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This Special Issue, entitled “Membranes for Gas Separation and Purification Processes”,
was introduced to discuss the recent progress in the development of membranes for
gas separation and purification. In general, membranes are capable of improving the
gas separation performance as compared to conventional methods such as scrubbing,
absorption, cryogenic distillation, and swing adsorption. These existing technologies have
been limited by challenges such as a large plant footprint, sophisticated design, and poor
energy efficiency. In this regard, membranes have emerged as a promising alternative, and
have been utilized in fundamental research and pilot-scale studies.

One of the most common utilizations of membranes in gas separation involves the
study of mixed-matrix membranes (MMMs). In general, MMMs adopt a classical method to
allow synergistic improvement in gas separation performance, which is evaluated in terms
of gas permeability and selectivity. This is attributed to the presence of nanomaterials,
which allows a substantial enhancement in gas permeability and/or selectivity [1]. In
this regard, nanomaterials, which are used as filler materials in membranes, are able to
effectively tune the gas transport properties of the resulting membrane. For example,
carbon dioxide (CO2) capture has been a focus of attention, as CO2 concentration in the
atmosphere has surpassed 400 ppm since 2013 [2]. Therefore, the use of carbon capture and
sequestration (CCS) systems is reported to be a feasible solution to minimize the emission
of greenhouse gas (GHG) from point sources, namely the combustion of fossil fuels or
natural gas [3]. For instance, in the study conducted by Pacheco et al. [4], carbon nanotube
(CNT) was proposed as a filler for MMM, to generate a potential improvement in CO2
separation performance. CNT, which is a classified as a one-dimensional material with a
high aspect ratio, could be used to encourage the preferential transport of CO2 against other
gases (e.g., nitrogen (N2) and methane (CH4)) [5]. Due to the larger kinetic diameter of N2
and CH4 as compared to CO2, bulkier gas molecules are forced to adopt a more tortuous
path, leading to an increase in the diffusion distance for N2 and CH4 in the membrane. This
eventually results in higher mixed-gas selectivity (e.g., CO2/N2 and CO2/CH4) [6].

Subsequently, the investigation of MMMs under light hydrocarbon (C1–C3) separation
has been performed. Light hydrocarbons (e.g., methane, acetylene, ethane, propylene, and
propane) are major raw materials in petrochemical processes to produce everyday materials
(e.g., polyethylene and polypropylene). In terms of unit operation, adsorbents (also known
as porous materials) are capable of performing effective separation among light hydro-
carbon gases with comparable physical and chemical properties [7]. Nevertheless, swing
adsorption, which is critical in this process, suffers from low adsorbate recovery, depending
on the type of adsorbents used [8]. Thus, in the case of ethylene/ethane (C2H4/C2H6) and
propylene/propane (C3H6/C3H8) separation, membranes have been proven feasible, as
observed in a perspective study on C2H4/C2H6 and C3H6/C3H8 separation by Chuah
et al. [9]. In general, zeolites and metal–organic frameworks (MOFs) have been heavily
utilized in this separation process due to their high C2H4 and C3H6 gas adsorption perfor-
mance as compared to C2H6 and C3H8, respectively [10]. Particularly, MMMs can feasibly
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be used to overcome the constructed upper bound curve for C2H4/C2H 6 and C3H6/C3H8
separation, which is critical in advancing the performance of gas separation membranes.

Most of the research performed on MMMs involves polymeric membranes as the
polymer matrices, with porous materials incorporated as the filler. On the other hand, com-
posite membrane, which requires the attachment of a molecular sieve layer onto the porous
support, can be formed. This creation allows an improvement in mechanical strength as
compared to free-standing molecular sieve membranes [11]. Therefore, in the study con-
ducted by Hayakawa et al. [12], zeolite membrane was developed using the rapid thermal
processing (RTP) and ozone de-templating methods to prepare aluminum (Al)-containing
ZSM-58 zeolite membrane. This approach is able to suppress crack formation as compared
to the conventional thermal de-template method, which is utilized to remove the organic
structural directing agent during the synthesis of zeolites. Based on the reported data,
the ozone de-templating method is able to achieve remarkably high CO2/CH4 separation
performance as compared to the RTP approach. This behavior is attributed to the inability
of the RTP process to achieve crack suppression, due to the lack of surface silanol (Si-OH)
functionality. On the other hand, Al-containing ZSM-58 membrane is able to suppress
the formation of cracks through the RTP approach, which is evident from the increased
synthesis time. Nevertheless, with the co-current increase in the thickness of the selective
layer, it is anticipated that lower CO2 membrane permeance can be achieved.

Last but not least, the application of membranes in gas sensing and detection was per-
formed by Chen et al. [13]. In this study, membranes for ammonia (NH3) gas sensing were
utilized alongside penta-graphene (PG), which possesses good dynamical and mechanical
stability, up to 1000 K [14]. In particular, based on various theoretical investigations, PG
showcases great potential in various applications such as hydrogen storage, gas capture
and sensing, and lithium-ion batteries. Thus, the verification of the adsorption structures,
gas-sensing properties, and electronic characteristics of pristine and doped (e.g., boron,
nitrogen, phosphorous, aluminum and silicon) PG was performed. Based on the calculation,
it was observed that pristine PG is insensitive to the toxic gases due to its weak adsorption
strength and long adsorption distance. On the other hand, the doping of various atoms
allows a transition from the physisorption to chemisorption of NH3 into the active sites
due to strong orbital hybridization and a large charge transfer between gas molecules and
the doped atoms.

In a nutshell, membranes are able to serve as an appropriate alternative for improved
performance in gas separation and purification. Despite the substantial research challenges
(e.g., membrane design, membrane configuration and membrane materials) [15] associ-
ated with an increase in the practical feasibility of membranes in pilot-scale or industrial
applications, it is undeniable that membranes are expected to complement the available
conventional process, which suffers from an undesirably large energy penalty and a large
plant footprint.
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