied for each experimental trial (one
experimental trial is one participant walking a round
through our lab center). Walkers carried out the same
behavior for every eight trials in a row, after which they
switched to their other rehearsed behavior. Starting
position was varied for each trial such that every walker
started from each possible starting position every eight
trials. In other words, every eight trials was a Latin
square for the different starting positions.

Procedure

Given the nature of the experiment, that is, a
wearable eye-tracking experiment in a lab center
with multiple walkers present to carry out different
behaviors, all trials were planned on the same afternoon.
When participants arrived in the coffee room on the
same floor as the lab center, they were each presented
with an information letter and a consent form by one
of the experimenters (author JK or GH). After giving
written informed consent, participants were led to an
adjacent room one by one. In this room, two of the
other experimenters (authors JB and IH) placed the
Tobii Pro Glasses 2 on the participant and conducted a
1-point calibration and a 9-point validation procedure.
When the participant was ready, he or she was picked
up by yet another experimenter (author RH) to be
taken to the lab center for the final instructions prior to
the experiment.

The participant was instructed to walk one round
through the lab center without bumping into anything
or anyone. When the participant started walking,
the first walker started walking as well (see above).
Completing one round took approximately 2 min,
after which the participant was escorted back to the
other experimenters where another 9-point validation
procedure took place. Hereafter, the eye tracker
was removed and the participant was asked to fill
in an exit interview with a number of demographic
questions (age, sex, handedness, etc.), a question about
whether their vision and audition were normal or
corrected-to-normal, and what they thought the study
was about. The next participant would then be taken to
the lab center for the next trial.

Immediately after each participant had left the lab
center, the walkers were directed to the next starting
position in preparation for the succeeding participant.
One of the experimenters (author AD) was positioned
at the far end in the lab center to check when all walkers
had taken their respective places. When the walkers
were ready, she notified author RH through the use of
a walkie-talkie (Motorola TLKR-T80 Extreme Quad)
that the lab was ready. Author RH was fitted with an
earpiece to make sure that participants did not overhear

this notification. Only after the notification would the
next participant be sent into the lab center.

The duration between the start of succeeding trials
was around 4 min. With 23 participants, this led to
a total approximate measuring time of 1.5 hr. Upon
completing all 23 trials, a central debriefing took
place where the walkers were revealed as actors. We
furthermore briefly introduced our research questions
to the participants and walkers.

Data analysis

With our experiment, we investigated looking
behavior in relation to walker distance and behavior. We
therefore needed to know (a) where participants looked
in the world at each point in time and (b) the distance at
which walkers were from the participant at each point
in time. In order to achieve these goals, we structured
our data analysis as follows. First, the scene camera
videos were coded for when walkers were in view of the
participant. Second, we used OpenPose (Cao, Hidalgo,
Simon, Wei, & Sheikh, 2018) to find the location of
each walker within the scene camera and estimate the
participant-walker distance. Third, we automatically
mapped gaze samples to areas of interest (AOIs)
in the world using our analyzed video data. Using
previously validated techniques (Hessels, Kemner, van
den Boomen, & Hooge, 2016; Hessels, Benjamins, et al.,
2018; Cao et al., 2018), we were able to construct a
fully automatic AOI analysis, which is thus completely
reproducible. Automatic and reproducible AOI analyses
are to be preferred over manual annotation, as (a) it
is often problematic to formalize the rules that human
coders apply during manual annotation, (b) these rules
are not necessarily applied consistently, and (c) it is
time-intensive to repeat the analysis (Hooge, Niehorster,
Nyström, Andersson, & Hessels, 2018). Each step of
our analysis is explained in detail below.

Video coding
The videos that were recorded from the scene camera

of the Tobii Pro Glasses 2 were analyzed to determine
when the participants’ rounds began and ended and
when participants passed walkers. The videos were
coded using Datavyu 1.3.7 (Datavyu Team, 2014) by
authors RH and JB. The times at which the following
six types of events occurred were coded:

(1) Beginning of a round: first frame in which the
participant moves into the direction of the first
hallway.

(2) Walker (or walker couple) comes into view of the
eye-tracker scene camera.

(3) Walker (or walker couple) is fully out of view of the
eye-tracker scene camera.
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Figure 3. OpenPose body keypoints for one of the staged
pictures of a walker-behavior. Note that not all keypoints are
always identified (e.g., the missing left foot of the person in the
yellow sweater). Note also that some keypoints are identified
even if they are occluded (e.g., the right wrist of the person in
the yellow sweater).

(4) End of a round: first frame in which the experimenter
(author RH) is in view.

(5) Nonwalker (see below) comes into view of the
eye-tracker scene camera.

(6) Nonwalker is fully out of view of the eye-tracker
scene camera.

The mean absolute difference in the coded times
between the two coders was 68.23 ms (SD = 416.83 ms).
The large standard deviation was primarily due to
coding the start and end of the round. When
excluding these codes, which are not relevant to our
analyses, the mean absolute difference was 21.72 ms
(SD = 78.37 ms). The averaged times were subsequently
used to constrain the OpenPose analysis (see below).

Note that nonwalkers were persons who happened to
be present in our lab center during our measurements
but had nothing to do with our experiment. Although
researchers were informed of the experiment taking
place in the lab center, we could not prevent the
incidental person walking through the lab center. These
episodes were coded from the scene camera videos to
allow us to exclude them from the analyses. In total, this
led to the exclusion of two episodes from two trials.

Estimation of walker location and distance using
OpenPose

The 25-keypoint model2 from OpenPose version
1.5.1 (Cao et al., 2018) was run on all scene camera
videos on a Windows 10 system with an Intel Core
i7-4770 CPU and two Nvidia GeForce GTX1080Ti
GPUs, allowing us to process the scene camera videos
at 25 Hz. An example of the OpenPose output (i.e., the
25 body keypoints) is given in Figure 3.

Matching walkers across frames: As OpenPose returns
keypoints for all detected people separately for each
video frame, additional processing is required to match
OpenPose keypoints to a specific walker identity. This
was achieved as follows. First, OpenPose keypoint
detections with confidence values under 0.2 were
removed. These confidence values range from 0 to
1. The threshold of 0.2 was chosen after trying out
various settings. This value was chosen such that body
keypoints were still being detected when the walker
was only partially in view. Second, for each walker,
our algorithm selected the frame at which this walker
disappeared from view of the eye-tracker scene camera.
Then, the algorithm went back in time frame by
frame until a person was detected by OpenPose with a
distance between the neck and hip keypoints exceeding
250 pixels. That person was identified as the walker.
Keypoints detected in previous frames (up to the frame
at which the walkers came into view based on the video
coding procedure) were assigned to the walker provided
that (a) the neck-hip distance did not exceed 1.1 times
the neck-hip distance in the previous successfully
matched frame and (b) the average position in the scene
camera image of the detected keypoints had not shifted
more than 20% of the vertical and horizontal resolution
since the previous successfully matched frame. Finally,
in order to allow for missed detections by OpenPose,
we accepted gaps up to a maximum of 10 frames
(400 ms) since the last successfully matched frame. For
the walker couple, a further step was implemented such
that identities within the couple were assigned based
on the smallest change in mean keypoint location from
frame to frame.

Upon assessment of the matching procedure, we
found that in four instances, a walker was not identified
correctly (i.e., it was missed). Varying the parameter
for the initial neck-hip distance (which was initially
set to 250 pixels in the scene camera image) led to
these instances being correctly identified. Yet, this
always came at the cost of introducing errors for
other instances of walker identification. Upon closer
examination, it turned out that these four instances
belonged to one walker carrying out one particular
behavior (walking toward the observer and stopping at
about a 3-m distance from the participant). To solve
the missing identification of this walker, the parameter
for initial neck-hip distance was set to 150 pixels for
these four instances, ensuring correct identification of
all walkers in all recordings.

Appendix B contains pseudocode for the walker-
matching procedure, so that readers may easily
implement our method in their future studies.
Estimating participant-walker distance: In order to
estimate the participant-walker distance given the size
of a walker in the scene camera video, we asked each
walker to measure the physical distance between their
neck and hip, using the respective OpenPose keypoint



Journal of Vision (2020) 20(10):5, 1–25 Hessels et al. 8

Figure 4. Relation between physical object size, object distance,
and object size in the scene camera image of the Tobii Pro
Glasses 2. A 90-cm object with marking at every 10 cm was
placed at various distances in front of the eye-tracker scene
camera. From snapshots of this video recording, sizes of a 40-,
60-, and 80-cm object were determined in the scene camera
image. The black line indicates the results of fitting a function
to the resulting data points.

locations as reference. This meant that for each walker,
we had (a) the physical neck-hip distance and (b) the
neck-hip distance for that walker in pixels of the scene
camera video for each video frame. Then, we placed
an object of known size (40, 60, and 80 cm) at fixed
distances in front of the eye-tracker scene camera
to establish the relation between physical object size,
distance, and object size in the scene camera image (see
also Appendix A). The resulting relation is depicted in
Figure 4.

A function was then fitted to the data, which are
depicted in Figure 4. The function was then rewritten
such that participant-walker distance could be estimated
from physical size of a walker’s neck-hip distance and
the corresponding size in pixels in the scene camera.
The resulting relation was

z = e
ln(x)−0.0170∗y−5.4016

−0.9594 (1)

where z is the participant-walker distance in meters, x
is the size of the walker’s neck-hip distance in pixels in
the scene camera image, and y is the physical neck-hip
size in centimeters. The fit for z as a function of x
revealed that this relation approaches the theoretically
expected 1/x relation. The fit for z as a function of y is
conveniently described as an exponential function.

Using Equation 1, the participant-walker distance
was estimated per walker. Note that for the walker-
couple (scripted behavior H), two walkers were present
in the scene camera image. As we did not instruct which
of these two walkers was to walk on the left or right of
the other, we estimated which walker was which from
the OpenPose output. For this, the average neck-hip

distance in pixels for frames in which two people were
detected by OpenPose was determined. The detected
walker with the lowest mean neck-hip distance was
assigned the lowest physical neck-hip size, and the other
walker was assigned the remaining physical neck-hip
size.

The resulting participant-walker distance can be
considered the distance between the participant and a
plane perpendicular to an axis with origin in the scene
camera moving forward into the world. We elaborate
on this in Appendix A.

Analysis of the eye-tracking data
Eye-tracking data quality: The quality of the eye-
tracking data was assessed as in Hessels et al. (2020).
We looked at three characteristics: (a) the accuracy,
or systematic error in the eye-tracking data, (b) the
precision, or variable error in the eye-tracking data,
and (c) data loss, that is, the amount of valid gaze
data recorded compared to the amount expected.
The systematic error was assessed manually by
the first author looking at the gaze replays of the
validation at recording start and end in GlassesViewer
(Niehorster, Hessels, & Benjamins, 2020). This was
done by determining whether the gaze location was
close to the 0.9-cm-wide red dot at the center of the
validation marker (a 4.5-cm-wide black ring). The
0.9-cm red dot subtended 0.77◦ assuming an eye height
of 170 cm and a distance between observer and wall
of 65 cm (see Hessels et al., 2020, for details). The
variable error was estimated by the median root mean
square sample-to-sample deviation (RMS). The RMS
deviation was computed for each recording using
GlassesViewer. A 300-ms moving window was slid
over the horizontal and vertical components of the
gaze position signal, after which the median RMS
deviation was calculated in order to exclude large RMS
values due to fast eye movements (i.e., saccades). A
two-dimensional RMS deviation was subsequently
calculated as the root of the sum of squares. Data loss
was estimated as the percentage of samples without
a gaze coordinate. Data loss occurs not only due to
blinks but also due to problems in tracking the eyes,
for example (see, e.g., Hessels, Andersson, Hooge,
Nyström, & Kemner, 2015).
Mapping gaze to areas of interest: In order to draw
conclusions about when and where participants looked
at the walkers, gaze data needed to be mapped to the
OpenPose keypoints (see Appendix B for pseudocode
of the gaze-mapping procedure). The scene camera
recorded at 25 Hz and thus OpenPose keypoint data
were available at 25 Hz, whereas the eye camera
recorded at 50 Hz. In order to couple the gaze data to
the OpenPose data, we first upsampled the OpenPose
data to 50 Hz using linear interpolation. Hereafter, we
assigned each gaze sample to a video frame. The offset
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Figure 5. Reference image for the size of walkers and the
hallway in the scene camera image. Width and height of the
hallway are given in pixels for a number of distances. The
walkers are presented at the size they would take up at
approximately a 3-, 15-, and 30-m distance, respectively.

between the timestamps of the interpolated OpenPose
data and the gaze data was empirically found to be
between −0.2 and 0.2 ms.

We then computed the distance between the gaze
coordinates and the locations of the OpenPose body
keypoints. A gaze coordinate was assigned to the
OpenPose keypoint for which the distance was smallest,
provided that the distance did not exceed 150 pixels.
This method is known as the limited-radius voronoi
tessellation (LRVT) method and has been shown to
be an objective method with regard to area-of-interest
(AOI) shape (i.e., no subjective choice is made for
what the AOI shape should look like). Moreover, it
was shown to be the most noise-robust AOI method
in sparse stimuli, that is, when there are not many
elements of interest in the visual scene (Hessels et al.,
2016). In order to give meaning to the 150 pixels, a
reference image of sizes is presented in Figure 5. The
150 pixels was chosen such that it allows for some
systematic error (inaccuracy) in the gaze-position
signal, even at the shortest participant-walker distance.
Importantly, we compare gaze on the walker across
the walker-behaviors, and the same settings are used
for each behavior. As a sensitivity analysis, we reran
the analyses using 100 and 200 as the LRVT radius.
The results were not meaningfully affected. Thus,
the relative differences between walker-behaviors are
maintained even when varying the LRVT radius.

Note that for walker-behavior H (i.e., the talking
couple), only those samples were considered in which
OpenPose keypoints were available for both walkers. If
the OpenPose keypoints for one walker were missing, it
was impossible to conclude whether the participant was
in fact not looking at either walker.

In the following analyses, we report three sets of
AOIs. First, we report gaze on the walker (any body
keypoint). Second, we report gaze on the separate

keypoints to visualize the distribution of gaze over
the walker. Third and finally, we report gaze on three
body AOIs: the upper body (head, neck, and shoulder
keypoints), arms (elbows and wrist keypoints), and
lower body (hips and lower body keypoints) to compare
participants’ looking behavior across walker-behaviors.
The AOI division of upper body, arms, and lower body
was made based on a consideration of the systematic
error (inaccuracy) in the gaze position signal. At
the largest participant-walker distances that we were
interested in, the systematic error in the gaze position
signal may not allow us to determine whether the
participant looks directly at the face of the walker. For
example, previous research has established that one
cannot generally distinguish gaze on facial features
using wearable eye trackers at conversation distance
(Niehorster, Santini, et al., 2020). Here we investigate
gaze on walkers at larger interpersonal distances and
thus choose a cruder AOI division, which includes a
larger AOI for the face/head area (upper body). Thus,
our analyses are not conducted at the resolution of the
systematic error (inaccuracy) in the gaze position signal.

As stated, the primary aim of our study is description
of gaze behavior across multiple potential interactions
during locomotion. Therefore, we follow advice from
Rousselet, Pernet, and Wilcox (2017) and adopt
detailed visualizations and bootstrapping techniques to
visualize differences in participants’ looking behavior
between walker-behaviors. For most analyses that
follow, we employ percentile bootstrapping using the
Harrell-Davis estimator to acquire 95% confidence
intervals around the median and deciles. This is
implemented using the MATLAB function decilespbci
provided by Rousselet et al. (2017). The number of
bootstrap samples was 2,000. The only exception is
the analysis of gaze on walkers over time, for which
we employed Gaussian smoothing and weighted
statistics as implemented by van Leeuwen, Smeets, and
Belopolsky (2019).

Results

Eye-tracking data quality and exclusion

We assessed the accuracy of the eye-tracking data as
in Hessels et al. (2020) and did not see any reason for
excluding eye-tracking data from any participants based
on the accuracy. Figure 6 depicts values for precision
and data loss for each participant. Based on the
observed data quality, as well as subjective assessments
of the recordings in GlassesViewer (Niehorster, Hessels,
et al., 2020), we decided to exclude participants with
more than 20% data loss or an RMS deviation of 60
pixels. These exclusion criteria led to the exclusion of
eye-tracking data from three participants (see Figure 6).
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Figure 6. Eye-tracking data quality measures for participant
exclusion. Each participant is represented by a marker. The
dashed lines represent the exclusion criteria based on
eye-tracking data quality (precision and data loss). Root mean
square sample-to-sample (RMS-s2s) deviation is used as a
measure for precision. Pixels refer to the scene camera image
(resolution of 1,920 by 1,080 pixels).

Two of the three recordings with a data loss value above
20% also had the highest RMS deviation values. Data
loss in the third recording could be characterized by
intermittent data loss for one of the eyes, precluding
the estimation of the gaze location with respect to the
video image. The 20% value also corresponds well with
previous observations with the Tobii Pro Glasses 2, that
is, a data loss range of 3–18% (Hessels et al., 2020).
The deviation of 60 pixels is 2.5 times smaller than the
LRVT radius (see Hessels et al., 2016) of our AOIs. As
such, we deem deviation values below 60 pixels not to be
problematic in assigning gaze to an AOI. Importantly,
each included participant contributed gaze data for the
analysis of every walker-behavior, even though data loss
for some participants could be up to 20%.

One participant was further excluded from the
subsequent analysis. When she was fitted with the
wearable eye tracker, she took her glasses off and
notified us that she could not see well enough without
glasses. She was therefore excluded from the analysis. At
her request, we allowed her to complete the experiment
nonetheless. The majority of the remaining participants
reported normal or corrected-to-normal vision. A few
participants reported that they might need glasses or
contact lenses but do not suffer any inconvenience due
to their not wearing correction. These participants were
therefore not excluded. In the end, eye-tracking data
from 19 out of the 23 participants were included.

Gaze on walkers

Our first research question was whether participants’
looking behavior depends on the walker-behavior. In

Figure 7. Gaze on walkers for each walker-behavior. Each
participant is represented by a gray marker. Orange markers
represent the median time in seconds that a walker was looked
at and error bars represent 95% confidence intervals of the
median, both of which were acquired through bootstrapping
using the MATLAB-function decilespbci provided by Rousselet
et al. (2017). These values are computed by summing all gaze
samples for which gaze was within 150 pixels of an OpenPose
keypoint and is reported under the assumption that each gaze
sample was exactly 20 ms (the Tobii Pro Glasses 2 records gaze
at 50 Hz). Walker-behaviors correspond to looking at a phone
(A), looking straight ahead (B), saying “hi” (C), passing dance
(D), standing still (E), handing out a leaflet (F), saying “cool
glasses” (G), and the talking couple (H).

this section, we show during which walker-behavior
walkers were looked at most and when. In the next
section, we show how gaze was distributed over the
walker’s body for the different walker-behaviors. Finally,
we investigate the idiosyncrasy of participants’ looking
behavior and whether looking behavior predicts
engagement in interaction with the walkers.

We first investigated which walker was looked at the
longest by computing the total time each participant
spent looking at the walker. These results are visualized
in Figure 7. As is visible from Figure 7, participants
did not look equally long at every walker. Participants
clearly looked longest at the walker who tried to engage
them in a passing dance (walker-behavior D; median
3.47 s, 95% CI [2.95, 4.08 s]). This is evident from the
fact that the 95% confidence intervals of the median
overlap only slightly with those of walker-behavior F
(hand out leaflet, median 2.64 s, 95% CI [2.34, 3.08 s]),
but do not overlap with the confidence intervals of
any of the other walker-behaviors. Differences in total
looking time to the remaining walker-behaviors were
much smaller. However, the single walkers who ignored
the participant (walker-behavior A, median 1.84 s, 95%
CI [1.35, 2.20 s], and walker-behavior B, median 1.74 s,
95% CI [1.36, 2.07 s]) were looked at least. Interestingly,
the talking couple (walker-behavior H, median 2.35 s,
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Figure 8. Proportion of participants who gaze at the walker as a function of time to pass (left panel) and participant-walker distance
(right panel). Each line represents a different walker-behavior. The lines were acquired by Gaussian smoothing individual gaze data
and subsequently computing a weighted average. Shaded areas represent the weighted standard error of the mean. Four
walker-behaviors are reported here (looking at a phone (A), saying “hi” (C), handing out a leaflet (F), and the talking couple (H)). The
remaining four walker-behaviors are reported in Appendix C.

95% CI [1.84, 2.70 s]) also ignored the participant but
was not among the walker-behaviors least looked at.
The remaining walker-behaviors fell somewhere in
between. The walker who said “hi” (C) was looked at
for a median 1.99 s (95% CI [1.65, 2.63 s]), the walker
who stood still (E) a median 2.26 s (95% CI [1.83,
2.87 s]), and the walker who said “cool glasses” (G) a
median 2.47 s (95% CI [1.97, 2.83 s]).

Gaze on walkers as a function of time to pass
and distance

Although the analysis of total looking time to the
walker gives insights into which walker was likely to
be looked at overall, one wonders how differences in
looking behavior to the walkers manifest over time. As
the participant and walker approach each other, some
walkers will direct themselves toward the participant,
while others will keep looking straight ahead and will
ignore the participant. We therefore investigated when
in time walkers were most likely to be looked at. As the
gaze position signals of the participants did not have
identical timestamps, we needed a method to convert
the different signals into the same time signal. For this,
we used a Gaussian smoothing filter for the individual
gaze data over time using the implementation by van
Leeuwen et al. (2019). For each participant, a signal
containing 1s (walker was looked at) and 0s (walker
was not looked at) for each sample was smoothed. We
then investigated (a) how likely walkers were looked
at as a function of time to pass (i.e., time until the
walker passed out of the scene camera image) and

(b) how likely walkers were looked at as a function
of participant-walker distance. The kernel size was
set to 0.3 s for the time analysis and 0.5 m for the
distance analysis. All individual smoothed data were
then averaged using a weighted method, whereby
we accounted for the fact that not all participants
contributed an equal number of data points to each
time or distance. In a similar vein, a weighted standard
error of the mean was estimated for each time series to
allow comparisons between walker-behaviors (see van
Leeuwen et al., 2019, for details). As stated before, our
analysis is primarily descriptive. We did not carry out
statistical analyses on these time series, as doing this
effectively means carrying out 28 pairwise comparisons
(van Leeuwen et al., 2019). Moreover, we did not have
specific hypotheses to test on these time series.

Figure 8 depicts the proportion of participants
who gazed at a walker as a function of time to pass
(where t = 0 s corresponds to the last point in time at
which the walker was visible in the scene camera image)
and distance (using the estimation outlined above) for
four walker-behaviors (the remaining walker-behaviors
are reported in Appendix C). As is visible from the
left panel in Figure 8, the walkers who handed out
a leaflet (walker-behavior F) and the talking couple
(walker-behavior H) were most likely to be looked at
by all participants at the same time (as indicated by
values close to 1). Interestingly, this peak occurred
slightly earlier in time (and at a farther distance) for the
talking couple (walker-behavior H) than for the walker
handing out a leaflet (walker-behavior F). The walker
saying “hi” to the participant (walker-behavior C) had
a slightly lower peak at around 1 s time to pass. The
walker looking at their phone (walker-behavior A) was



Journal of Vision (2020) 20(10):5, 1–25 Hessels et al. 12

least likely to be looked at just prior to passing. The
right panel in Figure 8 gives insight in the distance at
which walkers were likely to be looked at, separated
again by walker-behavior. Interestingly, at a distance
of 12 m, all walkers were almost equally likely to be
looked at.

The analyses reported in this section, and those
in Appendix C, suggest that the more walkers direct
themselves toward the participant, the more likely they
are to be looked at. The talking couple (walker-behavior
H) seems to be the exception. These walkers are not
directed toward the participant but are nonetheless
likely to be looked at by all participants around 2–3 s
before passing. Interestingly, the timing of the peak
differs notably from those for walkers who direct
themselves clearly toward the participant.

Gaze on walker bodies

Following the analysis of which walkers were most
likely to be looked at and when, we asked ourselves
where participants looked on the body of each walker.
Is it the case that where walkers are looked at depends
on the specific behavior they carry out? And if so, do
participants then primarily look at the “informative”
regions of the walker? Each gaze sample was assigned
to a specific OpenPose body keypoint, with which we
could visualize on which body part walkers were looked
at. The top two rows in Figure 9 depict the number of
gaze samples assigned to each body keypoint for each
of the eight walker-behaviors. The more gaze samples
assigned to a keypoint, the larger the radius of the blue
circles. As the Tobii Pro Glasses 2 recorded gaze at
50 Hz, each gaze sample took 20 ms. Inspection of the
intersample interval revealed jitter of up to 0.3% of the
sampling frequency and no missed frames. As such, the
sum of the number of gaze samples is proportional to
the total time a walker was looked at, that is, the sum
of gaze samples multiplied by 20 ms, which ranged
from 1.5 to 4 s across the different walker-behaviors (see
Figure 7). As a total looking time in seconds is easier to
interpret than a number of gaze samples with arbitrary
duration, we discuss the findings below in terms of total
looking time.

As reported above and again visible from the top
two rows in Figure 9, the walker engaging participants
in a passing dance (walker-behavior D) was looked at
the longest, while the individual walkers in the talking
couple (walker-behavior H) were looked at the least
(for the analyses of total looking time reported above,
the looking times to both walkers are summed). In
order to better compare gaze on the walker body
across walker-behaviors, we also computed the relative
total looking time to each body keypoint for the eight
walker-behaviors. These are depicted in the bottom
two rows in Figure 9. As visualized here, participants’

gaze for the walker engaging the participant in a
passing dance (walker-behavior D) was mostly divided
over the upper body (head, neck, and shoulder) and
arms. For the walkers saying “hi” or “cool glasses”
(walker-behaviors C and G), participants’ gaze was
mostly directed at the upper body, while for the
walkers standing still in the hallway or handing out a
leaflet (walker-behaviors E and F), gaze was mostly
on the upper body and arms. For walkers looking
at their phone or looking straight ahead and the
talking couple, gaze was mostly directed at the upper
body, although less so than for walker-behaviors
C and G.

In order to quantitatively compare participants’
looking behavior to the walker bodies across the
different walker-behaviors, we computed deciles and
95% confidence intervals of the deciles for the entire
distribution of participants’ looking behavior to three
AOIs: the upper body (head, neck, and shoulder),
arms, and lower body. In this manner, we not only can
compare whether the medians or means differ across
two walker-behaviors but also can visualize how the
entire distributions differ (Rousselet et al., 2017). This
is particularly relevant as distributions of gaze over
AOIs are generally not normally distributed, and large
interindividual differences may be observed. The 95%
confidence intervals were acquired using bootstrapping.
For simplicity’s sake and in order to ease comparison,
we compare three different walker-behaviors that
differ in the degree to which they are directed toward
the participant. Comparisons for the remaining five
walker-behaviors are given in Appendix C.

Figure 10 depicts distributions of the proportion
of gaze participants spent looking at the upper body,
arms, and lower body for walkers looking at their phone
(walker-behavior A), saying “hi” (walker-behavior
C), and handing out a leaflet (walker-behavior
F). These three walker-behaviors are either not
(walker-behavior A), verbally (walker-behavior C), or
verbally and manually (walker-behavior F) directed
at the participant. As can be seen in the left panel in
Figure 10, the median proportion (Decile 5) of gaze at
the upper body of the walker saying “hi” was higher
(median 0.80, 95% CI [0.64, 0.87]) than for the two
other walker-behaviors (walker-behavior A median
0.47, 95% CI [0.38, 0.63]; walker-behavior F median
0.52, 95% CI [0.43, 0.58]). Moreover, as visible from
the middle panel, the median proportion of gaze at the
arms of the walker handing out a leaflet was higher
(median 0.33, 95% CI [0.30, 0.38]) than for the walker
saying “hi” (median 0.13, 95% CI [0.10, 0.19]), although
there was some overlap with the walker looking at their
phone (median 0.25, 95% CI [0.15, 0.32]). Finally, as
visible from the right panel, the median proportion
of gaze at the lower body was highest for the walker
looking at their phone (median 0.24, 95% CI [0.09,
0.35]), although the 95% confidence interval shows
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Figure 9. Total looking time and relative total looking time to parts of the walker bodies for each of the eight walker-behaviors. Each
walker body consists of 25 points, which correspond to the OpenPose body keypoint of the 25-keypoint model. The top two rows
represent total looking time to parts of the walker bodies. The radius of the blue circles represents the number of gaze samples
assigned to a keypoint, and under the assumption that the Tobii Pro Glasses 2 records gaze at exactly 50 Hz, it is proportional to the
total looking time. The bottom two rows represent relative total looking time to parts of the walker bodies for each of the eight
walker-behaviors. The radius of the orange circles represents the number of gaze samples assigned to a keypoint divided by the total
number of gaze samples on a walker. Under the assumption that the Tobii Pro Glasses 2 records gaze at exactly 50 Hz, this is
proportional to the relative total looking time.

more overlap with the walker saying “hi” (median 0.06,
95% CI [0.03, 0.13]) and the walker handing out a leaflet
(median 0.15, 95% CI [0.06, 0.24]) than for the other
two AOIs.

The analyses reported in this section suggest that
participants’ gaze on the body of the walkers depended
on what that walker was doing, and that gaze was
attracted to the location that seems intuitively relevant
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Figure 10. Proportion of gaze on the upper body, arms, and lower body for three walker-behaviors (looking at phone, saying “hi,” and
handing out a leaflet). Each marker represents the decile value for the participant distribution. Error bars represent 95% confidence
intervals around the decile values acquired through bootstrapping using the MATLAB function decilespbci provided by Rousselet et al.
(2017).

for that behavior (head for walker-behavior C, arms for
walker-behavior F). Similar patterns are observed for
the other walker-behaviors (see Appendix C).

Individual differences in looking behavior

Our second research question was whether
participants show idiosyncratic looking behavior that
is consistent across walker-behaviors. The distributions
shown in Figure 10 already make clear that participants
differed in how their gaze was distributed over the
walker bodies. We further investigated idiosyncratic
looking behavior by determining how consistent
individuals were in how long they looked at the walkers
and where on the body they did so. We computed
Spearman rank correlations across the different
walker-behaviors to determine this consistency. As we
had eight walker-behaviors in total, this led to 28 unique
comparisons of two walker-behaviors. We computed
Spearman correlations for the absolute time walkers
were looked at, the relative time walkers were looked at,
and the proportion of gaze on the upper body, arms,
and lower body AOIs.

As is visible from Figure 11, the median correlation
coefficient was positive for all measures of looking
behavior. The correlations were higher for the
proportion of gaze on the separate body part AOIs
(upper body median 0.50, 95% CI [0.42, 0.56]; arms
median 0.30, 95% CI [0.22, 0.36]; lower body median
0.44, 95% CI [0.39, 0.50]) than for the absolute (median
0.24, 95% CI [0.15, 0.30]) and relative (median 0.25,
95% CI [0.12, 0.34]) measures of gaze on the walker.
This means that participants were somewhat consistent
in how long they looked at a walker, but they were

Figure 11. Spearman rank correlations between
walker-behaviors for the (proportion of) time a walker (left
panel) or body AOI (right panel) was looked at. Each gray marker
represents one combination of two walker-behaviors. Orange
markers represent the median correlation coefficient and error
bars represent 95% confidence intervals of the median, both of
which were acquired through bootstrapping using the MATLAB
function decilespbci provided by Rousselet et al. (2017).

even more consistent in where they looked on the body
of a walker. This is particularly interesting as we have
shown before that where participants looked on the
body of the walker depended on the walker-behavior.
As such, this suggests that where one looks at an
oncoming walker depends not only on the behavior of
the oncoming walker but also on the individual doing
the looking.

Looking behavior and engagement in
interaction

Our third and final research question was whether
one’s looking behavior relates to the engagement in
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Figure 12. Proportion of gaze on walker as a function of
whether participants responded to the “cool glasses” comment
by one of the walkers. Each gray marker represents one
participant. Orange markers represent the median and error
bars represent 95% confidence intervals of the median, both of
which were acquired through bootstrapping using the MATLAB
function decilespbci provided by Rousselet et al. (2017).

potential interactions. We had three walker-behaviors
for which participants could be considered to “engage”
in an interaction with the walker. These are (a) the
walker saying “hi,” (b) the walker saying “cool glasses,”
and (c) the walker handing out a leaflet. Manual
annotation of the scene camera videos revealed that
all participants accepted the leaflet, while only one
participant did not say “hi” back. However, 7 out of
23 participants did not respond verbally to the walker
saying “cool glasses.” Note that annotation of the
verbal responses was done prior to the analysis of
the gaze data and in absence of a gaze overlay. These
participants either did not say anything or merely gave
a small laugh. As such, we compared whether these two
groups differed in the proportion of time they looked at
the walker. As 4 of the participants were excluded from
our analysis (see above), we compared 6 nonresponders
against 13 responders.

As is visible from Figure 12, four nonresponders
were among the five participants who looked
proportionally least at the walker, while two of the
nonresponders looked around 80% of the time at
the walker. The median proportion of gaze on the
walker by the nonresponders was 0.54 (95% CI
[0.33, 0.77]), while the median proportion of gaze
on the walker by the responders was 0.75 (95% CI
[0.69, 0.85]). Although there was not a lot of overlap
between the 95% confidence intervals of the median,
a Mann-Whitney U test revealed that the difference
was not statistically significant at an alpha of 0.05
(U = 21, n1 = 6, n2 = 13, p = 0.127).

Discussion

We investigated where people look during locomotion
while they encounter others who may engage them in
interaction. We studied both the similarities and the
differences in looking behavior across participants and
whether differences in looking behavior predict whether
one engages in interaction. We summarize our main
findings, after which we discuss potential avenues to
modeling gaze during locomotion and potential human
interaction.

Our first main finding pertains to how much and
when participants looked at the different walkers. Our
results suggest that the more walkers direct themselves
toward the participant in their behavior, the more they
are looked at. Walkers who ignored the participant
and looked straight ahead or on their phone were
looked at least, while walkers who handed out a flyer
or tried to engage the participant in a “passing dance”
were looked at most. The exception to the rule is the
talking couple. These walkers are not directed toward
the participant but to each other, yet are also likely
to be looked at. Notably, the peak likelihood that
the talking couple was looked at was 2–3 s prior to
passing the participant, while the peak likelihood
was later (i.e., 1–2 s prior to passing) for the walkers
who directed themselves toward the participant. Why
might the talking couple be looked at more than the
other walkers who directed themselves away from the
participant? We consider two potential explanations.
First, it may be that gaze was more readily assigned to
a walker in the talking couple as less space was left in
the hallway to look elsewhere. The two walkers took
up a large portion of the width of the hallway (around
50%). Therefore, if a participant looked toward the
end of the hallway, the gaze position was closer to a
walker for the talking couple than when just one walker
was present. However, if this were the case, then we
might expect that gaze was mostly assigned to the
body keypoints to the right of the rightmost walker
(the walking couple passed the participants on the
left from the participant’s perspective on all but one
occasion). Figure 9 clearly shows that this is not the
case. An alternative explanation is that the conversation
between the two walkers attracted the gaze of the
participant, that is, to overhear or attend part of the
conversation.

Our second main finding is that walkers tended
to look at different body parts for the different
walker-behaviors. It seems that the body part that was
looked at was intuitively relevant for what that walker
was doing. For example, participants looked relatively
more at the upper body (head, neck, and shoulders)
for walkers saying “hi” and “cool glasses” than they
did for the walkers who did not verbally address the
participant. Similarly, participants looked relatively
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more at the arms of the walkers handing out a flyer
or standing still in the hallway (see Appendix C) than
they did for walkers who did not reach out an arm.
We thus extend previous research that has shown that
participants look at areas of the body of a person
depending on what that person does (Scott et al., 2019).
Critically, we show that this is also the case when
participants share the same physical space with their
passers-by and thus can interact with them in a direct
way, as opposed to when they observe others in a video.

Previous research has shown that looking behavior
to faces is highly idiosyncratic (see, e.g., Peterson &
Eckstein, 2013; Mehoudar et al., 2014; Kanan et al.,
2015; Arizpe et al., 2017). Here, we investigated to what
degree our participants were consistent in how long
they looked at walkers and where they looked on the
body of the walkers. In other words, we investigated
idiosyncratic looking behavior to whole human bodies
(including faces), not faces specifically. We showed that
participants were somewhat consistent in how long they
looked at walkers (with median correlations of around
0.25). Participants were even more consistent in how
they distributed their gaze over the body of the walker
(with median correlations between 0.3 and 0.5). This
finding is particularly intriguing given that there were
also quite large differences in where walkers were looked
at depending on what the walkers were doing. For
example, the median proportion of gaze directed at the
upper body for the walker saying “hi” was around 0.8,
while it was lower than 0.5 for the walker looking at her
phone. Thus, although participants looked more at the
upper body overall, the relative differences in how long
they looked at the upper body were partly maintained.
Combined, these findings make clear that where one
looks at an oncoming walker depends not only on what
that walker is doing but also on the individual who is
doing the looking.

Finally, we investigated whether looking behavior
relates to whether one engages in an interaction or not.
Out of the three walker-behaviors that a participant
could “respond” to, we only observed enough variation
for one. That is, some participants responded to the
walker commenting “cool glasses,” while others did
not. While the participants who did not respond
appeared to look relatively less at the walker than the
participants who did respond, the difference was not
statistically significant. Given the small sample sizes for
this comparison (13 vs. 6 participants), we cannot draw
any firm conclusions on this question. Future studies
should be helpful in targeting this particular question,
bearing in mind that potential interactions are chosen
such that they elicit enough variation in participant
behavior.

As we noted in our introduction, our findings are
relevant in the context of theories or models of gaze
during locomotion and potential human interaction,
and their applications in social robotics. What does

such a model need to consider, given our findings? And
what aspects of our findings can be accurately captured
in existing models? The main candidate is a model
of gaze based on visual routines theory (Hayhoe &
Ballard, 2005, 2014). This theory derives from research
on looking behavior during everyday activities, in which
it has been shown that the gaze location in space is
tightly linked to the task being carried out, for example,
when making tea (Land, Mennie, & Rusted, 1999),
making sandwiches (Hayhoe, 2000), reading music, and
playing table tennis (Land & Furneaux, 1997). Land
et al. (1999) concluded that even for highly automated
processes, gaze is directed to the task-relevant locations
in the world at every step of the process, stating that this
“must be a common phenomenon in everyday life” (p.
1311). The basic principles of the visual routines theory
are aptly illustrated in Figure 1 by Hayhoe (2017).
Overarching “cognitive goals” such as “walking across
the street” are subdivided into subtasks (monitoring
context, avoiding obstacles, etc.). It is assumed that
there is a specific fixation location in the visual world
that may be informative for each subtask (i.e., the visual
routines). The choice for which subtask to update
by looking at a location in the world is based on the
expected reward of completing a subtask and the
uncertainty about its current state. The use of visual
routines is indeed an elegant method for modeling
gaze in many different behaviors, which seems “at first
blush intractable, given the diversity and complexity
of visually guided behavior” (Hayhoe & Ballard, 2014,
p. R622).

Models based on visual routines theory are applicable
when the “cognitive goal” can be divided into clear
subtasks, for example, by experimenter observation.
The question is whether a clear subtask division may be
identified for encounters and potential interactions with
others (as in the opening example of our article). In our
experiment, participants were asked to navigate a lab
center and avoid collisions. If this instruction is framed
into a task-structure of (a) maintaining a certain
heading and (b) avoiding obstacles, with each subtask
having a relevant fixation location in the world, this
would not predict the differences in looking behavior to
the various walkers that our participants encountered.
For example, the walker looking at their phone and
the walker saying “hi” were equally easy to avoid, yet
were looked at differently by the participants. As such,
we would have to suggest subtasks post hoc that may
predict the differences in gaze on the various walkers.
The individual differences in gaze on the walkers (which
were consistent across the various walker-behaviors)
might then be explained with different reward weights
for a subtask of engaging in interaction, for example.
Thus, the visual routines theory may be useful in
modeling our findings. However, one wonders whether
our situation is constrained enough that clear visual
routines with corresponding locations in the world that
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have to be fixated can be identified. Moreover, it is
likely that such a subtask division might not generalize
beyond our specific context. That might be problematic
when one considers, for example, the development of
an assistive robot meant to assist in a nursing home and
engage in meaningful interactions with the elderly.

Another approach that makes sense is suggested by
Dautenhahn (2007). She argues that

an alternative viewpoint towards AI is to propose that one
particular aspect of human intelligence, namely social in-
telligence, might bring us closer to the goal of making
robots smarter (in the sense of more human-like and believ-
able in behaviour); the social environment cannot be sub-
sumed under ‘general environmental factors’, i.e. humans
interact differently with each other than with a chair or a
stone. (p. 681)

A more generalizable approach to modeling gaze
during locomotion and potential human interaction
may be to consider the social context the human is
embedded in. A human who is navigating through the
world and might engage in (or refrain from) interactions
with others can be said to be socially motivated (or
unmotivated). We surmise that this social motivation
might be a useful attribute in modeling gaze during
locomotion and potential human interaction. Recent
work on social anxiety corroborates this idea. Rubo,
Huestegge, and Gamer (2020), for example, showed
that social anxiety traits were negatively related to the
percentage of fixations directed to persons at a near
distance while walking through a train station. Thus,
high socially anxious individuals tended to look less at
other people at a near distance than low socially anxious
individuals. See also Hessels, Holleman, Cornelissen,
Hooge, and Kemner (2018), who showed that looking
behavior in dyadic conversation was related to social
anxiety traits, and Rösler, Göhring, Strunz, and
Gamer (2020), who showed no relation between social
anxiety traits and looking behavior in a waiting room
context. Although we have shown in our experiment
that consistent differences in looking behavior across
participants occur, we cannot attribute this to social
anxiety, as we did not assess social anxiety traits.

A principled approach to modeling gaze during
locomotion and potential human interaction may thus
consider the following aspects. First, there may be
“events” in the world that automatically attract gaze,
for example, another person calling out one’s name
or someone running around a corner. Some might
consider this “bottom-up” attraction of gaze. Second,
humans may be differentially socially motivated, which
predicts how likely they are to engage in interaction
with others. Note that social motivation need not be
implemented as, say, a “social motivation” setting in
a robot’s software but may rather be considered as
something attributed to an agent (human or robot)

depending on their likeliness to engage in interaction
(which can be implemented in various ways). As such, a
robot designed to assist the elderly in a nursing home
may be perceived as highly socially motivated, while
a robot that cleans the floors in the nursing home
but barely exchanges a greeting may be perceived as
socially unmotivated. Finally, when an agent engages in
particular constrained interactions, models based on
visual routines theory may be used, such as for holding
a simple face-to-face conversation (see, e.g., Mihoub,
Bailly, Wolf, & Elisei, 2015; Hessels et al., 2019). The
approach we propose here may be useful in (a) modeling
looking behavior to various agents encountered in
the world carrying out different behaviors and (b)
modeling individual differences in looking behavior
across potential human interactions.

In the present article, we have reported looking
behavior to human bodies and faces for several potential
human interactions during locomotion. Of course, our
selection of potential interactions is necessarily limited
in scope. There are many more interactions that one
may conceive to which a model of gaze during potential
human interactions should apply. We hope future
research will address both model-based approaches to
gaze during potential human interactions and test these
empirically across many different human interactions.

Conclusion

In the present article, we have shown that
participants’ looking behavior to other walkers during
locomotion depended on what that walker was doing,
for example, greeting or ignoring the participant.
Participants’ gaze tended to be directed toward the
most relevant body part for the behavior carried out
by a particular walker. Furthermore, we have shown
that how long and where a walker is looked at varied
across participants but was consistent across walkers.
This was particularly the case for where on the walker’s
body participants looked, more so than how long
walkers were looked at. Finally, we investigated whether
participant engagement in interaction with the walker
was related to their looking behavior. It seemed that
participants who did not respond to the walker looked
less at him or her, although this difference was not
statistically significant. We have discussed our findings
in the light of existing theories of gaze allocation. We
suggest that modeling social motivation might prove
to be a fruitful addition to existing models of gaze
allocation.

Data availability

OpenPose and eye-tracking data are available from
the authors upon reasonable request. Due to privacy
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regulations, videos recorded using the Tobii Pro Glasses
2 cannot be made available.
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Footnotes
1This is aptly captured in movies such as Lola rennt (1998, directed by
Tom Tyker) and Groundhog Day (1993, directed by Harold Ramis), where
multiple instances of the same encounter are portrayed but where the
outcomes are vastly different depending on how the protagonist engages
with the other person.
2The output format and keypoint locations from this model are described
at https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/
master/doc/output.md, accessed February 14, 2020.
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Appendix A: Estimating
participant-walker distance

To uncover the relation between physical object size,
distance between object and scene camera, and object
size in the scene camera image, we conducted a number
of tests. First, we moved a 90-cm object on a plane
and an arc in a horizontal direction at 200 cm from the
scene camera (see Figure 13A). This yielded different
horizontal positions in the scene camera image, as
well as different sizes in that scene camera image. The
relation between these two is depicted in Figure 13C.
Similarly, we moved a 90-cm object on a plane and an
arc in vertical direction at 200 cm from the scene camera
(see Figure 13B), with the relation between vertical
position in the scene camera image and the object size
in that image depicted in Figure 13D.

When an object is moved horizontally on a plane
perpendicular to the axis from the scene camera into
the world (see Figure 13A), the size of that object in
the scene camera image does not change (Figure 13B),
whereas it does when the object is moved along an
arc for which each point is at exactly 200 cm from

http://doi.org/10.1167/14.7.6
http://doi.org/10.1007/s12193-015-0190-7
http://doi.org/10.1073/pnas.1016507108/-/DCSupplemental
http://doi.org/10.3758/s13428-019-01314-1
http://doi.org/10.3758/s13428-019-01307-0
http://doi.org/10.1177/0956797612471684
http://doi.org/10.1167/16.7.12
http://doi.org/10.1177/0963721415617806
http://doi.org/10.31234/osf.io/gps3h
http://doi.org/10.1111/ejn.13610
http://doi.org/10.1111/bjop.12396
http://doi.org/10.1111/cgf.12603
http://doi.org/10.3758/s13414-018-1588-6
http://doi.org/10.1016/j.specom.2014.05.005
http://doi.org/10.3758/s13414-019-01788-3
http://doi.org/10.1167/12.13.3
http://doi.org/10.1177/0963721417746743
http://doi.org/10.1080/10407413.1998.9652682
http://doi.org/10.1007/978-1-4899-5379-7


Journal of Vision (2020) 20(10):5, 1–25 Hessels et al. 21

Figure 13. Relation between scene camera-object distance, position in the scene camera image, and the size of an object in that
image. (A) Schematic of the plane (dashed line) and arc (solid line) along which objects were moved in horizontal direction. The
shaded gray area represents the field of view of the scene camera. (B) Schematic of the plane (dashed line) and arc (solid line) along
which objects were moved in a vertical direction. The shaded gray area represents the assumed field of view during the recording.
The shaded green area represents the estimated actual field of view during the recording. (C) Relation between the average
horizontal position of a 90-cm object in the scene camera image and its size in that image when moved along a plane (white
diamonds) or arc (black circles). (D) Relation between the average vertical position of a 90-cm object in the scene camera image and
its size in that image when moved along a plane (white diamonds) or arc (black circles).

the scene camera. When an object is moved vertically
on a plane perpendicular to the axis from the scene
camera into the world (see Figure 13C), the size of that
object in the scene camera image does, however, change
(Figure 13D). This is likely due to the fact that the scene
camera is tilted downward rather than forward-facing
(see the green triangle in Figure 13B).

Based on the reported findings in Figure 13, we
conclude that the estimate of distance used in our study
corresponds to the distance between the scene camera
and a plane perpendicular to the axis from that scene
camera into the world. Note, however, that that plane
is tilted backward with respect to the hallway through
which our participants walked.

Appendix B: Pseudocode for
mapping gaze to walkers

In this appendix, we outline in pseudocode our
procedure for mapping the gaze position signal to

the walkers. Because there is no standard for how
pseudocode should be written, a brief (perhaps
superfluous) explanation follows. We use SET to
indicate relevant variables that may be set by the
experimenter. FOR and END FOR are used to indicate
loops. IF, ELSE, AND IF, and END IF are used
for conditional actions. DO indicates some action
and LOAD indicates that data are loaded into the
analysis.

The mapping procedure contains two distinct
steps. First, walkers are identified from the OpenPose
data and matched across frames. Second, the gaze
position signals are mapped to the walker keypoints.
Below these two steps are written out in pseudocode.
The situation for our walker couple is slightly more
complicated and involves keeping track of whether
none, one, or two walkers were already identified and
matching keypoints to the closest walker. We expect
anyone with programming experience to be able to
generalize the examples below to this, and potentially
more complicated, scenarios.



Journal of Vision (2020) 20(10):5, 1–25 Hessels et al. 22

Identifying walkers from the OpenPose data and matching across frames

SET initial neck-hip distance in pixels
SET alternative neck hip distance in pixels
SET maximum change factor for neck-hip distance across frames
SET maximum number of frames when walker tracking is lost
SET OpenPose confidence value cutoff
SET maximum horizontal shift in pixels for walker matching
SET maximum vertical shift in pixels for walker matching

FOR recording number is 1 to maximum number of recordings

LOAD frame start and end numbers for each walker (acquired with datavyu)
LOAD OpenPose keypoints per frame

FOR walker number is 1 to 8

IF alternative settings needs to be used
DO use alternative neck-hip distance in this iteration

ELSE
DO use initial neck-hip distance in this iteration

END IF

FOR walker end frame number to walker start frame number with steps of -1

FOR all detected people by OpenPose for this frame
DO remove keypoints with values below confidence cutoff
DO calculate distance between neck and mid hip keypoints

END FOR

IF not already tracking a walker

IF largest neck-hip distance exceeds initial neck-hip distance
DO start tracking walker and add keypoint locations

to walker data
END IF

ELSE already tracking a walker

IF last walker position was more than maximum number
of frames ago
DO save walker data
DO continue to next walker

END IF

FOR all detected people by OpenPose for this frame
DO compute mean difference in keypoint location

to last known walker position
DO compute difference between neck location

and last known neck location
DO compute difference between hip location

and last known hip location
END FOR

DO find detected OpenPose person with smallest mean
difference to last known walker position
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IF neck-hip distance does not exceed previous known walker
neck-hip distance times change factor

AND IF shift in neck location does not exceed maximum
horizontal and vertical shifts

AND IF shift in hip location does not exceed maximum
horizontal and vertical shifts

DO match walker and add keypoint locations to walker data
END IF

END IF

END FOR frame number
END FOR walker number

END FOR recording number

Mapping gaze coordinates to the walker keypoints

SET radius for LRVT method

FOR recording number is 1 to maximum number of recordings

LOAD gaze position data (pixels in scene camera image)

FOR walker number is 1 to 8

LOAD walker keypoint locations
DO upsample walker data from 25Hz to 50Hz

FOR every frame for which walker keypoint location is available

DO find gaze sample corresponding to video frame number
DO compute difference between gaze position and every walker keypoint
DO assign gaze to walker keypoint with smallest difference IF it does

not exceed the LRVT radius

END FOR frame number
END FOR walker number

END FOR recording number
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Appendix C: Gaze on walkers and
walker bodies

In this appendix, we first present the analysis of
gaze on the walker as a function of time to pass and
participant-walker distance for the remaining four
walker-behaviors not covered in the main text. Second,
we present the analysis of gaze on the walker body AOIs
for the remaining five walker-behaviors not covered in
the main text.

Figure 14 depicts the proportion of participants who
gazed at a walker as a function of time to pass (where
t = 0 s corresponds to the last point in time at which
the walker was visible in the scene camera image) and
distance (using the estimation outlined above) for the
four remaining walker-behaviors not covered in the
main text. As is visible from the left panel in Figure 14,
the walker who tried to engage the participant in a
passing dance (walker-behavior D) was most likely to
be looked at by all participants at the same time (as
indicated by values close to 1). The walker saying “cool
glasses” to the participant (walker-behavior G) had a
slightly lower peak, although the difference is small. The
walkers looking straight ahead (walker-behavior B) or
standing still in the hallway (walker-behavior E) showed
a comparable profile from around 2 s time to pass. The
right panel in Figure 14 gives insight in the distance at
which walkers were likely to be looked at, separated
again by walker-behavior. Interestingly, at a distance of
12 m, all walkers were almost equally likely to be looked
at.

Figures 15 and 16 depict distributions of the
proportion of gaze on the upper body, arms, and lower
body. As stated above, deciles and 95% confidence
intervals for the entire distribution of participants’
looking behavior to the three AOIs (the upper body,
arms, and lower body) were acquired such that we could
visualize whether and how the entire distributions differ
(Rousselet et al., 2017). Figure 15 depicts distributions
for the walkers looking straight ahead (walker-behavior
B), saying “cool glasses” (walker-behavior G), and
standing still in the hallway (walker-behavior E).
Figure 16 depicts distributions for the walkers engaging
participants in a passing dance (walker-behavior D) and
the talking couple (walker-behavior H).

Figures 15 depicts a similar comparison as Figure 10,
although the three walker-behaviors do not differ
as much in the degree to which they are directed at
the participant. As can be seen in the left panel in
Figure 15, the median proportion (Decile 5) of gaze
at the upper body of the walker saying “cool glasses”
was higher (median 0.76, 95% CI [0.64, 0.87]) than for
the walker standing still in the hallway (median 0.47,
95% CI [0.32, 0.63]), while the median was somewhat in
between for the walker looking straight ahead (median
0.57, 95% CI [0.37, 0.76]). Interestingly, as visible from
the middle panel, the median proportion of gaze at the
arms of the walker standing still (median 0.36, 95%
CI [0.28, 0.44]) was highest compared to the two other
walker-behaviors (walker-behavior B: median 0.19, 95%
CI [0.09, 0.32]; walker-behavior G: median 0.14, 95% CI
[0.08, 0.20]). As became clear when watching the videos
again, this walker sometimes stood still as if she was to
knock on or open a door to one of the labs, potentially

Figure 14. Proportion of participants who gaze at the walker as a function of time to pass (left panel) and participant-walker distance
(right panel). Each line represents a different walker-behavior. The lines were acquired by Gaussian smoothing individual gaze data
and subsequently computing a weighted average. Shaded areas represent the weighted standard error of the mean. Four
walker-behaviors are reported here (looking straight ahead (B), saying “cool glasses” (G), standing still (E), and engaging the
participant in a passing dance (D)).
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Figure 15. Proportion of gaze on the upper body, arms, and lower body for three walker-behaviors (looking straight ahead, saying
“cool glasses,” and standing still in the hallway). Each marker represents the decile value for the participant distribution. Error bars
represent 95% confidence intervals of the decile values acquired through bootstrapping using the MATLAB function decilespbci
provided by Rousselet et al. (2017).

Figure 16. Proportion of gaze on the upper body, arms, and lower body for two walker-behaviors (passing dance and the talking
couple). Each marker represents the decile value for the participant distribution. Error bars represent 95% confidence intervals of the
decile values acquired through bootstrapping using the MATLAB function decilespbci provided by Rousselet et al. (2017).

making her arm a particularly relevant gaze location for
the participants.

As is visible from Figure 16, the distribution of
proportion of gaze on the upper body, arms, and lower
body did not seem to differ meaningfully between the
walkers engaging the participants in a passing dance
and the talking couple. This may not be surprising, as
there is no single relevant location on the body of the
walker that intuitively stands out.

The findings here reported corroborate the
conclusion that participants’ gaze on the body of the
walkers depended on what that walker was doing, and
that gaze was attracted to the relevant location for that
behavior (upper body for walker-behavior G, arms for
walker-behavior E).


