
viruses

Article

Buprenorphine Increases HIV-1 Infection In Vitro but Does Not
Reactivate HIV-1 from Latency

Germán Gustavo Gornalusse 1,2 , Lucia N. Vojtech 1,2, Claire N. Levy 1,2 , Sean M. Hughes 1,2, Yeseul Kim 1,2,
Rogelio Valdez 1, Urvashi Pandey 1,2, Christina Ochsenbauer 3 , Rena Astronomo 1, Julie McElrath 1,4,5

and Florian Hladik 1,2,4,*

����������
�������

Citation: Gornalusse, G.G.; Vojtech,

L.N.; Levy, C.N.; Hughes, S.M.; Kim,

Y.; Valdez, R.; Pandey, U.;

Ochsenbauer, C.; Astronomo, R.;

McElrath, J.; et al. Buprenorphine

Increases HIV-1 Infection In Vitro but

Does Not Reactivate HIV-1 from

Latency. Viruses 2021, 13, 1472.

https://doi.org/10.3390/v13081472

Academic Editor: Eric M. Poeschla

Received: 27 April 2021

Accepted: 24 July 2021

Published: 27 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA;
germag@uw.edu (G.G.G.); luciav@uw.edu (L.N.V.); clairel@uw.edu (C.N.L.); smhughes@uw.edu (S.M.H.);
yskim4451@gmail.com (Y.K.); rxv126@case.edu (R.V.); Upandey@fredhutch.org (U.P.);
rastrono@fredhutch.org (R.A.); kd@uw.edu (J.M.)

2 Departments of Obstetrics and Gynecology, University of Washington, Seattle, WA 98195, USA
3 School of Medicine, Division of Hematology/Oncology, University of Alabama at Birmingham,

Birmingham, AL 35233, USA; christinaochsenbauer@uabmc.edu
4 Department of Medicine, University of Washington, Seattle, WA 98195, USA
5 Department of Pathobiology, Global Health and Laboratory Medicine, University of Washington,

Seattle, WA 98195, USA
* Correspondence: florian@uw.edu

Abstract: Background: medication-assisted treatment (MAT) with buprenorphine is now widely
prescribed to treat addiction to heroin and other illicit opioids. There is some evidence that illicit
opioids enhance HIV-1 replication and accelerate AIDS pathogenesis, but the effect of buprenorphine
is unknown. Methods: we obtained peripheral blood mononuclear cells (PBMCs) from healthy
volunteers and cultured them in the presence of morphine, buprenorphine, or methadone. We
infected the cells with a replication-competent CCR5-tropic HIV-1 reporter virus encoding a secreted
nanoluciferase gene, and measured infection by luciferase activity in the supernatants over time.
We also surveyed opioid receptor expression in PBMC, genital epithelial cells and other leukocytes
by qPCR and western blotting. Reactivation from latency was assessed in J-Lat 11.1 and U1 cell
lines. Results: we did not detect expression of classical opioid receptors in leukocytes, but did find
nociception/orphanin FQ receptor (NOP) expression in blood and vaginal lymphocytes as well as
genital epithelial cells. In PBMCs, we found that at physiological doses, morphine, and methadone
had a variable or no effect on HIV infection, but buprenorphine treatment significantly increased
HIV-1 infectivity (median: 8.797-fold increase with 20 nM buprenorphine, eight experiments, range:
3.570–691.9, p = 0.0078). Using latently infected cell lines, we did not detect reactivation of latent HIV
following treatment with any of the opioid drugs. Conclusions: our results suggest that buprenor-
phine, in contrast to morphine or methadone, increases the in vitro susceptibility of leukocytes to
HIV-1 infection but has no effect on in vitro HIV reactivation. These findings contribute to our
understanding how opioids, including those used for MAT, affect HIV infection and reactivation, and
can help to inform the choice of MAT for people living with HIV or who are at risk of HIV infection.

Keywords: MAT; buprenorphine; morphine; methadone; opioids receptors; HIV-1 latency; HIV-1
reactivation

1. Introduction

Globally, the HIV/AIDS and drug addiction epidemics have a large overlap [1].
Substantial epidemiological data suggest that drug addiction results in higher HIV trans-
mission rates [2,3] as well as faster progression to AIDS [4]. This can be explained by a
combination of sociological/behavioral and immunological factors [5]. HIV acquisition
is higher in people who inject drugs (PWID) due to needle sharing, the trade of sex for
money, failure to use condoms, and multiple high-risk sexual partners. Other sexually
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transmitted infections (STIs) including gonorrhea, herpes, and chlamydia are also more
frequent in PWID [6], further fueling the link between drug use and HIV susceptibility.

Several studies have also documented direct effects of illicit opioids, especially heroin
or its direct metabolite morphine, on HIV infection. In vitro treatment with these opioids
was shown to increase expression of HIV co-receptors CCR5 [7–9] and CXCR4 [7], and to
favor HIV replication [8,10–12] and reactivation [13–16]; however, a few studies reported
the opposite [17,18]. In rhesus monkeys, opioid dependence increased simian immunodefi-
ciency virus (SIV) replication [12] and viral set point [19]; however, in other studies, opioid
treatment slowed SIV progression [20,21].

Immunologically, the current consensus is that opioid use results in immunosup-
pression [22–27], which could further enhance HIV disease progression. However, the
mechanisms of this remain obscure and not all opioids share the same immunosuppressive
characteristics [24]. Fentanyl, loperamide, and beta-endorphin induced interleukin 4 (IL-4)
in human T lymphocytes, favoring a T helper anti-inflammatory response [28]. In rhesus
monkeys, chronic administration of morphine increased five-fold the number of circulating
T regs (FoxP3 + CD25+ cells) and augmented Th17 functional activity [29]. The implanta-
tion of morphine pellets in mice led to a marked decrease in B cell proliferation after in vitro
stimulation as well as a reduced IL-2 and IL-4 response by T cells [30]. Intrathecal admin-
istration of morphine in female patients decreased natural killer (NK) activity [31]; this
opioid has also been shown to impair nitric oxide production in macrophages [32] and neu-
trophil recruitment in the lungs, which favored bacterial burden [33]. In contrast, another
study suggested that neither hydromorphone nor codeine possess immunomodulatory
activity [34].

To reduce the mental, societal, and biological problems resulting from heroin use and
prescription opiate addiction, two long-acting opioid drugs, methadone and buprenor-
phine, are prescribed for medication-assisted treatment (MAT) [35]. Both medications
normalized immune function compared to heroin use [26,36,37]. However, other stud-
ies indicate that methadone has detrimental effects, for example dampening antibody
responses [38], production of cytokines [27], and reactive oxygen species [39], cell migra-
tion [40] and phagocytic activity [38]. In contrast, most studies on buprenorphine sug-
gested it has negligible effect on the immune system [41–45], although a few animal studies
showed it impairs NK cell activity, lymphoproliferation and cytokine production [46,47],
or affects the level of certain hormones [48]. We know even less about the direct impact of
these two medications on the HIV life cycle. One study showed that methadone enhanced
HIV infection of fetal microglia and monocyte-derived macrophages [49]. No data are
available for buprenorphine and HIV infection.

Thus, both MAT drugs require further study to help determine whether they are
equally beneficial for people living with HIV, or whether one of them could be preferable
based on its immunobiological and virological profile. In this study, we focused on the
direct effects of morphine, buprenorphine, and methadone on de novo HIV infection and
on HIV reactivation from latency. We find that these processes are not affected equally by
these three drugs and will discuss whether our results could have clinical implications.

2. Methods

2.1. Generation of Replication Competent Nanoluciferase (NanoLuc®)-Expressing HIV-1
Reporter Virus

We generated the HIV-1 infectious molecular clone (IMC) vNL-sNLuc.6ATRi-B-Bal.Ecto,
a secreted nanoluciferase (sNLuc) reporter virus expressing the Env ectodomain of HIV-
1BaL within the NL4-3-derived proviral backbone, based on our previously described HIV-1
proviral constructs encoding either the sNLuc.T2A or LucR.6ATRi reporter cassettes [50,51].
The T2A “ribosomal skip peptide” was replaced with the modified encephalomyocarditis
virus (EMCV) 6ATR internal ribosome entry site (IRES) element (6ATRi), which enables
physiological Nef expression and function [51–54]. We replaced the LucR reporter with
secreted NanoLuc® (Promega, Madison, WI, USA) [50], inserting sNLuc ORF upstream of
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6ATRi. Upon replication, the sNLuc reporter is secreted into the culture supernatant, facili-
tating kinetic monitoring of infection [50]. The reporter IMC is replication competent and
encodes all the viral open reading frames, allowing for multiple rounds of viral replication.

2.1.1. Description of Plasmid

The ectodomain of Env BaL (GenBank accession number: AY426110.1) derives from the
HIV-1 isolate BaL. In the previously described reporter IMC, pNL-LucR.6ATRi-B.BaL.ecto [51],
the Renilla luciferase gene (LucR) was replaced by InFusion® (Takara Bio USA, Mountain
View, CA, USA) cloning methods with the soluble nanoluciferase-expressing sNLuc gene.
Fusion of the NLuc gene to an N-terminal secretion signal generates a secreted, 19.1 kDa,
form of the NanoLuc® luciferase, secNLuc (Promega, under limited use label license,
Madison, WI, USA). In the current IMC, the sNLuc IRES cassette was inserted between the
NL4-3 env and nef genes. The sNLuc ORF is located downstream of the stop codon (taa)
of env and a Kozak sequence (ccacc); it is followed by a 26 nt “spacer”, the IRES element
and the nef gene. The IRES we used is derived from encephalomyocarditis virus (EMCV)
(GenBank: EMCV IRES, NC_001479), contains the “wild type” (A)6 (“6A”) bifurcation loop,
and encompasses a truncated EMCV IRES fragment (“TR”, nucleotides 399 to 833). The
proviral plasmid was generated and provided by Christina Ochsenbauer (University of
Alabama at Birmingham, Department of Medicine, Birmingham, AL, USA).

2.1.2. Preparation of Viral Stock

Viral stock was generated by Rena Astronomo and collaborators at the Vaccine and
Infectious Disease Division, Fred Hutchinson Cancer Research Center (Seattle, WA, USA).
The methods and reagents used for the generation of virus stock and calculation of virus
infectivity were described previously [50]. In brief, generation of the vNL-sNLuc.6ATRi-
B.Bal.Ecto reporter virus by transfection of proviral DNA into 293T/17 cells (ATCC, Man-
assas, VA, USA) using Lipofectamine 2000 was done according to the manufacturer’s
protocol (Thermo Fisher, Grand Island, NY, USA). 293T/17 cells were maintained at 37 ◦C
in a humidified incubator in an atmosphere of 95% air and 5% CO2. Viral supernatants were
harvested 60 h post-transfection, clarified at 1200× g for 10 min, and frozen at −70 ◦C. Virus
stocks were analyzed for nanoluciferase expression using Nano-glo luciferase (Promega,
Madison, WI, USA) and were tittered on sub-confluent TZM-bl cells, ARP-8129 (obtained
through the NIH AIDS Reagent Program, Division of AIDS, NIAID, Manassas, VA, USA
contributed by John C. Kappes, Xiaoyun Wu, and Tranzyme, Inc., Birmingham, AL, USA).
Virus was diluted in DMEM supplemented with 1% FBS and 40 µg/mL DEAE-Dextran
and added to cells for 4 h. Growth medium (DMEM, 10% FBS, Pen/Strep, glutamine) was
added to the cells and incubated for 48 h. Cell monolayers were fixed (0.8% glutaraldehyde,
2.2% Formaldehyde in DPBS) for 8 min and stained for β-galactosidase expression (4 mM
potassium ferricyanide, 4 mM potassium ferrocyanide, 400 µg/mL magnesium chloride,
400 µg/mL X-gal in DPBS) for 2 h. Titer (2.5 × 107 PFU/mL) was calculated by counting
“Blue” β-gal expressing cells.

2.2. Drugs

Morphine base (catalog 9300-007), (+)-(S)-methadone (catalog 9250-001) and buprenor-
phine hydrochloride (catalog 9064-001) were supplied from the National Institute of Drug
Abuse (NIDA) drug supply program. Drugs were handled and used under a controlled
substance use license issued by the Washington State Department of Health (FX60503089)
and a controlled substance registration certificate by the U.S. Drug Enforcement Agency
(RH0497544). Morphine was solubilized in methanol to make a stock of 8 mM concentration.
Methadone was dissolved in water, heated and adjusted to a final 500 µM concentration.
Buprenorphine was dissolved in water to a 10 µM stock concentration.
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2.3. Cytokines

Recombinant human TNF-α (AF-300-01A) was purchased from PeproTech (Cranbury,
NJ, USA).

2.4. Cell Lines
2.4.1. TZM-bl Indicator Cells

The following reagent was obtained through the NIH AIDS Reagent Program, Division
of AIDS, NIAID, NIH: TZM-bl cells (catalog # 8129, RRID:CVCL_B478) from Dr. John C.
Kappes and Dr. Xiaoyun Wu [55]. The TZM-bl cell line was generated from JC.53 cells by
introducing separate integrated copies of the luciferase and β-galactosidase genes under
control of the HIV-1 promoter. This cell line was grown as a single-cell layer in Dulbecco’s
Modified Eagle medium (DMEM) supplemented with 10% heat-inactivated fetal bovine
serum (FBS, Nucleus Biologics, San Diego, CA, USA), 100 U/mL penicillin G, 100 µg/mL
streptomycin, 2 mM L-glutamine and 25 mM HEPES (all Thermo Fisher Scientific, Waltham,
MA USA; “D10” medium); cultures were maintained at 37 ◦C in a humidified incubator
in an atmosphere of 95% air and 5% CO2. The TZM-bl cells are covered under the U.S.
patent number 6,797,462 issued to Tranzyme Pharma: “Cell-based method and assay for
measuring the infectivity and drug sensitivity of immunodeficiency virus”.

2.4.2. J-Lat 11.1 Cells

The J-Lat T lymphocyte clone # 11.1 was obtained from Emilie Besnard (Eric Verdin’s
laboratory at Gladstone Institute, San Francisco, CA, USA) [56]. This is a Jurkat-based T cell
line containing a full-length integrated HIV-1 genome expressing green fluorescent protein
(GFP) upon HIV reactivation. The genome generates incomplete virions due to a frameshift
in env. This cell line was maintained in RPMI1640 (Thermo Fisher Scientific) supplemented
with 10% heat-inactivated FBS, 100 U/mL penicillin G, 100 µg/mL streptomycin, 2 mM
L-glutamine and 25 mM HEPES (“R10” medium). Cells were maintained at 37 ◦C in a
humidified incubator, with 5% CO2, and split every other day (generally at a 1:4 or 1:5 ratio)
to an approximate density of 2.5 × 105 cells/mL.

2.4.3. J-Lat A7 Cells

The J-Lat A7 cell line (“J-Lat Tat-GFP Cells A7”, catalog# ARP-9853-256, RRID:CVCL_1G44)
was obtained from the NIH HIV Reagent Program, Division of AIDS, NIAID, NIH (con-
tributed by Erin Verdin [56]). ARP-9853-256 is a Jurkat cell line that bears the integrated
retroviral construct LTR-Tat-IRES-GFP. This cell line was maintained in the same medium
and conditions as described for J-Lat 11.1 cells. These cells and methods of use are covered
by US Patents 7,232,685 and 7,544,467.

2.4.4. U1 Cells

The subclone U1 of the HIV-1 infected U937 monocytic cell line was obtained through
the NIH AIDS Reagent Program, Division of AIDS, NIAID (U1, catalog # 165–432,
RRID:CVCL_M769), contributed by Thomas Folks (Laboratory of Immunoregulation,
National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA) [57]. U937 is
a pro-monocytic cell line obtained from a pleural effusion of a two-year-old Caucasian
male with diffuse histiocytic lymphoma. U1 is a clonal population of U937 cells chronically
infected with HIV-1. Cells were maintained in R10 medium at 37 ◦C in a humidified
incubator, with 95% air/5% CO2 and passaged following the NIH AIDS Reagent Program’s
guidelines. Generally, cells were split every 3 days, to a density of 1.0 × 106 cells/mL.

2.4.5. Isolation of Epithelial Cells and Leukocytes from the Female Genital Tract, and
Monocytes, CD4+ T Cells and CD8+ T Cells from Peripheral Blood

The protocol for obtaining peripheral blood mononuclear cells (PBMC) and genital
tissues from patients was approved by the Institutional Review Boards of the University
of Washington and the Fred Hutchinson Cancer Research Center in Seattle, WA, USA,
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with informed consent signed by each donor. Biopsy samples were obtained from benign
hysterectomies performed in adult women at the University of Washington Medical Center
(Seattle, WA, USA). Following surgery, tissue blocks were kept in ice-cooled calcium-
and magnesium-free phosphate-buffered saline (PBS, Thermo Fisher Scientific) containing
100 U/mL penicillin, 100 µg/mL streptomycin, and 2.5 µg/mL Fungizone (all from Thermo
Fisher Scientific) and transported to the laboratory within one hour. We adapted a protocol
described elsewhere [58,59]. The deep submucosa was removed with surgical scissors and
the remaining mucosa was cut into 5 × 5 mm pieces. Genital epithelial cell lines from
vagina, endocervix and ectocervix were generated and expanded in the presence as feeder
cells and the Rho kinase inhibitor Y-27632, as described before [60]. To isolate vaginal
leukocytes from these tissue pieces, we followed a previously published method [61].

CD4+ and CD8+ T cells were isolated from PBMC by negative selection. PBMCs
were labeled with a cocktail of biotin-conjugated monoclonal antibodies and either the
non-CD4+ (130-096-533, MACS Miltenyi; to obtain CD4+ T cells) or non-CD8+ (130-096-
495, MACS Miltenyi; to obtain CD8+ T cells) T Cell Microbead Cocktail kit, following the
manufacturer’s instructions.

To isolate monocytes, PBMCs were plated in R10 at a density of 4 × 106/mL onto
6-well plates (2.5 mL/well). Plates were incubated for 2 h at 37 ◦C and cells in suspension
and adherent were collected separately, washed and lysed for RNA isolation.

All cultures were maintained at 37 ◦C in a humidified incubator, with 95% air/5% CO2.

2.4.6. Differentiation of Langerhans Cells from Hematopoietic Precursors

Langerhans cells were derived from CD34+ cord blood progenitors using an estab-
lished protocol [62]. In brief, cells were thawed and cultured at 1 × 104/mL/well in
24-well plates in X-VIVO 15 (Lonza, Basel, Switzerland) containing 100 ng/mL GM-CSF
(5.6 IU/mg), 20 ng/mL stem cell factor (5 × 104 U/mg), 2.5 ng/mL TNF-α (2 × 107 U/mg),
0.5 ng/mL TGF-β1 (2 × 107 U/mg) and 100 ng/mL Flt3 ligand (Flt3L) (all PeproTech,
Cranbury, NJ, USA). Cultures were incubated at 37 ◦C with 95% air/5% CO2 in a humid-
ified environment for 5–8 days without feeding or re-plating. Cell numbers increased
by 50–100-fold during this time. Clusters containing proliferating Langerhans cells were
purified by gently harvesting cells with a pipette and layering them on top of 6 mL of 7.5%
BSA (Sigma-Aldrich, St. Louis, MO, USA) in 15-mL tubes: up to eight wells were loaded
per column. After 10 min on ice, single cells in suspension were removed by aspirating
the BSA columns until 3.5 mL remained. Clusters were concentrated by centrifugation at
300× g, resuspended in growth media and used for RNA isolation.

2.5. Western Blotting

Whole cell protein extracts were obtained by treating cellular pellets with NP40
buffer (Sigma-Aldrich) containing protease inhibitor (Roche, Basel, Switzerland) on ice for
30 min followed by 10 min centrifugation at 12,000 rpm 4 ◦C. Total protein concentrations
were determined by PierceTM BCA assay (Thermo Fisher) following the manufacturer’s
instructions. For western blotting, 12.5 µg (U1, J-Lat 11.1, endocervical and ectocervical
cells) or 8 µg (PBMC, CD4+ and CD8+ T cells) of total protein were heated to 95 ◦C
for 5 min in 1× DTT-containing sodium dodecyl sulfate (SDS) sample buffer (NP0007,
Thermo Fisher) and electrophoresed at 200 V for 25 min in BoltTM 4–12% NuPAGE Bis-
Tri-polyacrylamide gel (NW04210, Thermo Fisher) followed by transfer to Immobilon
polyvinylidene difluoride membranes (LC2002, Thermo Fisher) and blocking for 1 h with
5% blotting-grade blocker (Bio-Rad, Hercules, CA, USA). A pre-stained protein ladder
was included alongside the samples for 10–180 kDa MW reference (PageRuler™, Thermo
Fisher). Primary monoclonal antibodies used for immunoblotting were: anti-OPRL1
(PA5-70443, RRID:AB_2688687, Thermo Fisher, concentration used: 1 µg/mL) and anti-
Calnexin (4F10, MBL M178-3, RRID:AB_10694101, concentration used: 0.2 µg/mL). Both
secondary antibodies used were horseradish peroxidase-conjugated. For OPRL1 detection,
we used goat-anti-rabbit (SBI System Biosciences (Palo Alto, CA, USA), ExoAB antibody kit,



Viruses 2021, 13, 1472 6 of 22

EXOAB-KIT-1, used at a 1:25,000 dilution); for calnexin detection, we used goat-anti-mouse
IgG H + L (Catalog: 31430, RRID:AB_228307, Thermo Fisher, used at a 1:2,000 dilution).
Blots were developed using the SuperSignalTM West Femto developing kit (Catalog: 34095,
Thermo Fisher). Chemiluminescence was acquired on a ChemiDoc MP imager (Bio-Rad).

2.6. In Vitro Infection of PBMC with HIV-1 Reporter Virus

The protocol for obtaining PBMC from HIV uninfected healthy donors was approved
by the IRB of the Fred Hutchinson Cancer Research Center in Seattle with informed consent
signed by each donor. 2–4 × 107 PBMC were thawed, resuspended at 106 cells/mL in
R10 and stimulated with phytohemagglutinin P (PHA-P; 4 µg/mL) and interleukin 2
(IL-2; 50 U/mL) in the presence of either morphine (1–100 µM), buprenorphine (2–20 nM),
methadone (70 nM-1 µM) or vehicle control for 72 h. Cultures were incubated at 37 ◦C in
T-25 cm2 flasks (Corning, Thermo Fisher Scientific) in a humidified incubator containing 5%
CO2. After incubation with opioids, we determined both the viability (%) and the number
of live cells using EasyCyte Guava ViaCount Assay (EMD Millipore, Burlington, MA, USA).
Following counting and centrifugation (300× g for 5 min), approximately 2 × 105 cells
were infected in a total volume of 100 µL of R10 with vNL-sNLuc.6ATRi-B-Bal.Ecto at
MOI of 0.1, 0.2 or 0.5; non-infected wells were used as controls. In some experiments, we
included four—and in others, eight—independent infections per condition. To monitor
background luciferase activity during the first days of culture, we also included wells in
which we infected PBMC with the HIV virus at MOI 0.2 in the presence of both 1 µM
raltegravir (catalog # 11680) and 1 µM efavirenz (catalog # 4624); both drugs were obtained
from the NIH AIDS Reagent Program, Division of AIDS, NIAID. The infections were done
in U-bottom 96-well plates (Corning, Thermo Fisher Scientific) for 2.5 h at 37 ◦C. The
cells were washed three times with pre-warmed R10 medium and resuspended in a final
volume of 100 µL of R10 supplemented with 50 U/mL IL-2 in the presence or absence of
the corresponding opioid. Cells were cultured for the duration of the experiment (up to
10 days post-HIV infection). At the indicated time points (24, 48, 72, and 96 h, days 7 and
10 post-HIV infection), plates were spun (300× g for 5 min), approximately 30–40 µL of
supernatants were collected, transferred to new 96-well plates and frozen at −80 ◦C until
analysis. Fresh media containing the corresponding opioid were replenished on the same
day that aliquots were withdrawn.

2.7. Determination of Nanoluciferase Enzymatic Activity

Samples were brought to room temperature and an aliquot of 20 µL of each sample
was mixed with 20 µL of 1× Nano-Glo® luciferase assay reagent (Nano-Glo® Luciferase
Assay System, Promega) in a white flat-bottom polystyrene 96-well plate (Corning, Sigma-
Aldrich). The mixtures were incubated for 10 min in the dark and luminescence was read
on an MLX 96 Well Plate Luminometer (1 sec/well, read height: 1 mm, Dynex Technologies,
Chantilly, VA, USA) and reported in relative light units (RLU).

2.8. TZM-bl Indicator Cell Infection

Flat-bottom 96-well plates were seeded at a density of 6.4 × 103 TZM-bl cells per
well in D10 medium (100 µL/well) 1 day before infection. On the day of the infection,
supernatants were thawed and diluted 1:50 (or at the indicated dilution) in D10 containing
DEAE-dextran (20 µg/mL); 100 µL of each dilution was used per well. We set up five
independent infections of TZM-bl cells per condition and included a negative control with
no virus to account for β-gal basal activity in non-infected TZM-bl cells. Cultures were
incubated for 48 h at 37 ◦C in a humidified incubator with 95% air/5% CO2. At 48 h
post-infection, plates were spun once (800 g 5 min), washed twice with 200 µL PBS, and
50 µL of Tropix Lysis buffer (Galacto-Star™ β-Galactosidase Reporter Gene Assay System
for Mammalian Cells; Thermo Fisher Scientific) was added directly to each well. Samples
were stored in parafilm-sealed plates at 4 ◦C overnight. To measure β-gal enzymatic
activity, 5 or 10 µL of each sample were mixed with 100 µL of Galacto-Star reaction buffer
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(1:50 dilution of substrate in diluent) per well in a white flat-bottom polystyrene 96-well
plate (Corning, Sigma-Aldrich). Reactions were mixed by pipetting and were incubated
30 min at room temperature in the dark. Luminescence was measured as described above.
As controls, we included: (a) empty wells (background signals from the plate); (b) wells
with only Galacto-Star reaction buffer (background signals from both plate and reagents);
and (c) supernatants from non-infected TZM-bl cells (background from basal β-gal activity
as well as from both plate and reagents).

2.9. Quantification of Opioid Receptor Gene mRNA by RT-qPCR Assay

The pre-designed qPCR assays (IDT Technologies, Coralville, IA, USA), as 6-FAM/
ZEN/3IABkFQ-conjugates, were as follows: OPRD1 (Ref Seq # NM_000911, exons: 2–3),
OPRM1 (Ref Seq# NM_001145285, exons: 1–2), OPRK1 (Ref Seq # NM_000912, exons: 2–3)
and OPRL1 (Ref Seq # NM_000913, exons: 5–6). A pre-designed assay to quantify the copy
numbers of the peptidylprolyl isomerase A (PPIA) or glyceraldehyde 3-phosphate dehy-
drogenase (GAPDH) gene was included to normalize the data. Negative controls (cDNA
reactions without adding reverse transcriptase) were included to control for potential non-
specific gDNA amplification. A positive control with total human brain RNA (BioChain)
was included. Relative quantification by the ∆Ct method was applied to calculate the
level of expression of different opioid receptors. Relative expression of each receptor was
defined as 2−∆Ct. ∆Ct is calculated as: ∆Ct = Ct (opioid receptor) − Ct (PPIA or GAPDH).
The total number of cycles ran (i.e., 40 or 45) was assigned to compute the limit of detection
(LOD) in those samples with undetectable amplification.

2.10. Statistical Analysis

Statistical analysis was done using the GraphPad Prism suite (Prism 8 for Windows
64-bit, v8.3.1, RRID:SCR_002798); each statistical test was specified in the corresponding
figure legend. Differences were considered statistically different when p < 0.05.

3. Results
3.1. Opioid Receptor Gene Expression in Circulating and Mucosal Cell Types of Relevance for
HIV Infection

Opioid receptor expression on a cell suggests its potential for reactivity to opioid
exposure. Therefore, before conducting functional experiments of HIV infection and
reactivation in the presence of opioids, we wanted to establish whether cell types of
direct or indirect relevance for HIV infection transcribe the genes for classical or non-
classical opioid receptors. Peripheral blood mononuclear cells (PBMC) did not significantly
transcribe any of the three classical opioid receptor genes, mu opioid receptor (MOP),
delta opioid receptor (DOP), or kappa opioid receptor (KOP), whereas these were all
highly expressed in control brain tissue (Figure 1A). PBMC did express the non-classical
nociceptin opioid receptor gene (NOP; also known as nociceptin/orphanin FQ receptor) at
approximately 2 logs lower levels than brain (mean of two PBMC donors: 0.018 expression
relative to the PPIA gene, brain 1.249 relative expression) (Figure 1A). Of note, we ruled out
amplification of potentially contaminating genomic NOP DNA because the PCR reaction
spanned the junction between NOP exons 5 and 6. Monocytes and T lymphocytes purified
from PBMC in two additional donors expressed NOP equally (Figure 1B). Monocytes, but
not T lymphocytes, expressed rudimentary levels of KOP as well (Figure 1B).

To consider the potential effects of opioids on HIV-1 reactivation, we assessed opioid
receptor expression in two cellular models of HIV latency: J-Lat 11.1 and U1 cell lines,
which are derived from CD4+ T cells [56] and promonocytic cells [57], respectively. In both
models, the level of relative expression of NOP was similar (average: 0.032) and was at
least 2 logs higher than MOP, DOP, or KOP (Figure 1C).
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Figure 1. Expression of opioid receptors in different primary cells. RNA isolated from the indicated cell types was assessed
for expression of opioid receptors by qPCR. NOP indicates the non-classical nociceptin/orphanin FQ (N/OFQ) peptide
(NOP) receptor (OPRL1); MOP indicates the mu receptor (OPRM1); DOP the delta receptor (OPRD1) and KOP the kappa
receptor (OPRK1). Relative expression of each receptor was defined as 2−∆Ct. ∆Ct is calculated as: ∆Ct = Ct (opioid receptor)
− Ct (PPIA or GAPDH). Each symbol represents the average of technical duplicates. (A) PBMC were from two healthy
donors, and brain RNA was purchased. Opioid receptor expression on the y-axis is relative to the housekeeping gene PPIA.
Similar results were obtained when GAPDH was used as normalizer (not shown). For a given opioid receptor qPCR analysis,
samples with negative amplification (i.e., Ct > 40) are denoted with gray shaded symbols. (B) Gene expression analysis was
done in the monocyte-enriched and monocyte-depleted fractions derived from PBMC of two additional healthy donors.
(C) Gene expression analysis in the two cellular models of HIV-1 latency: J-Lat clone 11.1 and U1 promonocytic cells. Two
independent cultures of each cell line were analyzed separately; symbols represent the average of these cultures. (D) Vaginal
T cells, macrophages, and epithelial cells were sorted from healthy vaginal tissues from two donors, and Langerhans cells
were differentiated in vitro from hematopoietic precursors, as explained in Materials and Methods. Data represent gene
expression levels per receptor and per donor (each donor is represented with either an open or close circle). Samples with
negative amplification (i.e., Ct > 40) are denoted with gray shaded symbols. (E) Gel electrophoresis analysis of qPCR products
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generated from genital epithelial cell lines. Real-time PCR amplicons were resolved on a 2% agarose gel. Ladder: 100 bp
molecular weight marker; Endocv.: endocervical; Ectocv.: ectocervical; NTC: non-template (water) control. Specific PCR
amplicon for each gene is indicated with a black triangle. PPIA was used as housekeeping gene in A and D, GAPDH in B, C
and E. (F) NOP expression was confirmed by western-blotting. Protein extracts were obtained from the two HIV-1 latency
models (J-Lat 11.1 and U1 cell lines), from endocervical and ectocervical cell lines, from primary unfractionated PBMC, and
from magnetically-purified CD4+ and CD8+ T cells isolated from two donors. Calnexin is shown as loading control.

Because HIV transmission occurs via mucosal barriers and ongoing infection is likely
fueled by processes in the mucosa, we also measured opioid receptor transcripts in leuko-
cytes isolated from the vaginal mucosa (Figure 1D). Vaginal T cells and macrophages did
not express MOP, DOP, or KOP, but both expressed NOP, with macrophages being ~1 log
higher than T cells. We also tested in vitro-differentiated Langerhans cells as a surrogate
of mucosal Langerhans/dendritic cells and found they transcribed the NOP gene even
more strongly than vaginal macrophages (Figure 1D), but were also negative for MOP,
DOP, and KOP. Because epithelial cells can produce factors, such as TNF-α, which in
turn influence HIV infection in leukocytes [60], we also assessed opioid receptor mRNA
expression in primary epithelial cells generated from surgically excised vaginal, endocervi-
cal and ectocervical tissues. These cells also expressed NOP but not the classical opioid
receptors (Figure 1D,E). Control qPCR reactions with genomic DNA or with RT-negative
RNA showed no amplification, confirming the specificity of the NOP PCR assay.

Finally, we confirmed the level of expression of NOP at the protein level by performing
western blotting with a polyclonal anti-NOP antibody directed towards the middle region
of this receptor (Figure 1F). We tested protein extracts isolated from J-Lat 11.1, U1, ectocervi-
cal and endocervical cells as well as from PBMCs and their corresponding CD4+ and CD8+

enriched fractions. In all the samples analyzed, we observed a band with an observed
molecular weight slightly higher than the predicted weight (41 kDa), in agreement with
post-translational modifications in NOP reported by others [63].

In summary, our data show that several cell types relevant for HIV/AIDS pathogenesis
express the non-classical opioid receptor NOP both at the mRNA and protein levels but
not the three classical opioid receptors.

3.2. Effect of Buprenorphine, Methadone, and Morphine on HIV Replication in PBMC

Our finding of NOP gene expression in circulating and mucosal T cells and mono-
cyte/macrophages suggested their potential for direct reactivity to opioids. Therefore, we
next wanted to test whether opioid drugs have the capacity to modulate HIV-1 infection
and replication in vitro. To easily monitor HIV infection in cell cultures, we generated a
replication-competent HIV-1 reporter virus based on a previous construct [50,51]. This virus
expresses the HIV.Bal26 Env ectodomain in an HIV NL 4.3 background and a secreted form
of nanoluciferase encoded by sNLuc. Unlike the previously used construct in which nef was
expressed following a T2A ribosome-skipping peptide, in this vector nef was expressed
from an internal ribosome entry site (IRES) called 6ATRi (Figure 2A). Since the levels of nef
achieved are closer to physiological [51–54], this construct has been shown to better track
in vivo HIV-1 infection. Upon transcription of the integrated provirus, nanoluciferase is
synthesized and secreted from the infected cells, allowing to measure viral replication in
the supernatants by chemiluminescence. In initial HIV infection titrations using PHA/IL-2
activated PBMC, luciferase signal plateaued beyond an MOI of 0.5 (not shown); therefore,
we employed MOIs within the 0.1–0.5 MOI range in all experiments. Figure 2B shows a
representative kinetic of HIV reporter virus infection at 0.2 MOI over 10 days of culture.

Using this HIV infection assay, we then started comparisons of the effect of morphine,
buprenorphine and methadone on HIV-1 susceptibility and replication. A scheme of the
experimental setup is depicted in Figure 3A. In these experiments, we activated PBMC with
PHA and IL-2 in the presence of opioids and, following three days of culture, infected them
with the HIV reporter virus. To analyze the impact of opioids on HIV susceptibility and early
infection, we removed the opioid drugs following infection and cultured the cells only in R10
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with low dose IL-2. In other experiments presented further below, we replenished cultures
with opioids after infection and maintained exposure over the course of in vitro cell culture,
to recapitulate the impact of continuing opioid usage on HIV replication and propagation.
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Figure 2. Experimental strategy to quantify in vitro HIV-1 replication in PBMC. (A) Simplified
schema of the replication-competent R5-tropic HIV-1 reporter virus vNL-sNLuc.6ATRi-B-Bal.ecto.
The vector was based on the NL-Bal.Env.ecto-derived molecular clone of HIV-1 expressing Renilla
luciferase previously generated by Ochsenbauer and Astronomo et al. [50,51]. The reporter gene
(indicated as the black area) is a secreted form of nanoluciferase (encoded by the reporter gene sNLuc);
nef expression is regulated by an internal ribosome entry site (IRES). The sNLuc.IRES cassette was
inserted between the NL.Bal.ecto env and nef genes; 6ATRi is a truncation (“TR”) fragment derived
from the encephalomyocarditis virus (EMCV) IRES and contains the “wild type” (A)6 (i.e., “6A”)
bifurcation loop. The nucleotide sequence shows the junction between the stop codon of env (taa)
and the start codon (atg) of sNLuc, and contains a Nhe I restriction site (gct agc) and the translation
initiation Kozak sequence (ccacc). The construct contains a 26 nt “IRES spacer” between the sNLuc
gene and the IRES element, as previously described [51]. (B) Example of an in vitro HIV-1 infection
experiment. PBMC were infected at MOI 0.2 in the presence (empty circles) or absence (full circles) of
1 µM raltegravir and 1 µM efavirenz. Aliquots from supernatants were taken at the indicated time
points (x-axis) and nanoluciferase activity was determined using the Promega Nano-Glo© kit (y-axis,
RLU: relative light units).
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Figure 3. Comparison of the effects of different doses of morphine, buprenorphine and methadone during early HIV-1
infection of PBMC. (A) Experimental approach to assess in vitro HIV-1 infection and replication. PBMC were incubated with
opioids for 72 h and after infection and washes, drugs were withdrawn. Aliquots were taken at the indicated timepoints, and
HIV-1 replication was measured by quantifying nanoluciferase enzymatic activity in the supernatants. Chemiluminescence
signals were quantified using a luminometer. (B) Representative nanoluciferase experiment done with PBMC from one
donor. We cultured PBMC for up to 72 h with PHA/IL-2 and morphine (1 or 100 µM), buprenorphine (2 or 20 nM), or vehicle
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control. In these experiments, the vehicle control consisted of R10 medium supplemented with PHA, IL-2 and 1.25% v/v of
methanol. The viability, assessed by trypan-blue staining or Guava Muse® analyzer, was similar across different conditions
(Supplementary Figure S1A). We infected them with sNLuc HIV-1 and opioids were washed off. Luminescence signals were
determined with supernatants taken at 1 and 3 days after HIV-1 infection. Y-axis denotes relative light units (RLU); number
next to Y-axis indicates the Multiplicity of Infection (MOI) of the HIV-1 reporter virus used to infect the PBMC. Each treatment
is represented as a different symbol (specified in the X-axis); open and close symbols denote the lowest and highest dose for
each drug, respectively. We did a total of three technical replicates for MOI of 0.1 and 0.5, and 6 for MOI 0.2. (C) Summary
plots showing the effect of opioids on nanoluciferase activity measured in supernatants taken at 1 and 3 days after HIV-1
infection. The MOI here was 0.2; we did six technical replicates per condition. Each donor is represented by a different color;
the number of different donors per treatment is indicated with an “n” above the plots. X-axis indicates different treatments
and concentrations. Y-axis shows the ratio of luciferase activity measured in opioid-treated cultures over luciferase activity
measured in vehicle-treated cultures. Plots indicate median (vertical lines in the middle), interquartile range (boxes), and min to
max range (whiskers). p-values were two-tailed and calculated using the Wilcoxon Signed Rank Test, comparing the median
obtained in each treatment with a theoretical median value of 1. *: p < 0.05; **: p < 0.01.

Figure 3B shows a representative experiment with PBMC from one donor. We found
that 2 nM buprenorphine increased nanoluciferase activity at 24 and 72 h, at all MOIs tested.
For example, at 72 h and MOI 0.5 in this donor, nanoluciferase activity was 7.21 times higher
in the presence of 2 nM buprenorphine. However, we observed a trend toward a decrease in
nanoluciferase signal at the 20 nM concentration of buprenorphine in this donor. Morphine
also trended to enhance nanoluciferase activity, but to a lesser extent than buprenorphine,
and only at the higher dosage. For example, at 100 µM, morphine caused a 2.4-fold increase
of nanoluciferase signal 72 h after infection with MOI 0.2 HIV-1. Notably, the average
luminescence signals across all conditions did not increase significantly between 24 and
72 h post-infection, suggesting that HIV was not yet propagated much by cell-to-cell spread
during the first 3 days of infection.

Many individuals with opioid addiction use methadone rather than buprenorphine
for medication-assisted treatment. We set up morphine vs. methadone vs. buprenorphine
comparisons in several donors, some of whom were repeated independently (summarized
in Figure 3C). The data shown is for a MOI of 0.2, but the direction of the effect was com-
parable across MOIs. The viability was similar across different treatments (Supplemental
Figure S1A). Overall, we observed the most consistent effect of nanoluciferase activity
enhancement with 2 nM buprenorphine at 24 h (13 experiments, six different donors,
median: 1.540, range: 0.7661–4.120; p = 0.0017), followed by 100 µM morphine at 24 h (six
experiments, four different donors, median: 1.684, range: 1.037–6.003; p = 0.0313). 72 h
following infection and drug removal, only 20 nM buprenorphine showed nanoluciferase
enhancement (11 experiments, six different donors, median: 1.763, range: 0.4971–4.075,
p = 0.0362). The data revealed substantial inter-donor variability. Collectively, the results
presented in Figure 3 identified a weak early HIV enhancing effect of buprenorphine, an
even weaker one for morphine, and no effect for methadone.

The above experiments spanning 1–3 days following HIV exposure likely reflect bind-
ing and entry of HIV, with subsequent release into the culture supernatants. To assess
the effect of MAT drugs on HIV propagation in longer-term cultures, we replenished
methadone or buprenorphine following HIV infection and maintained them at a constant
concentration over the full term of monitoring HIV infection in vitro for 10 days (experi-
mental schema on Figure 4A). Treatment with buprenorphine or methadone did not affect
cell viability (Supplemental Figure S1B). The data in Figure 4B depict the fold increase
over control for different donors (MOI 0.5), some of whom were repeated independently.
On day 4 post-infection, only 20 nM buprenorphine increased nanoluciferase activity in
supernatants significantly (10 experiments, eight different donors, median: 7.011; range:
1.529–28.96, p = 0.002). On days 8 to 10 post-infection, there was a median 8.797-fold
increase in luciferase with 20 nM buprenorphine (eight experiments, eight different donors,
range: 3.570–691.9, p = 0.0078). Methadone had no effect on HIV infection at any dose or
time point. The raw results for these comparisons are shown in Supplemental Figure S2.
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Figure 4. Comparison of methadone and buprenorphine on HIV-1 propagation in longer-term PBMC cultures. (A) Experi-
mental approach to assess in vitro HIV-1 infection and replication. PBMC were incubated with opioids for 72 h, infected and
washed, then the opioid drugs were added back to the culture media. Aliquots were taken at the indicated timepoints, and
HIV-1 replication was measured by quantifying nanoluciferase activity in the supernatants, and by infecting Tzm-bl cells and
measuring β-gal activity. Chemiluminescence signals were quantified using a luminometer. (B) Summary plots showing the
effect of the two opioids on nanoluciferase activity measured in supernatants taken at days 4 and 8–10 after HIV-1 infection.
The results shown are for a MOI of 0.5. Each donor is represented by a different color; buprenorphine (BUP) and methadone
(MTD) treatments are represented by triangles and rhomboids, respectively. The number of different donors per treatment
is indicated with an “n” above the plots. We did between 4 and 12 technical replicates per condition. X-axis indicates
different treatments and concentrations. Y-axis shows the ratio of luciferase activity measured in opioid-treated cultures
over luciferase measured in vehicle-treated cultures. Plots indicate median (vertical lines in the middle), interquartile
range (boxes), and min to max range (whiskers). p-values were two-tailed and calculated using the Wilcoxon Signed Rank
Test, comparing the median obtained in each treatment with a theoretical median value of 1. **: p < 0.01. (C) Correlation
between nanoluciferase and beta-galactosidase (β-gal) enzymatic activities. PBMC from two different donors were infected
with 0.5 MOI sNLuc HIV-1. Supernatants were collected on day 10 after infection. Nanoluciferase activity (x-axis) was
determined in a 20 µL fraction of the sample (total = 23 determinations). In parallel, TZM-bl cells were infected with a 1:500
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dilution of another aliquot of the same samples. Infections were done using five technical replicates. Each point represents
the average of these replicates +/− 1 SD. β-gal activity (y-axis) was measured 48 h post TZM-bl infection. p < 0.0001 for
the linear regression. RLU: Relative Light Units. (D) Comparison of β-gal activities when PBMC were treated with 20 nM
buprenorphine versus 1 µM methadone. The data were generated from four different donors. β-gal activity was measured
after infecting TZM-bl cells with supernatants (1:50 dilutions) collected 10 days post 0.5 MOI sNLuc HIV infection. Number
of replicates (independent infections) done per supernatant ranged between 10 and 20. X-axis shows different treatments;
Y-axis indicates the ratio of β-gal activities measured in opioid-treated samples versus vehicle-treated controls. p = 0.0667
by Mann–Whitney one-tailed test.

We confirmed that nanoluciferase activity tracked the concentration of infectious
units of HIV-1. For this, we infected PBMC from two donors, collected supernatants after
10 days post-infection and assayed them for nanoluciferase activity and for infection of
TZM-bl indicator cells. Figure 4C demonstrates that both readings were highly correlated
(R2 = 0.7993, p < 0.0001, n = 23 points). Figure 4D shows the results obtained in TZM-bl
cells with supernatants collected from four PBMC donors 10 days after HIV-1 infection. In
all four PBMC donors treated with 20 nM buprenorphine, we observed an enhancement
in β-gal readings, whereas 1 µM methadone, tested in two donors, did not influence
HIV replication. Therefore, buprenorphine increases HIV-1 replication as measured by
two techniques; this effect was weak at early time points and became more pronounced
over time.

3.3. Effect of Methadone, Buprenorphine, and Morphine on HIV Reactivation from Latency

Whether the MAT drugs methadone and buprenorphine affect HIV reactivation from
latency is unknown. To begin to address this question, we used the latently infected T cell
line J-Lat 11.1 [56] and the monocytic cell line U1 [57] to test HIV reactivation by opioids.
Both cell lines express NOP (Figure 1C). There are two additional reasons why we chose
to analyze potential reactivation effects on J-Lat 11.1. First, in our previous work [60], we
showed it has less spontaneous reactivation than other J-Lat cells (~10% GFP+ in media),
but it is more easily reactivatable by latency-reversing agents, including TNF-α. Second,
J-Lat 11.1 possesses an HIV structure more similar to the HIV provirus found in vivo,
compared to some of the other J-Lats, such as A1 and A7, which contain only a mini-HIV
cassette [56]. Figure 5A is a summary of three independent experiments in the T cell line and
demonstrates no HIV reactivation from J-Lat 11.1 by either buprenorphine, methadone, or
morphine across various concentrations that match plasma levels measured in individuals
using drugs. We confirmed the lack of HIV reactivating effects of buprenorphine in a
separate clone of J-Lat (A7), even when we used a concentration of 2 µM (Supplemental
Figure S3). Figure 5B shows by representative flow cytometry plots that buprenorphine did
not increase the percentage of GFP+ J-Lat 11.1 cells at 2 and 20 nM, whereas TNF-Astrongly
induced GFP expression from the HIV promoter. Buprenorphine also did not enhance TNF-
Ainduced HIV reactivation. Likewise, depicted in Figure 5C, none of the opioid treatments
stimulated HIV reactivation from the monocytic cell line U1, as measured by a RT-ddPCR
assay for HIV-1 LTR-driven poly(A) copies (since U1 cells do not contain a GFP indicator
gene). Again, TNF-α reactivated HIV efficiently from U1 cells. Not surprisingly, none of
the opioids induced TNF-α mRNA expression in the U1 cells (Figure 5D). In conclusion,
buprenorphine, methadone or morphine did not reactivate HIV-1 in the latently infected
J-Lat 11.1 T cells or U1 monocytes.
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Figure 5. Effect of buprenorphine, methadone and morphine on HIV-1 reactivation in the HIV-1 latently infected T cell line
J-Lat and the monocytic cell line U1. (A) J-Lat cells (clone 11.1) were treated for 72 h with vehicle, buprenorphine (2, 10, or
20 nM), methadone (70, 350, or 1620 nM) or morphine (0.1, 1, or 10 µM). TNF-α (10 ng/mL) treatment was included as a
positive control for reactivation. GFP expression was evaluated in live (NearInfraRednegative) cells by flow cytometry. Y-axis
shows % GFP+ cells. Bars indicate the average of two technical replicates + 1 SD. These results are from a representative
experiment repeated three times. (B) J-Lat cells were treated for 4 days with either vehicle, 2 or 20 nM buprenorphine, and
later activated for 24 h with 1 ng/mL of TNF-α. Numbers in the upper right corners denote % GFP+ cells. Y-axis, scatter
signal; X-axis, GFP fluorescence. This experiment was done with two technical replicates and only the dot plots from one of
the duplicates are shown. (C) HIV-1 reactivation in U1 cells. These monocytic cells were treated for 72 h with the indicated
opioids (or TNF-α) and RNA was isolated and converted into cDNA for reactivation analysis. Y-axis: GAPDH-normalized
HIV-LTR-poly(A) copies, as determined by RT-droplet digital (ddPCR) assay. X-axis: different treatments. Bars indicate
the average of two technical replicates + 1 SD. These results are from a representative experiment repeated three times.
(D) TNF-α mRNA copies in opioid-treated U1 cells. Treatment with the indicated drugs was done for 72 h. RNA was
extracted and converted to cDNA. TNF-α levels were determined by real-time PCR (qPCR). Relative quantification was
done using the ∆∆Ct method and GAPDH as a normalizer gene. Y-axis shows the fold variation over the vehicle-treated
control. Bars indicate the average of two technical replicates + 1 SD.

4. Discussion

Medication-assisted treatment of opioid addiction is becoming a widely accepted
strategy to stabilize the neuronal system and decrease risk behaviors [64]. With MAT
and HIV prevention or treatment converging in the management of opioid addiction, it
is imperative to know whether and how MAT impacts HIV acquisition, infection and
latent reservoir dynamics; and which of the two most widely used MAT alternatives
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(buprenorphine/naloxone (Suboxone®) or methadone) is optimal in this context. Here, we
found that buprenorphine but not methadone enhanced HIV-1 replication in PBMC in vitro,
but neither drug triggered virus reactivation in two HIV-1 latency models. Buprenorphine’s
effect was likely mediated by the non-classical opioid receptor NOP, because NOP was the
only opioid receptor we detected in PBMCs.

We in fact started our study with profiling the expression of opioid receptors in cell
types that are relevant for HIV-1/AIDS pathogenesis. In peripheral blood lymphocytes, we
detected expression of only the non-classical NOP receptor (Figure 1A,B), which agrees
with prior reports [65–71]. However, two studies also found DOP expression by circulating
lymphocytes [72,73]. It remains to be investigated whether these discrepancies may be
explained by different states of T cell subset differentiation and/or activation. We also
detected NOP, but not MOP or DOP, in monocyte-enriched populations. Monocytes also
expressed very low levels of KOP (Figure 1B). KOP expression has been reported before
for monocytes/macrophages [74] and microglia [75]. Broad transcriptomics/proteomics
datasets [76,77] support NOP expression in various leukocytes, including the latently
HIV-1-infected J-Lat T lymphocyte and U1 monocyte cell lines used in our study. Recently,
Lambert et al. demonstrated NOP expression also by polymorphonuclear granulocytes [78].
Interestingly, HIV-1 infection itself was shown to alter the splicing pattern of opioid
receptors [79,80]. Further studies will be necessary to unravel the regulation of NOP in
leukocyte subpopulations and how this intersects with HIV infection.

In addition to peripheral leukocytes, we also found expression of NOP in T cells and
macrophages isolated from the vaginal mucosa, in in vitro derived Langerhans cells, and in
epithelial cells cultured from the vagina, the uterine ectocervix and the uterine endocervix
(Figure 1D–F). Studies done in rats by Klukovits et al. showed that NOP ligands inhibited
myometrium (uterine) contractility in pregnant rats at term [81,82]. However, to the best
of our knowledge, there are no published studies concerning the role of the NOP opioid
system for immunity and inflammation in the female reproductive tract, and whether its
modulation by MAT drugs influences HIV-1 susceptibility. Our finding that NOP is broadly
expressed across the reproductive tract of women warrants such investigations.

Opioid treatment of different cell types has been shown to increase the susceptibility
to HIV-1 infection and replication (reviewed in [22]). Morphine has been studied as the
paradigmatic example of how an opioid enhances in vitro HIV-1 replication [8–12,14]. The
most straightforward proposed mechanism is through upregulation of the HIV-1 coreceptor
CCR5 [7,8]. Morphine was also shown to downregulate the level of beta chemokines [8],
to modulate the expression of proinflammatory markers (e.g., TNF-α, IL-6) [83], to block
CD8-mediated anti-HIV activity [84], to inhibit the expression of anti-HIV miRNAs [16]
and to transactivate the HIV-1 LTR [85]. In our study, morphine doses representing a
physiological range in humans in vivo [86] did not enhance HIV-1 replication in PBMC
(Figure 3C). The discrepancy with published work likely stems from the much higher doses
of morphine used in earlier studies. Because our doses match more closely those measured
in people who use morphine analogs (1–100 µM) [87,88], we postulate that morphine
or heroin use per se, i.e., independently of behavioral factors, does not enhance HIV-1
replication in vivo.

The virologic activities of the MAT opioid drugs buprenorphine and methadone have
hardly been studied. Methadone was reported to enhance HIV infection of macrophages
and PBMC [49]. No such study exists for buprenorphine. We tested HIV infection and viral
uptake in both buprenorphine and methadone treated, pre-activated PBMCs. Cultures
were split to address two questions: the impact of opioids/MAT on HIV susceptibility and
early infection (drugs removed during culture) and the impact of continuing drug exposure
on HIV replication and propagation (drugs maintained during culture). Our results show
that buprenorphine augmented HIV replication even during the first time points when HIV
propagation from cell to cell was not yet robust. For example, at 24 h we observed almost
a two-fold increase in luciferase reads in the cultures treated with 2 nM buprenorphine
(Figure 3B,C). Notably, the magnitude of buprenorphine-mediated enhancement of HIV
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infection increased substantially towards later time points (days 4 and 10) when MAT was
maintained during culture (Figure 4B–D). We observed no enhancement of HIV replication
by methadone.

The mechanisms whereby buprenorphine enhances HIV-1 replication remain unclear.
Two in vivo studies showed that buprenorphine treatment altered systemic cytokine levels,
favoring a pro-inflammatory milieu [46,48]. This may create a higher permissiveness for
HIV-1 replication. In our in vitro experiments we used PBMC, which include immune
cells like monocytes and CD8+ T cells that could react to buprenorphine treatment and
indirectly enhance HIV-1 infectivity of the CD4+ T cells. On the other hand, buprenorphine
has been shown to decrease chemokine-induced chemotaxis of monocytes, which led to the
hypothesis that it could protect the central nervous system against HIV-associated neurode-
generative disease [89,90]. While these studies suggest a beneficial effect of buprenorphine
in chronic HIV infection, they did demonstrate clear and immediate intracellular effects of
buprenorphine in immune cells. Specifically, buprenorphine decreased the phosphoryla-
tion status of cytoskeletal proteins [90] and the association of cytoplasmic adaptor proteins
with the intracellular moieties of CCR2 [89] and CCR5 [91]. It remains to be seen whether
and how these activities may enhance HIV replication during the acute phase of infection.

Based on our opioid receptor expression profile, we presume that the enhancement
of HIV-1 replication in buprenorphine-treated PBMC stems from its activity on the NOP
receptor. Buprenorphine’s agonistic activity on NOP was previously reported [92] (and
reviewed in [93]). Notably, we observed significant inter-individual variation in the extent
of responsiveness to buprenorphine (Figures 3C and 4B,D). Analogous to the finding that
some individuals do not respond to the analgesic effect of buprenorphine due to a single
nucleotide polymorphism in the MOP gene [94], it is possible that the inter-donor variation
in buprenorphine’s enhancement of HIV replication stems from allelic variation in the NOP
locus. NOP gene polymorphisms have been reported before [95,96], but it still needs to
be assessed whether any of these influence the effect of buprenorphine on immune cell
function and HIV infection.

There is conflicting data regarding the effects of opioids on HIV-1 reactivation from
latency [3]. We found that neither buprenorphine, morphine nor methadone reactivated
HIV-1 in the latently infected J-Lat 11.1 or U1 lines at plasma concentrations equivalent
to those reported during in vivo use [86,97–99]. We also measured the viability of these
cells as well as the levels of TNF-α and CCR5 transcripts and did not find any changes
following treatment with morphine or buprenorphine. Our results agree with those by
Prottengeier et al. [13] who showed that heroin or morphine did not increase HIV p24
expression in latently infected T lymphoblasts at micromolar or submicromolar concen-
trations; HIV-1 reactivation was only evident when these opioids were added at >1 mM
concentration. The authors showed that the opioid-mediated HIV reactivation at these high
doses was likely related to cellular necrosis, was prevented by the addition of antioxidants,
such as N-acetyl-cysteine, and was not mediated by opioid receptors.

Our data and Prottengeier’s differ from other studies reporting that morphine [14,15]
and methadone [49] could reactivate HIV-1. The discrepancies could be due to several
experimental differences between the studies, including the cellular model of HIV-1 latency
(chronically infected cell lines vs. cocultures with brain/microglial cells vs. latently infected
PBMC from HIV-positive patients), culture conditions (PHA/IL-2 vs. anti-CD3 vs. LPS
stimulation), and timing (6 days vs. 3 days). Our in vitro results favor the hypothesis that
opioids do not affect HIV latency reversal in vivo. This notion is supported by a clinical
study which found no association between buprenorphine treatment and viral load trends
in HIV-1-infected individuals on highly active antiretroviral treatment (HAART) [100].
However, more longitudinal studies will be required to definitively rule out an effect of
MAT drugs on HIV reservoir dynamics.

In summary, when tested at treatment-equivalent doses, morphine and methadone
had negligible effects on HIV infection in PBMCs, while buprenorphine enhanced primary
HIV-1 replication. The mechanisms of this effect remain unknown, but likely stem from
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buprenorphine’s partially agonistic activity via the non-classical NOP receptor expressed
by lymphocytes. No opioid drugs tested here enhanced HIV-1 reactivation from latency.
These findings suggest that in individuals living with HIV controlled by ART drugs, choice
of MAT is unlikely to affect HIV dynamics. However, the use of buprenorphine-containing
MAT in those at risk of primary HIV-1 infection may enhance initial viral replication, which
underscores the need for effective HIV prevention in former PWID on MAT.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/v13081472/s1. Figure S1: Determination of viability for different drugs and concentrations.
Figure S2. Comparison of methadone and buprenorphine on HIV-1 propagation in longer-term
PBMC cultures. Figure S3. Effect of buprenorphine on HIV-1 reactivation in the HIV-1 latently
infected T cell line J-Lat A7.
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