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Small extracellular vesicles: multi-faceted tools for leukemia immune evasion in vivo
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ABSTRACT
Recently, small extracellular vesicles (sEVs) secreted in vivo from chronic lymphocytic leukemia (CLL) 
preclinical murine models were characterized. Leukemia microenvironment sEV (LME-sEVs) selectively 
target CD8+ T-cells, inducing exhaustion and hampering anti-tumor immune response. Additionally, 
a sEV-related gene expression correlated with patient treatment-free survival, overall survival and clinical 
parameters.
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With a size between 30 and 150 nm, small extracellular vesicles 
(sEVs) are involved in multiple hematological malignancies by 
supporting tumor development and progression through direct 
interaction with tumor cells, as well as by reshaping composition 
and behavior of the surrounding microenvironment, including 
immune cells.1 Chronic lymphocytic leukemia (CLL), the most 
common leukemia in western countries, is a perfect example of 
microenvironment signal addiction.2 Indeed, CLL progression is 
dependent on tight interactions with the highly immune- 
suppressed microenvironment. In this instance, we have pre
viously shown that sEV components confer direct proliferative 
and survival advantages to CLL cells. In addition, conversion of 
bone marrow mesenchymal stem cells (BM-MSCs) into cancer- 
associated fibroblast (CAF)-like cells, through miRNA contained 
in CLL-derived sEVs (miR-150, -155 and -146a), further supports 
CLL progression due to cytokine and proangiogenic factor release. 
Concerning immuno-modulation, CLL sEV-derived miR-155 
drives monocyte conversion into myeloid-derived suppressor 
cells (MDSCs), increasing CLL migration, Tregs and MDSCs 
recruitment and reducing CD8+ T-cell proliferation.3 Similarly, 
we also showed that the CLL-derived sEV Y RNA hY4 mediates 
pro-tumorigenic phenotypes in monocytes by upregulating PD- 
L1 at the surface and increasing the release of pro-inflammatory 
cytokines. Smallwood and colleagues demonstrated that CLL 
sEV-derived miR-363 enhances CLL growth and survival by 
increasing CD4+ T-cell migration and interaction with leukemia 
cells.4 Finally, it was recently shown that CLL-derived sEVs alter 
CD4+ and CD8+ T-cell leading to an expansion of regulatory 
T-cell subsets and exhaustion, respectively.5

Despite the increasing amount of information acquired in the 
last decade, our and other studies on the subject were mainly 
achieved using in vitro culture systems with cell lines or primary 
cells,6 like the vast majority of the literature on sEVs, raising the 
question of the true sEV relevance in vivo. To illustrate this idea, 

a recent review published in Science describing the biology, 
function and biomedical applications of sEVs – especially in 
cancer – highlighted that experimental setup using murine mod
els and more physiological conditions are needed in order to 
fully understand the role of sEVs in vivo. Indeed, it currently 
remains unclear whether more closely physiological levels of 
sEVs have actual regulatory or pathological functions in vivo.7

Small EV release and composition are dynamic and input- 
dependent processes,8 highly influenced by microenvironment 
characteristics and extracellular stimuli. Thus, with the aim to 
uncover the complexity and role of sEVs in leukemia progres
sion in vivo, we developed a protocol to isolate and purify sEVs 
directly from the leukemic microenvironment (LME-sEVs) of 
the widely used pre-clinical CLL murine model (Eµ-TCL1).9 

For the first time, we characterized the totality of the sEVs 
released in the leukemia microenvironment, derived from CLL 
and surrounding cells alike. Compared with sEVs isolated from 
healthy controls (HCME-sEVs), LME-sEVs contain specific 
miRNAs and proteins, and display multiple immune check
point ligand combinations on their surface, playing a key role 
in CLL development. In this setup, LME-sEVs rapidly and 
selectively target CD8+ T-cells in vivo, leading to profound 
transcriptomic, proteomic and metabolic changes. This trans
lates into an efficient sEV-mediated immune escape and into 
disease progression (Figure 1(a)). Indeed, when sEV release is 
genetically impaired in CLL (TCL1-RAB27DKO model), 
immune evasion fails to occur and the disease progression 
rapidly breaks off.9 On the other hand, when LME-sEVs are 
reintroduced in the same experimental setup, CLL progression 
is restored leading to full leukemic development (Figure 1(b)). 
Interestingly, CLL immune clearance appears to be majorly 
performed by CD8+ T-cells. In fact, when TCL1-RAB27DKO 
cells are transferred in CD8+ T-cell-depleted mice, they suc
cessfully recapitulate the disease (Figure 1(c)). At the same 
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Figure 1. Small EV-mediated immune escape in CLL microenvironment supports leukemia growth. (a) In the absence of LME-sEVs (left side), CD8+ T-cells rapidly interact 
with CLL cells fully eliminating them. In this state, CD8+ T-cells are metabolically fit, release cytotoxic granules directly to the target and signal with cytokines to other 
immune cells. On the other hand, in the presence of LME-sEVs (right side), CD8+ T-cell activity is affected by multiple sEV components, including, immune checkpoint 
interaction, and transfer of proteins and miRNAs. In this instance, CD8+ T-cells are metabolically exhausted, unable to properly release cytotoxic granules and show 
a reduced cytokine polyfunctionality. (b) Adoptive transfer (AT) of genetically sEV-impaired CLL (TCL1-RAB27DKO) cells into immunocompetent mice triggers CD8+ 

T-cell-mediated tumor clearance, leading to complete eradication of the tumor clone (green line). Injection of leukemia microenvironment (LME) sEVs, isolated from 
leukemic mice (TCL1), leads to rescue of the disease development (violet line). (c) Depletion of CD8+ T-cells using neutralizing antibodies allows TCL1-RAB27DKO cells to 
recapitulate the disease in immunocompetent mice. During the disease development, injection of either HCME- or LME-sEV-treated CD8+ T-cells influences mice 
survival. (d) Analysis of sEV-related gene expression in CLL patient cells proved useful as prognosis biomarker. Combined expression of multiple sEV-related genes 
segregated CLL subgroups typically characterized by unfavorable prognosis markers. CytoG: cytogenetic factors.
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time, injection of CD8+ T-cells treated ex vivo with LME-sEVs 
reduced T lymphocytes ability to control disease progression 
in vivo (Figure 1(c)). These data strongly highlight how CLL 
requires to downregulate CD8+ T-cells, rapidly establishing an 
immune suppressive microenvironment from the onset of the 
disease development.

Small EVs represent a complex delivery system where multi
ple cargo and surface components can affect target cells in 
different degrees. In our setup in particular, LME-sEVs are 
highly heterogeneous, given the wide range of cells releasing 
them. For these reasons, we hypothesized that the effect on 
CD8+ T-cells must have been mediated by multiple sEV effec
tor molecules. Overall, LME-sEVs show a plethora of strategies 
to damp effector T-cell activity, including, but not limited to, 
the transfer of both conventional (e.g. PD-L1 and GAL-9) and 
metabolic (IL4I1) immune checkpoints, and typical CLL EV- 
associated miRNAs (e.g. miR-155 and -150). These factors, 
together with other molecules such as the ectonucleotidases 
CD39 and CD73, strongly altered CD8+ T-cell cytotoxicity, 
metabolism and proliferation ex vivo and in vivo. In particular, 
CD8+ T-cells appeared to be highly exhausted (increased PD1, 
TIM3, LAG3 and ICOS expression), functionally impaired 
(reduced GzmB and perforin-1 production), unable to orches
trate an appropriate immune response (reduced IL-2, IFN-γ 
and increased TNF-α production) and have an impaired pro
liferation due to the increased levels of adenosine and reduced 
pentose phosphate pathway activity.9

Interestingly, we achieved a major rescue of the CD8+ T-cell 
immune phenotype by targeting multiple LME-sEV compo
nents. Specifically, sEV transfection with a mix of anti-miR 
-150, -155 and -378a antagomiRs, but not with single 
antagomiRs, showed a normalization of GzmB and perforin-1 
production. Finally, incubation of sEVs with blocking antibo
dies against PD-L1, GAL9, VISTA and MHC-II reduced PD1, 
TIM3 and LAG3 expression, and restored perforin-1 level (but 
not GzmB) in treated CD8+ T-cells.9

Given the striking importance of sEVs in CLL pathogenesis 
and immune escape, we analyzed the expression of selected sEV- 
related genes (e.g. RAB27a and PDCD6IP) in a large cohort of 
144 CLL patients, and identified gene signatures correlating with 
treatment-free survival, overall survival, and with clinical para
meters routinely used in CLL for diagnosis and prognosis 
(Figure 1(c)). In particular, our results demonstrated that high 
expression of sEV-related genes in CLL cells correlates with poor 
prognosis and reduced overall survival for patients.9

Overall, our data demonstrate the importance of sEVs in 
CLL progression in vivo, highlighting the role of various sEV 
components and interactions with the target cells. Indeed, by 
altering the transfer or blocking only one of these elements, we 
failed to rescue the phenotype, indicating that multiple com
ponents should be inhibited at once. These data, together with 
the possible use of sEV-related genes as prognostic markers, 
could lead to the use of sEVs as biomarkers and therapeutic 
targets in CLL and, potentially, other B-cell malignancies.9,10
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