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ABSTRACT We report 16 genomes assembled from the metagenome of pig manure
digestate enriched with the addition of N2O. These denitrifying bacterial genomes all
contain the nosZ gene, encoding N2O reductase. Their sizes range from 1,902,599 bp to
6,264,563 bp, with completeness of 75.03% to 98.89%, GC contents of 32.86% to 69.66%,
and contamination of 0% to 8.4%.

The greenhouse gas N2O is produced during nitrification and denitrification (1–4).
The N2O reductase encoded by the nosZ gene is the only enzyme that can reduce N2O

to the nongreenhouse gas N2 (5–8). In this study, bioinformatic tools were used for genome
assembly and annotation of nosZ gene-containing bacterial genomes recovered from the
metagenomic data for samples enriched with N2O.

The fresh digestate collected from an anaerobic tank for pig manure fermentation
was incubated anaerobically for 1 week at 25°C with N2O, and the enriched digestate
was then inoculated into gamma-ray-sterilized red soil and fluvo-aquic soil for another
1 week of anaerobic incubation; the incubated soil was inoculated into gamma-ray-sterilized
digestate for another 1 week. After four rounds of soil-digestate reciprocal transfer and incu-
bation with N2O, fresh digestate and N2O-enriched digestate, as well as the first and fourth
rounds of incubated soil and digestate, were collected for DNA extraction with the Omega
Bio-Tek soil DNA kit and library construction using the Illumina TruSeq DNA sample prepara-
tion guide. The metagenomes of 30 samples were paired-end sequenced on the Illumina
NovaSeq platform. Finally, an average of 77,340,278 reads of 150 bp were obtained for each
library.

Cutadapt (v1.17) (https://github.com/marcelm/cutadapt) was used to identify and cut off
the adapter sequence. Fastp (v0.20.0) (https://github.com/OpenGene/fastp) was used to
screen the quality of the sequence by the sliding window method. The sequences with
lengths of less than 50 bp and those with fuzzy bases were removed to yield clean data.

MEGAHIT (v1.2.3-beta) (9) was used to assemble the contigs with the option of minimum
contig length of 500. MetaBAT2 (v2.15) (10) was used for binning, and CheckM (v1.0.18) (11)
was used to assess the completeness and contamination of the bins. Then, dRep (v2.5.4) (12)
was used to remove the redundant bins, and 394 nonredundant bins with completeness of
more than 75% and contamination of less than 25% were obtained. GTDB-tk (v1.1.0) (13) was
used to annotate the species of bins, and KofamScan (v1.20) (https://github.com/takaram/
kofam_scan) was used to identify the KEGG Orthology with the KEGG Orthology database to
find the bins with denitrification genes. Default parameters were used for all software unless
otherwise noted.

All of the 16 genomes are nosZ-containing genomes, which indicates that there
may be potential N2O-reducing bacteria (Table 1). Four genomes contain two copies of
nosZ. There are no nitrate reductase or nitrite reductase genes but having nosZ in the genome
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of DF_1_3.28 implies that this strain could act as an N2O sink because it has no capacity to pro-
duce N2O. The genomes obtained in this study not only enlarge our knowledge of diverse
denitrifying bacteria but also facilitate screening of N2O-reducing bacteria for use as an
N2O sink in mitigating greenhouse gas emissions from agricultural environments.

Data availability. The raw metagenomic sequence reads and metagenome-assembled
genomes were deposited in DDBJ/ENA/GenBank under BioProject accession number
PRJNA736218, with BioSample accession numbers SAMN19613211 to SAMN19613226 and
SRA accession numbers SRR15558355 to SRR15558366.
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