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Abstract

stages of lung adenocarcinoma (LUAD).

known as prognostic targets.

Background: Epigenetics refers to the reversible functional modifications of the genome that do not correlate to
changes in the DNA sequence. The aim of this study is to understand DNA methylation patterns across different

Results: Our study identified 72, 93 and 170 significant DNA methylated genes in Stages |, Il and Ill respectively. A
set of common 34 significant DNA methylated genes located in the promoter section of the true CpG islands were
found across stages, and these were: HOX genes, FOXGI, GRIK3, HAND2, PRKCB, etc. Of the total significant DNA
methylated genes, 65 correlated with transcription function. The epigenetic analysis identified the following novel
genes across all stages: PTGDR, TLX3, and POU4F2. The stage-wise analysis observed the appearance of NEUROGI
gene in Stage | and its re-appearance in Stage Ill. The analysis showed similar epigenetic pattern across Stage | and
Stage Ill. Pathway analysis revealed important signaling and metabolic pathways of LUAD to correlate with epigenetics.
Epigenetic subnetwork analysis identified a set of seven conserved genes across all stages: UBC, KRAS, PIK3CA, PIK3R3,
RAF1, BRAF, and RAPTA. A detailed literature analysis elucidated epigenetic genes like FOXGT, HLA-G, and NKX6-2 to be

Conclusion: Integrating epigenetic information for genes with expression data can be useful for comprehending
in-depth disease mechanism and for the ultimate goal of better target identification.

Keywords: Epigenetic genes, Stages, LUAD, TFs, Subnetwork, NSCLC, SCLC

Background

Cancer progression is associated with mutation and differ-
ential gene expression [1]. Many oncogenes and tumor
suppressor genes responsible for cancer are linked to
mutations [2]. Besides these mutations, recent studies
correlate epigenetic features to play an important role in
cancer development and propagation [3-10]. Epigenetics
refers to all gene modifications except the change in the
DNA sequence [11]. These modifications are caused by
changes in the chromatin structure [11], DNA methyla-
tion, and histone modifications. Nearly 50% of human
genes are associated with CpG islands in the promoter
regions [12]. If these promoter regions undergo methy-
lation, they lead to disease progression [12-14]. DNA
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methylation occurs in and out of CpG islands, which in
a normal tissue is entirely unmethylated at all stages of
development and allows gene expression if a transcrip-
tion factor (TF) is present [15]. These changes affect the
binding of transcription factors (TFs) to DNA [16]. This
occurs by DNA methylation of the 5'-CG-3" pair usually
observed at the transcription regulation sites, which results
in silencing or activation of the downstream genes [17].
Advances in next-generation technologies have led to
identification of genome-wide DNA methylations in a
large number of disease samples. Methylation sites have
been analyzed based on clustering with respect to genomic
regions, methylation patterns, and common regulatory
patterns [16]. Increased methylation of CpG islands in
the promoter regions known as hypermethylation leads
to silencing of genes, usually associated with tumor
suppressor genes [18], whereas the decreased methyla-
tion known as hypomethylation is associated with gene
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overexpression i.e., activation of oncogenes [18]. Both
hypermethylation and hypomethylation are known to
be linked to tumors, autoimmune and other diseases
[16,19,20]. In cancers, many genes are methylated in
normally unmethylated promoter CpG islands, eventually
influencing transcriptional activity both in early and late
stages [19,21,22]. Specific examples of DNA methylation
role in cancers include hypermethylation of BRCAI in
breast and ovarian cancer [22,23]; DOK?7 in breast cancer
[22]; MYODI in hematological neoplasm; APC, HOX2,
OTX1 genes in non-small cell lung carcinoma (NSCLC)
[24]; FEN1 in breast tumor cells [25]; and hypomethyla-
tion of TKTL1 in head and neck squamous cell carcinoma
[26]. Literature provides evidence correlating transcrip-
tional activities with methylated genes [12], suggesting
the role of higher methylation in lowering the transcrip-
tional activity [4]. Since these epigenetic alterations are
reversible, identification of methylated genes for targeted
modifications in cancer can provide a new approach to
successful drug therapies.

Lung cancer is one of the most commonly diagnosed
cancers in United States. Lung cancer is morphologically
divided into NSCLC and small cell lung cancer (SCLC)
[27]. NSCLC is classified into three major histopatholgical
subtypes: adenocarcinoma, squamous cell carcinoma and
large cell carcinoma. Lung adenocarcinoma (LUAD) is
currently the most common of the lung cancers in both
smokers and non-smokers. LUAD is classified into four
stages: Stage I, when the cancer is localized; Stage II, when
the cancer has spread to the lymph nodes; Stage III, when
the cancer has spread to tissues near the lungs; and, Stage
IV, when metastasis has occurred [28]. Few DNA methyla-
tion studies have been reported for NSCLC, and the DNA
methylated genes identified in these were APC, CDHI3,
CDKN2A, DAPK, hMLHI1, HOX, OTXI1, HOX2, ZIC4,
and RASSFI1 [24,27,29,30]. There have been no stage-
wise methylation studies reported on LUAD. It has been
observed that LUAD is highly heterogeneous, and there
is less similarity between stages and across the samples
within the stages [24], therefore understanding DNA
methylated genes profile across LUAD can provide a new
insight.

The aim of the study was to elucidate the DNA methyla-
tion patterns across different stages of LUAD from pub-
licly available data resources. We used The Cancer
Genome Atlas Data (TCGA) as our resource for methyla-
tion data. In this study, a systems biology approach of inte-
grating gene-expression, DNA methylation and protein-
protein interaction data for finding highly important DNA
methylated genes across stages of LUAD were developed.
These DNA methylated genes were compared across
stages for their uniqueness and commonality to identify
the patterns across stages of LUAD. These patterns were
then validated and ranked for their importance in LUAD
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using literature evidences [3,31]. These ranked patterns
were analyzed as potential targets of LUAD. The limita-
tion of the study was the laboratory validation of the
targets and availability of datasets in the TCGA. To our
knowledge this is the first study that explains the DNA
methylated genes across stages of LUAD.

Results

The objective of this study was to understand the Sig-
nificant DNA methylated genes across the four stages
of LUAD and analyze them as potential targets. The
TCGA data associated with LUAD was classified based
on these stages. For this stage-wise data, the patient’s
age ranged from 58-75 with few outliers. The Signifi-
cant expressed genes and Significant DNA methylated
genes were identified based on the p-values and beta-
values for each stage as described in the methodology.
Resampling technique were performed for the correction
and these provided the set of p-values. Using the tech-
nique used in paper [32], p-value of 0.0012 was obtained
from g-values. Using this cutoff the Significant DNA
methylated genes were re-evaluated and overlap between
the previous and resampled results were calculated. A
substantial amount of overlap between old and new set of
Significant DNA methylated genes were observed. Add-
itional file 1 shows the p-value correction for original and
corrected Stage I data after resampling. The Significant
DNA methylated genes were then further classified as
hypermethylated and hypomethylated (methodology
section). Table 1 lists the statistics for each stage.

The Significant DNA methylated genes were compared
across stages as shown in Figure 1A. From the Venn dia-
grams of Figure 1A it can be seen that the maximum
number of Significant DNA methylated genes were iden-
tified in Stage III and minimum in Stage L

As shown in Figure 1A, there were 34 common Signifi-
cant DNA methylated genes across all stages. Additionally
46 common Significant DNA methylated genes were
identified between Stages I and III, and 64 were identi-
fied between Stages II and III. Figure 1B and 1C shows
the distribution of hypermethylated and hypomethy-
lated genes across stages. Of the 46 common Significant
DNA methylated genes between Stages I and III, 42 were

Table 1 Distribution of significant genes and significant
DNA methylated genes across the four stages of LUAD

Stage Number of Numberof Significant  DNA methylated
normal disease genes genes
samples samples Hyper Hypo

| 2 9 15994 67 5

Il 7 14 16275 20 73

I 5 1 14688 110 60

v 2 6 14814 0 0
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was hypermethylated in both stages. On comparing with
Stage 1I, it was observed 36 hypermethylated genes in
Stage I were hypomethylated in Stage II and 25 of these
were then hypermethylated in Stage III. From Figure 1C
it can be stated that maximum number of hypomethylated
genes were identified in Stage II. Similar to hypermethy-
lated genes, no genes maintained the same hypomethyla-
tion profile across the three stages. Of the four common
hypomethylated genes between Stages I and III, two were
identified as hypermethylated in Stage IL. This suggests
that genes in Stage II may have different patterns from
those of Stages I and III. Table 2 lists the common Sig-
nificant DNA methylated genes across and between stages.

Identification of highly scored Significant DNA
methylated genes

The significant DNA methylated genes were analyzed and
ranked based on their beta-values. Table 3 lists the top 10
hyper/hypomethylated genes across stages in descending
order of their beta-values. As shown in Table 3, ten of the
top Significant DNA methylated genes in Stage I was
Stage common across the three (Table 2). Of these 10,
seven: AJAP1, ATP8A2, HOXA9, PTGDR, SIX6, TLX3,

Table 2 Common DNA methylated genes across stages

TMEM 130 were hypermethylated, and the three: KRTAPS-1,
MMP26 and REG3A were hypomethylated. Three of the
seven (Stage I) genes: AJAPI, TLX3, PTGDR were also
identified in Stage III. Interestingly the three top scored
hypomethylated genes in Stage I was identified as top
scored hypermethylated in Stage II. In addition, some of
the top scored DNA methylated genes were common
across two stages only (Table 2): LY96 was the top scored
hypomethylated gene and top scored hypermethylated in
Stage I and II respectively. While HOXA4, HOXDI0,
KRTAP15-1, LEP, and NKX6-2 were identified as common
across Stage II and III (Table 2). Table 3 also identified
unique top scored Significant DNA methylated genes.
Tables 2 and 3 have large number of Significant DNA
methylated genes common among them.

Significant DNA methylated genes in and outside of CpG
islands, promoter regions, transcription factors,
chromosomes and pathways

The hypermethylated and hypomethylated genes were
further analyzed with respect to their methylation inside
and outside of the CpG islands. Table 4 gives the profile
of this distribution. From this table, hypermethylated

Stages DNA methylated genes
Number List of genes
Common DNA methylated genes across 34 AJAP1, ATPSA2, CCDC140, CNTP2, CYYRI1, EVXI1, FERD3L, FOXG1, GRIK3, GRM6, HAND2, HOXA9,
the three stages HOXB4, HOXD4, HOXD9, HOXD12, INPP5B, OTX2, KRTAPS-1, MIMP26, PHOX2A, PLEKHAG6, POU4F2,
PRAC, PRKCB, PTGDR, REG3A, SIX6, SLC6A2, SPAG6, TBX20, TLX3, TMEM130, ZNF560
Common DNA methylated genes across 12 ADCY4, BHMT, C120rf34, CDOI, LVRN, LY96, MSC, PCDHGA12, POU3F3, ZNF154, ZNF577, IHH
Stage | & Il
Common DNA methylated genes across 30 BARHL2, C100rf81, CCDC140, DEFB1 19, DIO3, FAM135B, FAM83A, GRIK2, HOXA4, HOXD10, HS3ST2,
Stage Il & IlI KCNS2, KRTAP15-1, LER LHX1, LYPD5, MAGEB6, NEUROGT, NKX6-2, OR5I1, SERPINBS, SPHKAR TALT,
TBX4, TBX5, TCNT, TMEM 132D, VSX1, ZNF454, IGKV7-3

Common hypermethylated genes across 42 AJAPT, ATPSA2, CCDC140, CNTP2, CYYRI, EVX1, FERD3L, FOXGI, FOXI2, GALR1, GAS7, GRIK2, GRM6,
Stage | and Stage Il HAND2, HLA-G, HOXA7, HOXA9, HOXB4, HOXD4, HOXDS, HOXD9, HOXD12, INPP5B, NID2, NPY, OTX2,

PAX7, PHOX2A, PLEKHA6, POUA4F2, PRAC, PRKCB, PTGDR, SIX6, SLC6A2, SOX17, SPAG6, TBX20, TLX3,

TMEM130, VIPR2, ZNF560

Common hypomethylated genes across 4 CORO6, MMP26, REG3A, KRTAPS-1

Stage | and Stage Il
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Table 3 Identification of top beta-value scored DNA methylated genes across stages

Stage Hyper/Hypo Genes in descending order of beta-values (p <0.001)
I Hyper TLX3 > NEFM > PTGDR > AJAP1 > SIX6 > HOXA9 > TMEM130 > HISTIH3G > ATP8A2 > NID2
Hypo MMP26 > KRTAP 8-1 > REG3A > CORO6 > LY96
Il Hyper LY96 > C100rf81 > KRTAPS-1 > MIMP26 > REG3A > DEFB 119 > NMUR2 > MAGEBG6 > IGKV7-3 < KRTAP15-1
Hypo HTR2C > GRIK3 > CNTP2 > SPHKAP > TMEM 132D > NEFH > LEP > ZNF177 > HOXD10 > NKX 6-2
Il Hyper TLX3 > HOXB4 > AJAP1 > HOXA4 > HOXD9 > PTGDR > LYPD5 > FZD10 > HOXD12 > NECAB2
Hypo CHR6 > C130rf28 > TMEM156 > XDH > FGF6 > IVL > G6PC > KRTAPS-1 > C100rf39 > FCRL3

genes in Stages I and III and hypomethylated genes in
Stage II were mostly identified in TRUE CpG sites. Of
the 34 common Significant DNA methylated genes across
all stages (see Table 2), 25 were identified in TRUE CpG
sites: AJAPI, ATPS8A2, CYYRI, EVX1, FERD3L, GRIK3,
GRM6, HAND2, HOXAY9, HOXB4, HOXD9, HOXD4,
HOXDI12, OTX2, PRAC, PHOX2A, POU4F2, PTGDR,
SIX6, SLC6A2, SPAG6, TBX20, TMEM130, TLX3, and
ZNF560. These common genes were hypermethylated in
Stages I and III respectively but hypomethylated in Stage
II. Additionally, nine hypermethylated genes common to
Stages I and III (see Table 2) were identified in TRUE
CpG sites: GALRI, HLA-G, HOXA7, HOXDS, NID2, NPY,
PAX7, SOX17, and VIPR2. The hypomethylated genes
which were common to Stages I and II, REG3A, MMP26
and KRTAPS8-1 (see Table 2) were also identified in TRUE
CpG sites. The CpG sites were analyzed for their role
as promoter sites. This analysis identified 61/72, 80/93
and 141/170 Significant DNA methylated genes across
Stage I, II and III respectively in promoter sites. Also,
the common Significant DNA methylated genes across
all stages and between two stages (see Table 2) were
identified in the promoter sites. Methylation of promoter
regions in the gene correlate with low or no transcription
[33]. Gene Ontology was used to correlate the transcrip-
tion role of the Significant DNA methylated genes identi-
fied in all of the three stages. Recall from Table 1 that
there are 72, 93 and 170 Significant DNA methylated
genes found in Stages I, II and III respectively of these 65
were identified as TFs. Among the 34 common genes
across stages identified in Table 2, 16 were identified as
TFs. These 16 TFs were found to be hypermethylated in
Stages I and III, and hypomethylated in Stage II. Figure 2
describes the TF distribution profile across the different
stages. Analysis of these TFs with respect to their CpG

Table 4 Distribution of hyper and hypo-methylated genes
in CpG islands

Stage Hypermethylated Hypomethylated
True False True False

I 53 4 1 4

Il 4 14 60 4

Il 88 7 4 45

sites also identified all (except HBE1, HOXD10, ORSI)
mapped to the TRUE CpQG sites.

Figure 3A and 3B show the chromosome profile of
Significant DNA methylated genes with respect to their
hyper and hypomethylation. As shown in Figure 3A for
Stage I the maximum number of hypermethylated genes
were present on chromosome 7 while no hypermethylated
genes were present on chromosomes 3, 9, 15 and 16. The
Stage I genes identified on chromosome 7: EVX1, FERD3L,
HOXA7, HOXA9, NPY, TBX20 and TMEMI130 were
common in Stages I and III; five of these were common
across all stages (see Table 2). For Stage II, the max-
imum number of hypermethylated genes was present on
chromosome 8: MX2, KRTAP8-1 and KRTAP15-1. Of
these three, KRTAP8-1 was common across all the
stages, and KRTAP15-1 common across Stages II and III
(see Table 2). In Stage III, all chromosomes had atleast
one gene identified as hypermethylated. As with Stage I,
in Stage III also the maximum number of hypermethy-
lated genes was identified on chromosome 7: CFIR,
DGKI, EPO, EVX1, FERD3L, HOXA4, HOXA7, HOXAY,
HOXA13, LEP, NPTX2, NPY, TBX20, TMEM130 and
VIPR2. Of these genes five were common across all
stages, three were common to Stages I and III; two were
common to Stages II and III; and two in only Stage III
(see Table 2).

Figure 3B shows Stage II has a maximum number of
hypomethylated genes on chromosome 7 also no hypo-
methylated genes were identified on chromosomes 18 and
19 for this stage. For Stage I, only one hypomethylated
gene was identified in chromosomes 2, 8, 11, 17, 21. For
Stage III, maximum number of hypomethylated genes
was present on chromosome 1: CDIB, FCRL3, FLG,
IVL, LCEIF, LCE2B, LCE3D, LCE4A, SPTA1 and ZP4.
Also, these 10 hypomethylated genes on chromosome 1
were unique to Stage III

Additional file 2 shows the pathway distribution of
Significant DNA methylated genes across stages. This
distribution depicts difference and commonality across
stages in terms of pathways. The pathways associated with
common Significant DNA methylated genes given in Table 2
across all stages were Inositol phosphate metabolism,
Neuroactive ligand-receptor interaction, Phosphatidylinositol
signaling system and P53 signaling. The pathways associated
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Figure 2 Profile of DNA methylated genes as transcription factors across stages.

with common Significant DNA methylated genes (Table 2)
across Stages I and II were Glycine, serine and threonine
metabolism, Melanogenesis, Taurine and hypotaurine
metabolism, P.E.coli infection, Shigellosis, Toll-like recep-
tor, calcium signaling pathway and GnRH signaling path-
way. The pathways associated with common Significant
DNA methylated genes (Table 2) across Stages II, and III
was Adipocytokine signaling pathway, Cytokine-cytokine
receptor interaction, JAK-STAT signaling pathway, P53
signaling pathway. The pathways associated with com-
mon Significant DNA methylated genes across (Table 2)
Stages I and III were Antigen processing, Cell adhesion
molecules, Natural killer cell mediated cytotoxicity, Type I
diabetes mellitus. In addition, focal adhesion pathway
was associated with Stage II genes and Hedgehog path-
way with Stage III genes.

Network construction and analysis

A systems biology approach was developed to understand
the Significant DNA methylated genes and Significant
expressed genes in each stage. The interactions for the Sig-
nificant DNA methylated genes and Significant expressed
genes were identified using BioGRID [34] and stage-specific
networks were constructed. Table 5 shows the number of
interactions of Significant DNA methylated genes across
the three stages. In each stage, the interactions of Sig-
nificant DNA methylated genes were analyzed with respect
to Significant expressed genes. This analysis showed that
Significant DNA methylated genes have interactions among
themselves, with Significant expressed genes and additional
genes present in BioGRID [34]. These additional genes
were analyzed for their expression in all the stages to
determine if DNA methylation affected their expression.

Number of hypo
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Table 5 DNA methylated gene interactions across stages

Stage Num. of DNA methylated genes Num. of interactions
I 72 228
Il 93 273
Il 170 660

These interactions were termed as “missing links”, and
the additional genes as “novel genes”. Table 6 gives the
profile of the missing links and novel genes. Analysis of
the 27 novel genes in Stage I for their significance in
other stages indicated six of them in Stage II: ANXA?7,
APBBIIP, MDK, PFDN1, TINF2, TLE2; three in Stage IIIL:
CULS, CTNNBI and SQSTM1I and six in Stages II and III:
CALM1, CTNNBI, c-JUN, SMADI, TINF2. Of the 33
novel genes in Stage II, two were associated in Stage IIL:
A2M and CTNNBII; and ten genes in Stages I and IIL:
FOXA2, HK3, NCFI1, NRIP1, PDLIM1, SP1, SUMOI,
TCF4, TLR4, and TNN. Analyses of the 83 novel genes
in Stage III found three in Stage I: ELN, FAS and TEX11I;
seven in Stage II: ANXA7, APBBIIP, MDK, PFDNI,
STAT3, TLE2, UBE2B and 34 in Stages I and II:BCR,
DLG3m, DLG4, EGFR, DSP, MAFF, PICKI etc. Table 7
shows the profile of interaction of Significant DNA
methylated genes identified in Table 2 and Table 3 with
novel genes analyzed in this paragraph (given in Table 6).
Figure 4 shows the stage-specific networks of Signifi-
cant DNA methylated genes. From this figure, it can be
seen that Stage III networks were more connected and
dense as compared to other two stage networks. This
suggests heterogeneity of LUAD network across stages.
To compare stage-specific networks, subnetworks of
Significant DNA methylated genes were identified and
analyzed. SEED and expand algorithm (described in
methodology) was used to identify these subnetworks.
Additional file 3 lists the number of subnetworks with
respect to the pathway class. These subnetworks were
overlapping as the genes in them belonged to different
pathway class. Additional file 3 shows that the number
of subnetworks drastically increases from size four to
size five in most of the stages, making it an NP-hard
problem. This sharp increase in the number of subnet-
work suggests that though the DNA methylated gene is
not directly connected to a hub node, its interaction
path has a hub node. This further indicates that a DNA
methylated gene can influence the whole network of a
given stage. Table 8 lists the subnetworks with greater
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number of connections identified in all three stages. As
shown in Table 8, UBC and CULI were identified as
hub gene across the three stages and their connectivity
profile changes with pathway class. The other hub genes
(number of connections) identified in Stages I and III
(not shown in the Table 8) were: SIRT7 (6), CDK2 (5),
PMS2 (4), SUMO?2 (3), SMAD3 (7), SMAD4 (5), and
SMAD2 (4). The analysis also identified LY96 subnet-
work in Stage I consisting of the hub gene TLR4 inter-
acting with seven other genes. Though LY96 was also
identified in Stage II, the comparative subnetwork was
smaller, and this gene was not identified at all in Stage
III. HLA-G was present in Stage I but not in Stage II; there-
fore its subnetworks were missing. In Stage II and III, ¢-Jun
a TF was identified as a hub gene. PHOX2A was the Sig-
nificant DNA methylated gene associated with c-Jun in
both stages. There was similarity across common genes
(see Table 2) with table 8, depicting that subnetworks
constructed out of common genes across or between
two stages can be of significance to LUAD. The size four
subnetworks were further compared across the stages to
understand their commonality and uniqueness (Add-
itional file 4). This size four subnetworks were ana-
lyzed for their common Significant DNA methylated
genes. The common Significant DNA methylated genes
in this size four subnetworks were FOXGI, and PHOX2A
(see in Table 2 also) and significant expressed genes were:
FOXH1, FOXO3, HAND2, MYC, RB1, SMAD2, SMAD?3,
SMAD4, and TP53. On analysis of genes in these sub-
networks with respect to their pathway classes found
some of them to be very specific to a given pathway class.
A highly conserved common subnetwork of GRIK2,
GRIK3, GRIKS5, and GRID2 was identified across all
stages belonging to the other pathway class. Of these
GRIK3 was Significant DNA methylated in all the three
stages (Table 2) and GRIK2 in Stages I and III (Table 2).

Analysis of these subnetworks is an NP-hard problem
because these are large open subnetworks. To reduce
the complexity, the subnetworks were ranked based on
their NodeStrength and EdgeStrength as given in meth-
odology section. The top ranked, size four subnetworks
of each stage (Table 8 and Additional file 3) were propa-
gated and compared to identify the largest conserved
subnetworks across the stages. This analysis identified a
subnetwork of size 11 with seven conserved genes: UBC,
KRAS, PIK3CA, PIK3R3, RAF1, BRAF, RAPIA (Additional
file 5). The g: Profiler tool was used for the enrichment

Table 6 Novel genes (Missing Link-methodology) discovered using BioGRID

Stage Missing links Novel genes Num. of DNA methylated genes Num. of novel genes & stages where these are identified
| 27 27 16 6 (Stage II, 1ll), 6 (Stage 11),3 (Stage lI)
Il 43 33 25 10 (Stage |, 1ll), 2 (Stage II)
MMl 132 83 32 34 (Stage |, II), 3 (Stage |), 7 (Stage )
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Table 7 Analysis of DNA methylated genes interacting
with novel genes

DNA methylated genes Stages
| I ]l
Common DNA methylated genes
AJAPT V \V N
FOXGI V \V N
GRIK3 \V N
HAND2 v
HOXD4 Vv Vv v
PHOX2A N
PRKCB V \V N
L3 Vv
DNA methylated genes common with Stage | & Il
Y96 v \J
MSC Vv
Hypermethylated genes common with Stage | & Il
GAS7 N N
GRIK3 vV
HLA-G N
HOXA9 v
HOXD8
HOXD12 N
NID2
TLX3 Vv
DNA methylated genes common with Stage Il & Il
SERPINBS V N
TALT Vv
Top scored DNA methylated gene
VL N
NEFM N
TLX3 N N

analysis on the top ranked subnetwork given in Table 9
[35,36]. This analysis showed that these subnetworks to
be enriched with common genes across stages (shown
in Table 2), indicating that commonality across stages
of LUAD can be critical in identifying the target genes.
Figure 5 gives the Circos image of the number of hypo-
methylated and hypermethylated genes and pathways class
across chromosomes for each stages of LUAD.

Figure 6 and Table 10 show the comparison results
for the interaction networks from BioGRID and from
the manually curated signaling network. As shown in
the table and Venn diagram, there is a minimal propor-
tion of overlap between the methylation and expression
networks obtained from multiple sources (see Figure 6(A)
& (B)). However, this overlap improves after applying
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the methylation-expression network integration criteria
mentioned in methodology section (see Figure 6(C)). In
addition, there is a significant amount of commonality in
the subnetworks extracted from networks for BioGRID
and the manually curated signaling network. The same set
of conserved genes (KRAS, PIK3CA, PIK3R3, RAF1, BRAF,
and RAPIA) was obtained in these networks except for
UBC, which is missing from the resulting subnetwork of
signaling network.

Discussion

Distribution and understanding of Significant DNA
methylated genes across stages

According to Table 1 and Figure 1, the maximum num-
ber of Significant DNA methylated genes were identified
for Stage III followed by Stage II and then Stage I. None
of the genes in Stage IV met the filtering criteria; there-
fore, no genes were identified as DNA methylated. From
Table 1, it can be seen that hypermethylated genes were
more prevalent in Stages I and III than in Stage IL
Though this study identified 34 common Significant DNA
methylated genes (see Table 2) across the three stages,
most of them have not been reported previously in LUAD.
The HOX genes that were common across the three
stages are grouped into four HOX families, A, B, C,
and D; equivalent numbered HOX genes (HOXA9, HOXB9)
in each family groups (A, B, C, D) are paralogues. The
analysis found HOXA4, HOXA9, HOXB4, HOXD9Y, and
HOXD12 genes with high methylation value, suggesting
these genes play an important role in all stages of
LUAD. These genes are known to be involved in cell
proliferation while preventing apoptosis and helping in
survival [37]. Dysregulated behavior of HOX genes has
been observed in ovarian cancer [38]. Early stage HOXA9
methylation has been identified in lung cancer and used
in early detection and prognosis [39,40]. Our analysis
found HOX genes in all stages, with hypermethylation
in Stages I and III, hypomethylation in Stage II. While
no previous studies have associated the profile of HOX
genes with stages, though re-appearance was identified
and our analysis demonstrated this aspect. Another gene
identified by our analysis across all three stages was PTGDR,
which was highly hypermethylated in Stages I and III
(Table 3). PTGDR has been negatively correlated with
smoking [41] and methylated in colon cancer [42], how-
ever, prior studies have not investigated its role in LUAD.
POUA4F2 and TLX3 were identified in all three stages,
and TLX3 was highly methylated in Stages I and III
(Table 3). Previous studies have found them as methyl-
ated in leukemia and breast cancer respectively [43,44]
but not in LUAD. Overexpression of TBX20, which was
also identified in this study (see Table 3), has been re-
ported in lung cancer [45]. EVX1 and OTX2 (see Table 2)
were identified as methylated in NSCLC and lung
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cancer [46,47]. MMP26 has been associated with tumor
development, invasion and metastasis of NSCLC but its
methylation profile was not reported [48], our analysis
showed it to be highly hypomethylated in Stage II
(Table 3). There was no literature evidence about
KPTAP8-1, REG2A, and SLX6 for their significance or
methylation in lung cancer.

Of the 12 common Significant DNA methylated genes
common to Stages I and II, LY96 has been previously as-
sociated with lung cancer [49]; ZNF577 and LVRN have
been identified as methylated in lung cancer [47] and
renal carcinoma, but not in LUAD [50]. LY96 was highly
hypomethylated in Stage I and hypermethylated in Stage
I (as shown in Table 3), suggesting further investigation
into its role in LUAD.

Of the 30 common Significant DNA methylated genes
across Stages II and III, GRIK2 and NEUROGI have

been previously reported being DNA methylated bio-
marker for lung squamous cell carcinoma [47], and a
Stage I biomarker in lung cancer [46] respectively. How-
ever, re-appearance of NEUROGI in Stage III has not
been previously reported. SERPINBS and TALI have
been identified as methylated in NSCLC [30,46,51]. LEP
has been reported as biomarkers in breast cancer [52],
though not in lung cancer. The other highly hyper-
methylated genes across Stages II and III identified in
this study (as shown in Table 3) were AJAP1, HOXB4,
MMP26, NMUR2, REG3A, TLX3, etc. and hypomethy-
lated genes were FCRL3, GRIK3, HTR2C, IVL, NKX6-2,
etc. Literature validation of these genes with respect to
their importance in LUAD and other cancers found
NMUR?2 to be overexpressed in pancreatic cancer [53],
AJAPI epigenetically silenced in Glioblastoma [54]. Also,
AJAPI was correlated with susceptibility in lung cancer
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Table 8 Analysis of hub genes in the DNA methylated subnetworks of size 4

Stage Subnetwork Connectivity profile of the hub node across pathways
Cancer Lung cancer Signaling Metabolic + others
(i) PHOX2A*HAND2*PPP2R5D:UBC 23 13 71 288
(i) HLA-G*COPBT:TRIM37:UBC
(iii) LY96*TLR4:SIGIRR:.UBC
(iv) HLA-G*COPBT:UBC.CUL1 21 14 35 114
(v) FOXG1*FOXH1:SMAD3:CUL1
(vi) HLA-G*COPBT:UBC:SKP2 19 10 17 38
Il (i) PHOX2A*c-JUN:-SUMO3:UBC 23 14 74 254
(i) TAL1*HDACT:IRF5:UBC
(iii) PRKCB*HISTTH3-CUL4A.CUL1 20 14 74 253
If (i) PHOX2A*c-JUN-SUMO3:.UBC 22 10 64 235
(i) PHOX2A*HAND2*PPP2R5D:UBC
(iii) PRKCB*HISTTH3CUL4A:CUL1 20 13 35 102

*: identified in Table 2.

[55]. GRIK3 was correlated with breast cancer and being
considered as diagnostic for lung cancer [56]. Not much
literature evidence has been reported for the presence of
VSX1, NKX 6-2 in cancer or their methylation.

Of the 42 common Significant hypermethylated genes
unique to Stages I and III, GALRI, NID2 have been
identified as highly methylated in NSCLC [46,55], PAX7
has been identified in lung cancer but not reported with
methylation [57], though PAX family genes have been
previously reported being methylated in cancer [58]. Re-
cent studies have reported SOXI7 methylation in lung
cancer [59], but not at the stage level. Additionally low
expression of GAS7 has been reported in lung squamous
cell carcinoma suggesting its importance as marker [60],

but this gene has not been previously found to be meth-
ylated in LUAD but reported as methylated in colorectal
cancer [61].

Of the four Significant hypomethylated genes in Stage
I and III, in addition to KRATAPS8-1 and MMP26 which
were analyzed in the above section, CORO6 was also
hypomethylated and has been reported as an epigenetic
gene in renal cell carcinoma but not in LUAD [62].
However, not much detail for REG3A with regards to its
presence in LUAD was available.

In addition to genes that were found to be common
across all or two stages, several genes were unique to
one stage only, and these need further evaluation. From
Stage I, NEFM has been reported as a biomarker and as

Table 9 Enrichment analysis of the top scored subnetworks

Stage Biological Process p-value Genes in subnetworks
Common across Activation of MAPKK activity 1.12E-03 PHOX2A*, HAND2*, PPP2R5D, UBC, KRAS, PIK3CA, PIK3R3,
all Stages RAF1, BRAF, RAPTA

&I Co-SMAD binding 1.2E-05 FOXGT* FOXH1, SMAD2, SMAD1, MED15, UBC, KRAS, PIK3CA, PIK3R3,
RAF1, BRAF, RAPTA

&I Nerve growth factor receptor signaling pathways 221E-04  HOXD4*, INPP5B, SLC6A2, STX1A, VAMP1, UBC, KRAS, PIK3CA, PIK3R3,
RAF1, BRAF, RAPIA

&1l Positive regulation of peptidyl-serine phosphorylation 1.42E-03 NPY*, NPYIR, LSM7, NR1H2, RMI1, UBC, KRAS, PIK3CA, PIK3R3,

RAF1, BRAF

Transmembrane receptor protein tyrosine kinase
signaling pathway

Il DNA helicase complex

Il Nerve growth factor receptor signaling pathway

1.87E-03 HLA-G*, COPB1, UBC, KRAS, PIK3CA, PIK3R3, RAF1, BRAF, RAP1A

6.8E-05 SERPINB5*, UCHL5, ACTRS, ACTR5, UBC, KRAS, PIK3CA, PIK3R3,
RAF1, BRAF

5.5E-04 HOXB4*, CREBBP, KLF13, UBC, KRAS, PIK3CA, PIK3R3, RAFI,
BRAF, RAPTA

*: commonality with Table 2.
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a methylated gene in cancer [63,64], however, it was not
reported in LUAD. From Stage III, IVL has been identi-
fied as overexpressed in cancer [65] but not in LUAD.
Overall our methodology identified both known and
novel DNA methylated genes that were significant across
all three stages of LUAD. Also, our analysis found that
most of the DNA methylated genes that were common
across all stages were highly methylated in the respective
stages (Table 2 and Table 3), and many of them were re-
ported as oncogenes.

Distribution of the Significant DNA methylated genes in
and outside of CpG islands, promoter regions,
transcription factors, chromosomes and pathways

Our initial distribution analysis found that most of the
Significant DNA methylated genes across the three
stages were present in the TRUE CpG sites (as shown
in Table 4), stating the role of these sites in methylation.
In Stage III, 45 hypomethylated genes were present in
FALSE CpG islands. The false sites could be further vali-
dated using other databases or clinical features. The ana-
lytic procedure in this analysis identified 30 of the 34

common Significant DNA methylated genes (found in
Table 2) and 79 unique hypermethylated Stage III genes
in the promoter regions. This correlation of the promoter
region with common Significant DNA methylated genes
further demonstrates that the genes with higher CpG
islands in the promoter region were methylated across
the stages of LUAD. Therefore, further analysis can be
done to better understand these promoter regions func-
tionally with respect to their conservation (motifs) as
these can be co-regulated.

DNA methylation is closely linked with gene regula-
tion, particularly with transcriptional activity. It has been
reported that DNA methylation can prevent gene activa-
tion and restrict expression for correct developmental
stage [66]. It can also interfere with binding of TFs by
changing the recognition sites involving cytosine [67].
Most TFs require CpG-rich sites to bind to DNA and
methylation of these sites might interfere with the bind-
ings. This study identified TFs in all three stages and
these TFs were associated with TRUE CpG sites. As TFs
have been identified as potential biomarkers for different
diseases, the unique TFs identified for each stage were
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Figure 6 Comparison of different types of networks obtained from BioGRID and manually curated signaling network. The “bio_stage”
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obtained from the two different sources, BioGRID and Signaling network. A) Venn diagram of the methylated genes for Stage |, Stage II, and
Stage lll. (B) Venn diagram of expression genes for Stage |, Stage I, and Stage ll. (C) Venn diagram of methylated-expression genes for Stage |,

sig_stage2 bio_stage3 sig_stage3

sig_stage2 bio_stage3 sig_stage3

sig_stage2 bio_stage3 sig_stage3

analyzed for their significance in LUAD using the litera-
ture. Of the 16 TFs common across the stages, four
(EVX1, HOXA9, OTX2, TLX3) have already been discussed
in earlier sections. Table 11 lists the significance of the
remaining few common and unique TFs across the stages
with respect to their association in lung cancer, other
cancer (not lung) and/or prognostic value. From this

Table 10 Percentage of genes overlapping from signaling
network with BioGRID network

Stage 1 Stage 2 Stage 3
(%) (%) (%)
Methylation network 17.1 19.1 202
Expression network 4945 27.32 40.75
Expression-Methylation merged network 859 85.75 84.60

table, it can be seen that almost all the TFs are consid-
ered as prognostic markers for lung cancer. Our study
identified these TFs as epigenetically modified across
the stages of LUAD, and, given their significance in can-
cers (other or lung), they could be considered for future
studies as potential targets for LUAD.

Earlier studies have reported chromosome 6 and 15 to
play an important role in lung cancer [84,85] also certain
chromosomal regions were more hypermethylated [15].
On mapping, the hypermethylated and hypomethylated
genes to their respective chromosomes, it was observed
that some chromosomes were common across all the
three stages (Figure 3A and Figure 3B). Chromosome 7
was identified in all three stages, with the maximum
number of hypermethylated genes in Stages I and III. Six
common Significant DNA methylated genes of Table 2
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Stage/DNA methylated genes identified as TFs

Significance

Common across Stages (Table 2)
FOXGI

HAND2

HOXB4

PHOX2A

Unique TFs in Stage | (total 6)
HLA-G

BCL11B
available [74,75]

UTF1
Unique TFs in Stage |l (total 6)
EMX2

Cell adhesion, Growth and invasion of lung cancer [68] and is prognostic marker in bladder cancer [69]
Identified in early stage in squamous cell carcinoma but not in adenocarcinoma [70]
Overexpression identified in ovarian cancer though HOX genes are reported in lung cancer [71]

Abnormal methylation in NSCLC [72]

Potential biomarker in lung cancer [73]

A new therapeutic for T-cell malignancies but direct correlation with lung cancer not

Not yet correlated in lung cancer but a prognostic in cervical cancer [76]

Is associated with WNT signaling pathway and its down-regulation is associated with methylation of

promoter region in lung cancer suggesting it as novel suppressor gene for human lung cancer [77]

NKX6-2
OLIG2
ZNF577

Identified as methylated in lung cancer [40] and identified as target in Pancreatic cancer [78]
Identified in lung cancer but not study as target [79]

Identified as methylated in various cancers like breast and oropharyngeal squamous cell carcinoma,

very recently in lung cancer [80]. Not much is reported with respect to its prognostic value.

Unique TFs in Stage Il (total 13)

EPO Is the key regulator in the production of RBC, methylation of the promoter section of EPO is
identified in many cancers including lung, breast liver etc. [81] though its prognostic value
efficiency is not reported.

GERM1 Hypermethylation of GREM1 is identified for prognostic significance in renal cell carcinoma [82],
so far not in lung cancer.
IRX1 Methylation is identified in lung cancer [83] but needs to be studied for prognostic markers.

were identified on chromosome 7 including the HOX
genes which cluster on chromosomes 2, 7, 12 and 17.
Our analysis found chromosome 7 to be highly epige-
netically modified. Some of the other methylated genes
located on this chromosome found in the Stages I and
IIT were EVXI1, FERD3L, NPY, TBX20, and VIPR2. NPY
was found to be highly expressed in prostate carcinomas
[86] while the significance of the others genes was dis-
cussed in the previous section. Another Significant DNA
methylated gene common across Stages II and III (Table 2)
identified on chromosome 7 was LEP. This gene is known
to be associated with advanced lung cancer (http://www.
ncbi.nlm.nih.gov/gene/3952). Genes on chromosome 7
have also been reported to associate with different can-
cers including gastric cancer, and prostate cancer [87,88].
Chromosome 7 genes AKT and PTEN are used as prog-
nostic markers for NSCLC [89], suggesting that chromo-
some 7 genes that have been identified across stages of
LUAD as methylated can be considered for prognostic
significance in LUAD. Our analysis also found Chromo-
somes 17 and 14 to be associated with a large number
of hypermethylated genes in Stages I and III. Chromo-
some 17 has been previously studied and associated
with NSCLC [90]. Chromosome 14 has been associated
with genetic variation in lung cancer [91]. In Stage III

chromosome, 10 was identified with nine hypermethy-
lated genes and these were: LBXI, NKX6-2, PTFIA,
SLC18A3, SORC3, SPAG6, CI0orf26, and CI0orf82. The
ladybird homeobox 1 (LBXI) gene has been associated
with the breakpoint regions involved in T-cell leukemia
[92] and methylated in prostate cancer [93]. However,
not much has been studied and reported about LBX1
methylation and association in lung cancer. Similarly
NKX6-2 is a methylated biomarker for bladder cancer
but its importance and methylation has not been stud-
ied in LUAD [94].

The analysis found that chromosomes with the highest
number of hypermethylated genes in Stage I also had
the highest number of hypomethylated genes in Stage II
and eventually have the highest number of hypermethy-
lated genes in Stage III (Figure 3A and Figure 3B). Also
in Stage II a large number of hypomethylated genes
were identified in almost all the chromosomes. This ob-
servation suggests a distinct methylation pattern across
the three stages of LUAD, and since methylated genes are
present on certain chromosomes in cancer, further indi-
cating that epigenetics plays an important role in LUAD.

The pathway analysis depicted the onset of differ-
ent epigenetically modified pathways across stages.
The common signaling pathway identified across the
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three stages shown in Additional file 2 was: Adipocy-
tokine signaling and Phosphatidylinositol signaling;
across Stages I and II were: Toll-like receptor, Cal-
cium signaling, GnRH signaling pathway; across
Stages II and III were: JAK-STAT and P53 signaling
pathways. It has been reported that genes silenced due to
promoter methylation were mostly tumor suppressor
genes [15], and silencing of these genes can eventually
affect all the pathways especially cell cycle, DNA repair
genes, apoptosis, signaling etc., which could lead to tumor
progression. An example of this propagation was gene
LY96 which was identified in our analysis as hyper-
methylated in Stage I and hypomethylated in Stage II
(Table 2). In Stage I, the interacting genes were TLR2,
TLR4, while in Stage II its interacting genes were TLR2,
CALM]1 and UBC. LY96 encodes MD2 a molecule im-
portant for the activation of TLR4, which promotes sur-
vival [95] and Toll-like pathways connect to the
immune system [96]. DNA methylation of LY96 might
prevent the activation of TLR4 in Stage II, which in turn
would affect the activation of Toll-like pathway. Since
cancer cells evade the immune system, reversing the
epigenetic behavior of LY96 needs to be further evalu-
ated as it could result in the activation of TLRs which
would be beneficial. Similar analysis can be carried out
for the other pathways that are common across stages
as these have also been identified as important cancer
signaling pathways [74,97]. In addition, the focal adhe-
sion pathway associated with Stage II has been reported
to be involved with multiple signaling events in lung
cancer, suggesting that methylation of this pathway
might also affect the signaling pathways [98]. Hedgehog
pathways in Stage III have been identified as a subset
of NSCLC and are being investigated for clinical trials
[99]. Our analysis also found that metabolic pathways
are co-related with the DNA methylated genes in each
stage, underscoring the fact that methylation affects im-
portant pathways in LUAD. Our analysis also depicted the
early and late methylated affected pathways. This analysis
demonstrates that targeting the epigenetic genes in these
pathways might be effective for LUAD.

Understanding the DNA methylated stage-specific networks
Effective drug target identification in a disease now
requires incorporating knowledge of the epigenetic genes
with knowledge of other biological features. Biological
networks help understand and elucidate the roles of
the molecular entities individually and collectively.
Therefore, the epigenetically modified genes identified
in our study were further analyzed in terms of their
interaction partners across different stages of LUAD.
This network analysis can help to recognize patterns
that were not visible by exploring the expression data
alone and help to illustrate the conserved and unique
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patterns across the stages of LUAD. These patterns
could then be further validated in laboratories for their
efficacy as drug targets.

The missing links and novel genes of Table 6 were
identified in subsequent or other LUAD stages. These
novel genes were analyzed for their interacting partners.
Table 7 shows the common Significant DNA methylated
genes across all stages, having interactions with these
novel genes (missing links), were: AJAP1, FOXG1, GRIK3,
HAND2, HOXD4, PHOX2A and PRKC. Most of these
DNA methylated genes were analyzed for their signifi-
cance in the previous sections. Analyzing the associa-
tions of the novel genes identified the following TFs:
c-Jun, SMADI1, STAT3, and others genes like EGFR,
BCR, SUMOI1, CALMI, CULS5, CTNNBI etc. The TFs
identified as novel for a given stage play an important
role in cancers [100]. C-Jun was identified as important
TF in cancer and its subnetwork has been identified in
Stages II and III; which was discussed in the previous
section. EGFR mutations were associated with NSCLC
(www.egfr.org). CALMI and CTNNBI were studied in
NSCLC and lung cancer [101,102]. This brief analysis
elucidates that novel genes interacting with epigenetic genes
can play an important role in LUAD; further highlight-
ing that it is essential to understand stage-specific networks.

To understand the commonality and uniqueness of
the Significant DNA methylated genes in the context of
the other significant expressed genes, we developed and
performed subnetwork analysis (as described in the meth-
odology section). Subnetworks of each size were analyzed
with respect to their hub genes. Table 8 shows the hub
gene profile across different stages in the size four sub-
networks. From this table, it can be seen that U/BC and
CULI were hub genes across top ranked stage-specific
subnetwork; COPBI, FOXHI, SMAD3, TLR4 for Stages I;
HDACI for Stage II. Also SIRT7, SUMO2, LY96, c-Jun
were hub genes in different stages. Additionally each sub-
network had at least one TF. This analysis also confirms
that epigenetic genes are not usually hub genes, but have
a direct correlation with TF. Also TFs are usually the
hub nodes and play an important role in cancers [100],
meaning that targeting DNA methylated genes is advanta-
geous as it would not disrupt the whole network but can
induce the necessary changes to restore the functionality.

Analysis of the genes in the subnetworks (Additional
file 4) found FOXG1 and PHOX2A (Table 2) to be com-
mon across all pathway classes. FOXG1 is already a sig-
nature gene for lung cancer [68]. All these subnetworks
consisted of at least one TF and these were: HAND?2,
MYC, SMAD2, SMAD3, SMAD4, and TP53; which are
important in cancer [70,100,103-105]. The other genes
AR, ATF2, CULI, EP300, GATA4, LEF1, SKP2 in these
subnetworks have also been identified as important in
lung cancer [106-112]. Our analysis identified the highly
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conserved common subnetworks of GRIK2, GRIK3, GRIKS,
and GRID2 in the metabolic pathway class. GRIK3 has
been reported to be associated with breast cancer and is
also in consideration for diagnostic value in lung cancer
[56]. In addition, the analysis also identified some sub-
networks with novel genes (see Table 6). This analysis
suggests epigenetic genes can be used to target lung
cancer genes and identification of epigenetic subnet-
works can aid in stage-wise characterization of LUAD.
The top ranked subnetworks of size four in each stage
were propagated based on their SubnetworkStrength to
identify the largest conserved subnetwork across stages.
Analysis of the different subnetworks found that a set of
seven genes was conserved across the stages. The size of
the subnetworks with these conserved genes was 11,
and the seven genes were: UBC, KRAS, PIK3CA, PIK3R3,
RAFI, BRAE and RAPIA. From Table 8, it was seen that
UBC was the hub gene in all stages. UUBC is considered to
be a reference gene for lung cancer, though it interacts
with important cancer genes like EGFR, PCNA, IRAK1,
and P53 [113,114]. Since UBC is involved in ubiquitina-
tion, it is responsible for cell death and general mainten-
ance. In this analysis, UBC expression was found in all
stages, suggesting that its function if disrupted can result
in uncontrolled cell division, a key feature of cancer.
The BRAF gene encodes a RAS regulated kinase that
mediates cell growth. Recent studies have identified
BRAF mutations in NSCLC [115]. Phosphatidylinositol
3'-kinase (PI3K) is a heterodimer that consists of cata-
lytic and regulatory subunits. PIK3CA is one of the cata-
lytic subunit genes and PIK3R3 is one of the regulatory
subunit genes: both of these genes were present in the
conserved subnetwork. PIK3CA mutations have been
identified in many cancers. The PIK3CA pathway con-
sist of the KRAS and EGFR genes which are important
targets for many cancers [100], mutations of PIK3CA
have been also identified in lung cancer [116]. PIK3R3
expressions have been associated with cancers like glio-
blastoma and ovarian cancer in prior studies [117], and
recent studies have identified PIK3R3/AKT as the target
of lung cancer molecule miR-7 which affects TLR9 sig-
naling (TLR was discussed in a previous section) [118].
This analysis of the conserved seven genes in the DNA
methylated genes subnetworks of size 11 elucidated that
methylation can affect important LUAD genes and enrich-
ment analysis described the important biological processes
associated with these subnetworks. From Table 9, it can
be seen that these subnetworks affect the important sig-
naling and metabolic cancer processes. Additional file 4
list the DNA methylated genes associated with these
subnetworks. Therefore, it can be concluded that further
laboratory validation of epigenetic genes in these con-
served subnetworks might be useful in recognizing a
novel target of LUAD that can be universal to all stages.
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Effectiveness of methodology to extract significant sub-
networks for networks obtained using variable dataset
sources is proved by the comparison results showed in
Table 10 and Figure 6. In addition, the same set of con-
served genes was identified by the algorithm which proves
the robustness of the analysis pipeline.

Conclusions

The study was entirely based on the available TCGA
data, which has the limitation of unequal samples; still
we were able to prove the advantage of integrating epi-
genetic data, expression data and protein-protein inter-
action knowledge for advancing of systematic understanding
of LUAD. This understanding can be further improved by
incorporating the system biology approach to the epigenetic
profile across the different stages of LUAD. The study
identified 72, 93 and 170 epigenetic genes across Stages 1,
II and III. A set of 34 common epigenetic genes were
identified across the three stages, and it was observed that
methylation patterns were similar across Stages I and III,
but were different in Stage II. The study also identified
known, and novel epigenetic genes across stages that
were important in LUAD, these genes could be further
validated in the laboratory for their scope as targets. The
novel epigenetic genes identified were PTGDR, POU4F2,
TLX3, and MMP26 along with the study identified early
and late expression profiles of NEUROGI, AJAP1, and
CORO6 in LUAD. System biology approach stated that
epigenetic genes were not the hub nodes but could still
affect the hub genes in the networks, eventually playing
a critical role in the disease mechanism. Subnetworks
of size 11 with seven conserved genes across the three
stages were literature validated, confirming their im-
portance in LUAD. Therefore, it can be concluded that
integrating methylated data with expression data can
be useful for comprehending in-depth disease mechanism
and for the ultimate goal of better target identification.

Methods

The gene expression and DNA methylation data for LUAD
were downloaded from TCGA [119]. The gene expression
data were generated by UNC AgilentG4502A_07_3,
and the methylation profiles were generated by Illumina
HumanMethylation27 DNA Analysis which contains
27,578 CpG dinucleotides in 14,495 genes. These data-
sets were downloaded on 10-12-2012 and segregated
with respect to the stages in LUAD. The protein-protein
interaction was downloaded from BioGRID [34]. The data-
set from BioGRID comprised of 15,550 proteins and 86,344
interactions. In addition to protein-protein interactions,
manually curated human signaling network [120-123] was
used to verify the effectiveness of the analysis pipeline.
The signaling network consisted of ~6,300 proteins and
63,000 signaling relations (http://www.bri.nrc.ca/wang/).
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The overall methodology for the stage-wise identifica-
tion of LUAD process is shown in Figure 7, and it in-
cludes four steps (A-D) as given below;

Step A: the gene expression data from UNC
AgilentG4502A_07_3 were analyzed based on
the log, values to obtain the differentially
expressed genes.

the methylation data from Illumina

HumanMethylation27 for each stage were

analyzed based on the beta value to obtain the

differentially methylated genes.

Step C: the data obtained from Step A and B was
integrated to obtain a stage-specific network
of LUAD. This network was annotated with
the topological and biological features for
analyzing the methylated patterns.

Step B:
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Step D: the stage-specific subnetworks were obtained
for LUAD.

Following sections contain details of each step.

Step A. Identification of significant genes from
expression data

The level 3 data available from TCGA [119] was segre-
gated based on the stages provided in Metadata. If a gene
was logy > 1.4 or < — 14, then the gene was considered for
further analysis as it obeyed the stringency with respect to
fold change>2.5 (a log, ratio of 1 represents a 2-fold
change) [124]. These genes were termed as “Significant
expressed genes”. The average value for each of these genes
was then computed and considered for the next level ana-
lysis. If a gene was represented by two or more probes, then
the median of its expression value was used.

|The Cancer Genome Atlas (¢

Understanding genomics|
10 Improve concer care

Illumina Infinium Human
DNA Methylation 27
platform

Vo

I probe name

betavalue gene symbol chromosome

BioGRID interactions

\

o

Stage1l

Network construction and analysis

Stage2

¢ |

Stage3

Stage wise sub network analysis

Figure 7 Overall methodology. (A) UNC AgilentG4502A_07_03 gene expressed data was analyzed based on the log, values to obtain the
differentially expressed genes. (B) The methylation data from lllumina HumanMethylation27 were classified for each stage. Significantly DNA
methylated genes were identified. (C) Stage-specific interaction networks were constructed and annotated with their DNA methylated genes. The
nodes and edges of each network were scored based on the topological and biological features. (D) The epigenetic subnetworks were identified
and compared across stages to understand the epigenetics commonality and uniqueness.
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Step B.1. Identification of significant DNA methylated
genes from methylated data

The beta-values [125], for normal and disease samples
were downloaded from the TCGA for Illumnia Human-
Methylation27 and stratified across stages. The difference
between the normal and the disease beta-values were then
calculated. Genes with beta-values greater than 0.25 and
those with beta-values less than -0.25 were considered for
further analysis and were classified as hyper and hypo-
methylated [125]. For the study, the analysis of g-value
and 1% FDR gave threshold for the p-values obtained in
respective stages [32]. The threshold was then used to
filter the data and significant DNA methylated genes
were derived using the Mann—Whitney U test [126],
p-values were computed for each gene. Mann—Whitney
U test was considered as it can handle variance for
unequal sample sizes [127]. These genes were termed as
“Significant DNA methylated genes”. Since the sample
sizes were small, to get true inferences resampling tech-
nique was performed. The samples were permuted large
number of times (1000), and Mann Whitney Test was
performed on them [128] to get p-values [119].

Step B.2. Analysis of DNA methylated genes with respect
to the CpG islands, promoter regions, transcription
factors, chromosome distribution and pathways

The correlation of DNA methylated genes with CpG islands
is assessed by mapping the position of the DNA methylated
gene to CpG position using computational methods [17].
For this study, the significant DNA methylated genes from
each stage in LUAD as identified in the previous steps, were
mapped to the CpG islands provided by Illumnia Human-
Methylation27. These were then classified as TRUE or
FALSE based on their location inside or outside of the CpG
islands. The CpG islands were then correlated to the
promoter region by computing the distance between the
transcriptional start sites (TSS) (http://genome.ucsc.
edu) and the promoter region. For this study, the pro-
moter region was defined as —1500 to +500 bp around
the TSS site [18]. The Significant DNA methylated genes
were also analyzed for their transcription functions
using Gene Ontology [121] and chromosome distribution
(www.genome.ucsc.edu). This analysis gave the profile of
Significant DNA methylated genes as TFs and their
chromosome distribution. To understand the stage-wise
profile of pathways consisting of Significant DNA meth-
ylated genes, these were then annotated with respect to
their pathway association using KEGG [74,129]. This ana-
lysis found common and unique pathways across stages.

Step C. Understanding the stage-specific networks of LUAD
To understand the significance of the DNA methylated
genes in LUAD, stage-specific networks were obtained
using the following steps:
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Identification of gene-gene interactions and DNA
methylated-gene interactions from BioGRID and constructing
the stage-specific networks of LUAD

The gene-gene physical interactions (associations) for all
the Significant expressed genes and Significant DNA
methylated genes were identified using BioGRID for all
stages [34]. The networks for each stage were constructed
based on these interactions. The nodes of the network
were genes and the interactions between them were the
edges. The nodes and edges were then analyzed to capture
the commonality and differences across the stages. These
were computed based on the following criteria: (i) Identi-
fying edges (interaction) between two Significant DNA
methylated genes (nodes); (ii) Identifying edges (interaction)
between Significant DNA methylated gene (node) and
Significant expressed gene (node); (iii) Identifying edges
(interaction) between the Significant DNA methylated
gene (node) and another gene (node) other than the sig-
nificant expressed and DNA methylated genes in the
given stage. This interaction was termed as the “missing
link” and the gene as “novel gene”. The expression
pattern of this novel gene was then evaluated in the
previous or subsequent stages. The significance of novel
genes with respect to LUAD was validated using Biomed-
ical literature.

To understand the overall profile of each stage-specific
network of LUAD, a system’s biology approach was de-
veloped. All the nodes (genes) and edges (interactions)
were annotated with their respective topological and bio-
logical features. The statistical computing tool R (www.
r-project.org) was used to compute the topological fea-
tures of betweeness and clustering coefficient. The two bio-
logical features considered for the analysis were: Pathway
Significance Score and Gene Ontology Semantic Similarity
Score. The Pathway Significance Score was based on the
occurrence of the given gene in a pathway class. For the
study, the KEGG pathways were classified in the three
pathway classes and these were (i) the lung cancer path-
ways, (ii) other cancer pathways (not lung cancer), (iii) other
pathways [129]. Each node (gene) in the network was
annotated with betweeness, clustering coefficient and
Pathway Significance Score. These features were normalized
individually and the average of these features was com-
puted. This average was termed as NodeStrenght, given as:

NodeStrength,

(Betweenness + Clustering coefficient + Pathway Significance Score)
3 .

(i)

Betweenness of a gene v was defined as the inverse
of the ratio of the total number of shortest paths from
gene s to gene t given by o, to the number of total
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paths passing through gene v (o (v)) [130]. This was
computed as:

Betweenness (Bpe: (v)) = Z OSt—(V). (ii)

szv#t Ost

Clustering coefficient (C,) was defined as a function
based on the triplets of the genes in the network, where
a triplet consisted of the three genes (nodes) connected
by either two open or three closed undirected ties [131].
The clustering coefficient for the genes in the undirected
graph (stage- specific network) was computed as:

For a graph G=(V/E) consisting of vertices V and a set of
edges E, where e;; connects vertex v; with vertex v; and the
neighborhood N; for this vertex v; was defined as:

N; = {v;: e;eE}. (iii)

And where k; represents the number of vertices in the
neighborhood of N;. The clustering coefficient for this
local graph was then computed as:

2 |1€eik : vj,VkeN,;, ex€E
Clustering coeficeint (C,) = [tk k]» (/](( D s }’

(iv)

Pathway sifnificance score

The pathways associated with each nodes v (genes) were
identified using KEGG [74,129], and Pathway Sifuificance
Score was computed as;

L ‘frequency of term
P = —_————— 1
athway Significance Score, {lag10 [( Total frequency * 100

«(Total frequency)*"s" }} strength.
(v)

Where, Pathway Sifuificance Score determined the level
of importance of a gene in the lung cancer pathways, other
cancer pathways (not lung cancer pathways) and other
pathways (i.e. pathways that are not termed as lung cancer
pathways or non-lung cancer pathways) as given by KEGG
pathways; frequency of terms equaled the count of the gene
in lung cancer pathways, other cancer pathways and other
pathways; Total frequency was equal to the count of the
lung cancer pathways, other cancer pathways and other
pathways; Strength represents the rank of the pathway
class to which the gene belongs to in the stage-specific
network. For all the stage-specific network lung cancer
pathway was given a rank of 3, other cancer pathways
were given a rank of 2 and other pathways were given a

Page 17 of 21

rank of 1, of which 3 being the rank of the highest im-
portance followed by 2 and 1 being the lowest rank.

EdgeStrength

For any two interacting nodes (genes) in the network,
EdgeStrengthwas computed based on their Gene Ontology
Semantic Similarity Score. This was calculated using the
GOSemSim package R [132].

All the genes and their edges in the stage-specific net-
work were then annotated with their NodeStrength and
EdgeStrength. The Significant DNA methylated genes were
ranked based on their NodeStrength. The highly ranked
DNA methylated genes were used to identify subnetworks
as described in the following section.

Step D. Identification and scoring of epigenetically
relevant subnetworks across stages
To compare and elucidate the interaction network of
Significant DNA methylated genes across stages is a hard
problem. Therefore, the networks were analyzed using
graph techniques by identifying the relevant subnetworks
[133-135]. In this work, subnetworks of different sizes
were identified and analyzed across the stages to under-
stand the functional importance of the Significant DNA
methylated genes. For the study, we define a subnetwork
as a group of connected nodes (genes) with at least one
Significant DNA methylated gene, where any two asso-
ciated genes had the Gene Ontology Semantic Score >
60%. These were open subnetworks i.e. no size and
shape limitation; therefore a large number of subnet-
works were identified making it an NP-hard problem.
Starting with the top ranked Significant DNA methylated
gene as a seed, its associations were identified, propagated
based on Ontology Semantic Similarity Score >60%, and
analyzed with respect to the KEGG pathways. All the
genes in a given subnetwork were understood based on
the four categories: (i) genes identified in cancer pathways
other than lung cancer pathways, (ii) genes identified in
lung cancer pathways, (iii) genes identified in signaling
pathways (not present in (i) and (ii)) and (iv) genes in the
metabolic pathways and other pathways. These subnet-
works correlate to distinct functions that specify the dis-
tinct mechanism that were compared across the stages.
The Significant DNA methylated genes in each stage
were ranked based on their beta-value. The Significant
DNA methylated gene with the highest beta-value was
considered as a SEED. The SEED and expand algorithm
was then used to identify the next connecting gene (node)
and interaction (edge) based on the NodeStrength and
EdgeStrength. The gene (node) with highest NodeStrength
was considered as the next gene (node) if it satisfied
the Gene Ontology Semantic Score > 60% for the Edge-
Strength. Thus, subnetworks of different sizes were
identified and connected in each of the stage-specific
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network and ranked based on their SubnetworkStrength
which was computed as;

SubnetworkStrength

i=k j=k-1
Zi:l (NodeStrength) + Zj: | EdgeStrength
Number of Genes '

(vi)

Where, i are genes (nodes), j are interactions (edges),
and k is the number of genes (nodes).

The subnetworks were compared for their commonality
and uniqueness across stages to identify those Significant
DNA methylated genes that could be potential targets.
These were then validated using literature for their im-
portance in LUAD. In order to prove the universal nature
of above detailed network analysis, the methodology was
repeated for the interacting genes obtained from manually
curated Human Signaling Network dataset (http://www.
bri.nrc.ca/wang/).
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