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Efficient experimental quantum fingerprinting with
channel multiplexing and simultaneous detection
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Quantum communication complexity explores the minimum amount of communication

required to achieve certain tasks using quantum states. One representative example is

quantum fingerprinting, in which the minimum amount of communication could be expo-

nentially smaller than the classical fingerprinting. Here, we propose a quantum fingerprinting

protocol where coherent states and channel multiplexing are used, with simultaneous

detection of signals carried by multiple channels. Compared with an existing coherent

quantum fingerprinting protocol, our protocol could consistently reduce communication time

and the amount of communication by orders of magnitude by increasing the number of

channels. Our proposed protocol can even beat the classical limit without using

superconducting-nanowire single photon detectors. We also report a proof-of-concept

experimental demonstration with six wavelength channels to validate the advantage of our

protocol in the amount of communication. The experimental results clearly prove that our

protocol not only surpasses the best-known classical protocol, but also remarkably outper-

forms the existing coherent quantum fingerprinting protocol.
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Quantum communication is the study of information-
transmission tasks that can be facilitated by using
quantum mechanical systems1. The power of quantum

mechanics enables quantum communication to perform tasks
that could not be accomplished in a classical system. One of the
best-known examples is quantum cryptography that enables
information-theoretically secure communication between two
parties that share random keys through quantum key dis-
tribution (QKD)2–6. Apart from quantum cryptography,
quantum communication complexity (QCC)7–10 is another
important example that shows quantum superiority over its
classical counterpart–classical communication complexity11–14.
In the basic model of communication complexity13, Alice and
Bob each is given an n-bit string x and y, respectively. The
classical communication complexity exploits the minimum
amount of communication necessary among participants,
namely the minimum number of bits of communication, such
that they could compute a certain function f(x, y) correctly. This
exploitation of a minimum amount of communication provides
a lower bound for many related research areas, such as the
study of VLSI circuit design, data structure and computer
networks13,14. In the quantum version of communication
complexity, the involved participants are allowed to commu-
nicate with quantum states instead of classical bits and QCC is
then defined as the minimum number of qubits of commu-
nication exchanged between Alice and Bob10. It has been pro-
ven that, by using quantum superposition or entanglement,
many quantum protocols of communication complexity are
more efficient, that is, they require less communication (fewer
qubits) than their classical counterparts15–20.

One remarkable protocol in QCC is quantum fingerprinting
(QF)21,22 where quantum mechanics can help reducing the
communication complexity exponentially compared with the
classical case. In the fingerprinting mechanism, the simulta-
neous message-passing model is considered11. In this parti-
cular model, Alice and Bob have no shared randomness and
are not allowed to communicate with each other. But they
want to determine whether their inputs x and y are the same
or different. In this case, a third party, the referee (Charlie), is
involved and will solve this equality problem based on
the inputs’ fingerprints that Alice and Bob send to her. The
communication complexity in this model is defined as the
amount of information communicated between Alice (Bob)
and Charlie, which is equivalent to the minimum length of the
fingerprints. Note that QF protocol is not concerned with
communication security. It has been proven that, without any
correlations or entanglement shared among the parties,
quantum fingerprints require Oðlog2nÞ qubits21, which are
exponentially smaller than the classical case where Oð ffiffiffi

n
p Þ bits

are required23–25. To experimentally verify the advantage of
quantum fingerprinting in small instances, a single-qubit
fingerprinting protocol26 has been experimentally demon-
strated in refs. 27,28 and has been shown to outperform
the classical one-bit fingerprinting protocol. However, to
demonstrate the exponential advantage of quantum finger-
printing, one must create fingerprints consisting of highly
entangled qubit states21, which are beyond the reach of cur-
rent technology. In ref. 29, a more practical QF protocol has
been proposed and coherent states are used to construct the
fingerprint. The minimum amount of communication
required in this protocol is proven to be

Q ¼ Oðμlog2nÞ: ð1Þ
For simplicity, we call this coherent quantum fingerprinting
protocol as CQF protocol in this letter. The total mean photon

number of the fingerprint in this coherent quantum fingerprinting
(CQF) protocol is μ. Therefore, for CQF protocol with a fixed μ,
the minimum amount of communication can still be exponentially
smaller than the classical fingerprinting protocol. Refs. 30,31 have
successfully demonstrated the proof-of-principle experiment of
CQF protocol and prove that less information is communicated in
the CQF system compared with the best-known classical
protocol25. Nonetheless, this CQF protocol uses a number of
optical modes that is proportional to the input size n, hence the
communication time is quadratically increased compared with the
classical system30,31. In addition, the minimum amount of com-
munication in CQF protocol has a dependence on μ, a value that
has a lower limit due to experimental imperfections29, among
which the dark counts from the single-photon detector (SPD)
(used for Charlie’s detection) are a dominant factor30. As indi-
cated in ref. 31 where superconducting-nanowire single-photon
detectors (SNSPD) with very low dark count rates (<0.1 Hz) are
applied, the performance of the CQF system is significantly
improved and can even beat the classical limit. (Here, the classical
limit refers to the lower bound of the amount of communication
in any classical fingerprinting system. In our work, the lower
bound given in Ref. 31 is used.) However, such SNSPDs are costly
and will be impractical to implement on a large scale.

In this work, we propose a fingerprinting protocol utilizing
the wavelength-division multiplexing (WDM) to reduce the
communication time and improve the performance of CQF
protocol. We call this protocol the WDM–CQF protocol. As a
mature technique, WDM has been widely employed in clas-
sical communication systems to broaden the communication
bandwidth and improve the communication efficiency32,33. It
is natural to extend such an advantage into quantum com-
munication systems. A lot of applications of WDM in quan-
tum communication focus on providing shared infrastructure
for both classical and quantum communication. There have
been few studies using WDM to enlarge the quantum channel
capacity34–36. Especially in ref. 35, coherent-state fingerprints
are also used to study another QCC protocol–Euclidean pro-
blem, which aims at calculating the Euclidean distance of two
real vectors of Alice and Bob. The authors similarly propose to
employ multiplexing technique to improve the communica-
tion efficiency. However, demultiplexing followed by multiple
individual detection systems are always needed in these stu-
dies. In this paper, WDM is used to increase the quantum
channel capacity to reduce the communication time needed in
the original CQF protocol without demultiplexing. All the
quantum channels share the same detection system. More
importantly, by removing demultiplexing and detecting
the signals from different wavelength channels simulta-
neously, we can lower the value of μ in Eq. (1), thus reducing
the amount of communication required in the original CQF
protocol. With a large number of wavelength channels, it is in
principle possible for our scheme to beat the classical limit
without using SNSPDs. Here, we also report a proof-of-
principle experimental implementation of the WDM–CQF
protocol with six wavelength channels over 40-km fibers.
Because of the use of time multiplexing during the process of
information encoding, our implementation does not strictly
show the reduction of communication time (this will be dis-
cussed in detail later). But the experimental results success-
fully validate that, with WDM being applied and with
demultiplexing being removed for simultaneous detection, our
system not only transmits much less information than the
best-known classical protocol, but also reduces the amount of
information transmitted in the original CQF protocol by more
than half for large inputs.
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Result
WDM–CQF protocol. In the CQF protocol29, Alice first prepares
her coherent fingerprint αj iA as

αj iA ¼ �m
i¼1

ð�1ÞEðxÞi αffiffiffiffi
m

p
����

�
i

: ð2Þ

Bob’s fingerprint αj iB has the same expression as Eq. (2) with
changing subscript A into B and changing input x into y. The m-
bit strings E(x) and E(y) are the codewords of Alice and Bob,
respectively, obtained by applying error-correction code (ECC) to
the n-bit input strings x and y. The ECC has a code rate c (¼ n

m <1)
and a Hamming distance δm. The use of ECC guarantees that
when Alice’s and Bob’s inputs are different, the minimum number
of different bits of E(x) and E(y) is δm. The codewords contain the
information of the original inputs and are encoded into the phase
of the coherent states (either 0 or π phase is added to the states).
As indicated in Eq. (2), this coherent fingerprint is made up of m-
coherent states. The mean photon number of each state is
jαj2
m ð¼ μ

mÞ. Then Alice and Bob forward their fingerprints to
Charlie’s station through two optical channels, where each pair of
Alice’s and Bob’s coherent states interferes with each other and is
detected by Charlie’s SPDs. At Alice’s and Bob’s encoders, the
amount of information sent by Alice and Bob (to the recipient
Charlie) is shown in ref. 29 to be

Q ¼ Oðμlog2mÞ ¼ O μlog2
n
c

� �� �
: ð3Þ

Since Alice and Bob each send m-coherent states to Charlie,
the communication time is proportional to the input size n (as
m= n/c).

To implement WDM–CQF protocol, Alice and Bob only need
to divide their coherent fingerprints into k subfingerprints. Each

subfingerprint consists of m/k-coherent states and is described as

αj iA;j ¼ �
m=k

i¼1
ð�1ÞEjðxÞi αffiffiffiffi

m
p

����
�

i

: ð4Þ

Ej(x)i is the ith bit of the jth subcodeword Ej(x) (j∈ [1, k]).
Figure 1 shows the schematic set-up of the WDM–CQF protocol.
As shown in Fig. 1, Alice and Bob assign each subfingerprint to a
wavelength channel and multiplex the k-wavelength channels into
a single optical channel. Then they send their fingerprints to
Charlie for detection through the optical channels. In total, m/k-
wavelength-composite pulses are sent from Alice/Bob to Charlie.
On Charlie’s side, each pair of the wavelength-composite pulses
interferes at the balanced beam splitter (BS) and is measured by
two SPDs D0 and D1. Note that, the k pairs of coherent states at
different wavelengths in each pulse interfere at the BS
independently but simultaneously. Hence, the communication
time is shortened to 1/k times of its original value. We remark
that, all the wavelength channels share the same BS and SPDs,
thus saving experimental components. Since the coherent
fingerprints used in our protocol are the same as that in the
original CQF protocol, the amount of information transmitted
from Alice and Bob to Charlie is still Oðμlog2mÞ. In fact, except
for adding the additional wavelength channels, the WDM–CQF
system is very similar to the original CQF system. One could treat
CQF protocol as a special case of WDM–CQF protocol with a
single-wavelength channel (k= 1).

After the measurement, Charlie has to determine whether
Alice’s and Bob’s inputs are the same or not by checking the total
counts at D0 and D1. Ideally, if there is any count at D1, the inputs
x and y should be different. This is because, if Alice and Bob have
the same inputs, their coherent fingerprints are the same and the
phase interference of the same states results in clicks only at D0. If
the inputs are different, a portion of the interfering states have a
π-phase difference. The photons in these states are registered at
D1. However, experimental imperfections, such as dark counts of
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Fig. 1 Theoretical scheme of coherent quantum fingerprinting with wavelength-division multiplexing. Alice (Bob) applies error-correction code to her
(his) input x(y) and obtains E(x)(E(y)). Then she (he) divides E(x)(E(y)) into k subcodewords and prepares the corresponding subfingerprints Ej(x)(Ej(y)) in
k-different wavelength channels. The k subfingerprints are multiplexed into one single-mode fiber through a multiplexer (MUX) and sent to Charlie’s beam
splitter. On Charlie’s station, demultiplexing is not required. The k pairs of pulses interfere simultaneously and share a pair of single-photon detectors D0

and D1. Charlie records the total counts at D0 and D1, based on which Charlie determines whether the inputs are the same or different.
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SPD, would also give clicks in D1 even when the inputs are the
same. Here we adopt the decision mechanism introduced in
ref. 30. In ref. 30, for the equal and different inputs cases, photon
counts at detector D1 have the binomial distributions B(m, PE),
and B(m, PD) respectively. PE and PD are the probabilities of D1

obtaining a click in a single-detection window. Based on these
distributions, a threshold C1,th is chosen. Charlie then compares
the total counts at D1 with C1,th. If the total counts are
smaller than C1,th, Charlie concludes that the inputs are equal.
Otherwise, Charlie concludes that the inputs are different. In our
WDM–CQF system, since each detection event is independent,
the photon counts at D1 also have the binomial distributions B
(M, PE) and B(M, PD). Note that m is replaced by M, since
in total, M-wavelength-composite pulses are sent from Alice/Bob
to Charlie in the WDM–CQF protocol. The amplitude of each
pulse is

μ

m=k
¼ μ

M
: ð5Þ

The detection probabilities PE and PD are

PE ¼ PE;signal þ Pdark ¼ ð1� νÞð1� e�
2μη
M Þ þ Pdark; ð6Þ

PD ¼ PD;signal þ Pdark

¼ ðδν þ ð1� δÞð1� νÞÞð1� e�
2μη
M Þ þ Pdark:

ð7Þ

For the probability PD, we assume the worst-case scenario that
the codewords E(x) and E(y) have the minimum distance. ν is the
interference visibility that considers the imperfect interference
due to various factors. For example, the interfering states from
Alice and Bob might not arrive at Charlie’s station simulta-
neously. Their polarization states might not be exactly the same
after traveling a long distance and the phase drift could also be
different. To maximize ν, one must minimize these mismatches. η
is the optical channel transmittance. Here we consider that the
optical channel loss between Alice and Charlie is the same as the
loss between Bob and Charlie, i.e., ηA= ηB= η. If the channel
losses are different, Alice and Bob simply use different signal
intensities μA and μB such that μA × ηA= μB × ηB. If the detector’s
efficiency ηdec is taken into consideration, then η= ηA/B × ηdec.
Pdark is the dark-count probability per detection gate of the SPDs.
The error probability for this decision mechanism is

Perror ¼ max½PðC1;E >C1;thÞ; PðC1;D <C1;thÞ�; ð8Þ
and it should be smaller than the tolerable probability ϵ. C1,E and
C1,D are the detected total counts at detector D1 for the equal and
different input cases, respectively. For each input size n, the
choice of threshold C1,th depends on the total mean photon
number μ. As indicated in Eq. (6) and Eq. (7), when μ is so small
such that PE/D,signal≪ Pdark, the probabilities PE and PD are
dominated by Pdark and the distributions B(m/k, PE) and B(m/k,
PD) are fairly close to each other. Consequently, the error
probability would be very large. Therefore, a large value of μ is
preferred for minimizing the error probability. However, as
mentioned before, the amount of communication required by the
coherent fingerprint is proportional to the mean photon number
μ. So, for each input size n, one has to balance the two demands
of low error probability and a small amount of communication.
That is to say, one has to find the minimum μ (and its
corresponding threshold C1,th), which gives the error probability
Perror smaller than ϵ. More details about the optimization of μ can
be found in “Method”.

It is straightforward to think that the lower the dark-count
probability Pdark is, the smaller μ can be found. Ref. 31 uses
SNSPDs with ultralow dark count rate (0.11 Hz) significantly
reduces the value of μ, hence, it can beat the classical limit.

However, SNSPDs are much more expensive than the regular
SPDs and require very low temperature. Instead of using SNSPDs
to decrease Pdark, our WDM–CQF protocol simply increases
the signal probability PE/D,signal in Eq. (6) and Eq. (7) by
simultaneously detecting k pairs of wavelength components.
Because a low value of μ is preferred in the protocol, most of the
coherent states are empty when they arrive at Charlie’s station.
The signal probability PE/D,signal primarily comes from the
photons in one-wavelength component. With a reasonable
number of wavelength channels (say 1 ≤ k ≤ 1000), the probability
of more than one-wavelength component containing photons
when arriving at Charlie’s station is so low (even lower than Pdark)
that we can simply ignore the multi-wavelength contributions to
the detection event (detailed analysis can be found in Methods)
Moreover, the information of which wavelength component
carries a photon is not important and only the total counts
detected on D1 are valued. Therefore, demultiplexing is not
necessary on Charlie’s station. k pairs of coherent states at
different wavelengths interfere simultaneously and are detected
by a single pair of detectors in each detection window. Compared
with the single-wavelength CQF protocol, the signal probability
PE/D,signal is increased without changing μ and the error Perror is
then decreased. Therefore, to achieve the same tolerable error
probability ϵ, our WDM–CQF protocol requires a lower value of
μ than the single-wavelength CQF protocol. Consequently, as
indicated in Eq. (3), less amount of communication is required in
our WDM–CQF protocol than the single-wavelength CQF
protocol. More wavelength channels are used, less μ is needed,
and greater gain of the amount of communication is obtained by
our protocol.

Figure 2 shows the amount of communication between Alice/
Bob and Charlie over 0 km, 40 km, and 80 km fibers in different
fingerprinting protocols as a function of the input size n. Note
that the distance considered in the work is the total length of
fibers that connect between Alice and Charlie and fibers that
connect between Bob and Charlie. In short, we just call it the
overall distance between Alice and Bob. In this log–log plot,
practical experimental parameters are considered. The interfer-
ence visibility is assumed to be 97%. The dark-count rate and the
detector’s efficiency are 100 Hz and 25%, respectively. (We use
the parameters from the best available commercial SPD ID230
from ID Quantique to show the best performance of our
protocol.) The detection window is 500 ps. The tolerable error
probability is chosen to be ϵ= 10−5. The input size n varies from
105 to 1018. (Details about the simulation are discussed in
Methods.) As shown in Fig. 2, for different distances, all the
WDM–CQF protocols require less communication than the best-
known classical fingerprinting protocol. As k gets larger, the
advantage of WDM–CQF protocol is more evident. Compared
with the original CQF protocol (k= 1), our WDM–CQF protocol
with k≥100 reduces the amount of communication by at least one
order of magnitude. In fact, with the parameters used in this
simulation, the original CQF protocol (k= 1) cannot beat the
classical limit even when the overall distance between Alice and
Bob is 0 km. However, with only k= 10 wavelength channels
applied, our WDM–CQF protocol can transmit less information
than the classical limit for 0 km. When the distance increases,
more photons are needed to compensate the channel loss. Hence,
the amount of communication in the coherent fingerprinting
system increases with the channel distance. But, in our
WDM–CQF protocol, the channel loss can be compensated by
adding wavelength channels. Therefore, even when the distance
increases, our WDM–CQF protocol can always beat the classical
limit without using SNSPDs, as depicted in Fig. 2. Remarkably,
when the overall distance between Alice and Bob is 40 km, our
WDM–CQF protocol requires around 100-wavelength channels
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to beat the limit. We remark that it is currently feasible to achieve
around 100 simultaneous channels by using WDM, since there
have been many reports of classical transmission experiments
with WDM over more than 100 channels37,38. Moreover, the total
cost of adding wavelength channels is much lower compared with
applying SNSPDs. When the distance is longer, more channels
are required by our WDM–CQF protocol to beat the classical
limit. The implementation of WDM–CQF with a large number of
wavelength channels is very challenging. To circumvent this issue,
one can combine other multiplexing schemes with wavelength
multiplexing to reduce the number of wavelength channels. For
example, one can use time-division multiplexing (TDM), i.e., use
fast modulators to add more temporal channels within one
detection window. We would like to emphasize that our
WDM–CQF protocol takes the advantage of the simultaneous
detection of many bits of information within one detection
window. These bits of information can be distributed in, but not
confined to the wavelength channels.

Experimental set-up. In this section, we show a proof-of-concept
experimental demonstration of our WDM–CQF protocol. Six-
wavelength channels are used and a two-way quantum commu-
nication system consisting of a Sagnac interferometer is
employed. This system configuration is similar to that of a twin-
field QKD system39. The Sagnac arrangement is chosen to pro-
vide a phase reference between Alice and Bob. Moreover, the
common path feature of Sagnac interferometer automatically
stabilizes the phase fluctuation along the optical channel and
ensures that two beams emerge at the beam splitter simulta-
neously. The schematic experimental set-up is shown in Fig. 3.
On Charlie’s station, the continuous waves (cw) coming out of six
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Fig. 2 Log–log plot of the simulation results of the amount of communication required in different fingerprinting protocols as a function of input size n
for three distances, 0 km, 40 km, and 80 km. The solid red line represents the best-known classical fingerprinting protocol25. The solid black line
represents the classical limit introduced in31. The dash curves are to the simulation results of coherent quantum fingerprinting (CQF) protocol with
wavelength-division multiplexing (WDM). Different values of k correspond to a different number of wavelength channels. When k= 1, the scheme
becomes the original CQF protocol. In the simulation, we use parameters achievable with single-photon avalanche diodes, with a dark-count rate of 100 Hz
and 25% detector efficiency. The interference visibility is assumed to be 97% and the detection window is 500 ps. The applied error-correction code has a
code rate c= 0.2398 and δ= 0.22. The total mean photon number μ for each n and k is optimized to fulfill the condition Perror < ϵ= 10−5.

MUXPC

PC PC PC
PC

PC PC

Pol
IMC ATT

BS

SMF SMF

DCFPMA PMB

D0

D1

Lasers

Alice Bob

Fig. 3 Schematic experimental set-up of coherent quantum fingerprinting
with wavelength-division multiplexing. Six continuous-wave lasers are
located on Charlie’s side with wavelength ranging from 1542.9 nm to
1554.9 nm, equally spaced by δλ= 2.4 nm. Photons coming out the lasers
are multiplexed through a multiplexer (Mux) into a single-mode fiber and
pass through a polarizer (Pol). An intensity modulator (IM) and an optical
variable attenuator are used to create weak coherent pulses. The pulses
then enter the loop through a circulator (C) and a beam splitter (BS) and
travel to Alice/Bob through 20 km single-mode fibers (SMF). Alice and Bob
are separated by another 6.9 km of compensation-dispersion fibers (DCF).
On Alice’s (Bob’s) station, the phase modulator (PM) is on only when the
clockwise (counterclockwise) traveling pulses arrive and the phase
information is added to the pulses accordingly. After the phase modulation,
the clockwise and counterclockwise traveling pulses go back to Charlie and
interfere with each other at Charlie’s beam splitter. The results are recorded
by two single-photon detectors D0 and D1. Polarization controllers (PC) are
designed for the polarization alignment for the beams in six-wavelength
channels.
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laser modules (PRO 800, wavelength λ 2 1542:9; 1545:3; 1547:7;f
1550:1; 1552:5; 1554:9g nm) are multiplexed into a single-mode
fiber (SMF) through a multiplexer (Jobin Yvon-Spex, Stimax
WDM, 100 GHz) and are forwarded to Charlie’s intensity mod-
ulator (IMC) through a polarizer. The output power of each laser
module is individually adjusted such that the signal in each
wavelength channel has the same intensity. IMC is used together
with an optical attenuator (AttC) to create weak wavelength-
composite pulses (500 ps pulse width) at a repetition rate of 50
MHz. Then Charlie sends the pulses to Alice and Bob through an
optical circulator and a 50:50 fiber-based beam splitter (BS). After
passing through the BS, the pulses split into clockwise and
counterclockwise traveling beams and travel through a 20-km
single-mode fiber spool SMFB or SMFA, respectively. When the
clockwise (counterclockwise) traveling pulses arrive at Bob’s
(Alice’s) station, the fiber-based phase modulator PMB (PMA) is
turned off and no information is encoded into the pulses. This is
important because it guarantees that no information is commu-
nicated between Alice and Bob, even though they are connected
directly through fibers. We remark that security is not a concern
in quantum fingerprinting, since the main purpose is to reduce
communication complexity. Then the clockwise (counter-
clockwise) traveling pulses go through 6.9 km dispersion-
compensation fibers (DCF) before arriving at Alice’s (Bob’s)
station. Note that this 6.9 km DCF is designed for temporal dis-
persion. In our system, each pulse created by Charlie has six-
wavelength components. To modulate the phase of each com-
ponent individually, we use the natural property of fiber, that is
chromatic dispersion, to separate these wavelength components
in time. The dispersion parameters (around 1550 nm) of the
SMF and DCF in our set-up are DSMF= 17 ps/(nm ⋅ km) and
DDCF=−99 ps/(nm ⋅ km), respectively. Given that the wave-
length difference between two adjacent modes is δλ= 2.4 nm, we
can estimate the time difference of arrival δTA/B at Alice’s/Bob’s
station between the adjacent-wavelength components by

δTA=B ¼ jDSMF ´ δλ ´ lSMFB=A
þ DDCF ´ δλ ´ lDCFj: ð9Þ

lSMF and lDCF are the lengths of the single-mode fibers and
dispersion-compensation fibers, respectively. Figure 4a shows the
different arrival times of the six wavelength components at Bob’s
station after traveling through 20 km SMFA and 6.9 km DCF. As
indicated, δTA/B in our experiment is around 820 ps, which
enables Alice (Bob) to modulate the phases of the six-wavelength
components sequentially by using an 800 ps phase-modulation
window for each component. After the phase modulation, Alice
(Bob) forwards the pulses to Charlie’s BS through another 20 km
fiber spool SMFA (SMFB). The length of the DCF is designed to

ensure that the six-wavelength components overlap with each
other in time and become a single-wavelength-composite pulse at
Charlie’s BS. The time difference of arrival at Charlie’s station can
be estimated by

δTC ¼ jDSMF ´ δλ ´ ðlSMFA
þ lSMFB

Þ þ DDCF ´ δλ ´ lDCFj; ð10Þ
which is around 0 ps. As shown in Fig. 4b, after traveling through
the whole loop, the six-wavelength components arrive at Charlie’s
BS at the time and overlap with each other. The clockwise and
counterclockwise traveling pulses interfere with each other at
Charlie’s BS and are detected by two SPDs D0 and D1. We
emphasize that demultiplexing is not needed on Charlie’s station.
As mentioned before, the wavelength information of the detected
photon is not important. Only the total counts at D1 determine
Charlie’s output. Therefore, the six pairs of coherent states at
different wavelengths share the same BS and detectors. The SPDs
are commercial avalanche photodiodes (ID220) with an efficiency
of 20% and a dark-count rate of 1000 Hz. The detection window
is about 500 ps. After the measurement, Charlie counts the total
number of click events in detector D1 only and compares it with a
predetermined threshold value C1,th. If the number is smaller than
the threshold C1,th, he announces that the inputs of Alice and Bob
are equal. Otherwise, he concludes that the inputs are different.

The most challenging problem in our experiment is the
wavelength-dependent polarization-mode dispersion of long
optical fibers40–42. Due to the birefringence of the optical fiber,
the polarization state varies along the fiber. To guarantee the
high-interference visibility, the polarization of the interfering
pulses should be aligned with each other. This alignment could be
easily accomplished with one polarization controller (PC) if only
one-wavelength channel is applied. However, the variation of
polarization strongly depends on wavelength, especially for long
fibers. Therefore, when multiple-wavelength channels are used,
the polarization states at different wavelengths evolve differently,
making the polarization alignment difficult. As a result, the
interference visibility would be affected significantly. To solve this
issue, we utilize the principal state of polarization (PSP)41. For a
fiber system, there are always two orthogonal PSPs, the
polarization evolution of which does not depend on the
wavelength to the first order. That is to say, if the input
polarization states of the different wavelength components are the
same and aligned to the input psp of the optical fibers, the output
polarization states should also be the same. Note that we ignore
the high-order polarization-mode dispersion since that the
wavelength range in our experiment is only 12 nm. In our setup,
there are three long-fiber spools and two polarizers (integrated
with the phase modulators) used in the Sagnac loop. Therefore,

(a) (b)
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Fig. 4 Arrival times of different wavelength components. The wavelength components traveling in counterclockwise direction are (a) temporally
separated at Bob’s station for ease of individual modulation, while they are (b) combined into the same time slot at Charlie for detection. The components
traveling in clockwise direction have the same time distribution since Alice’s and Bob’s station are symmetric. Note, one should ignore the slight amplitude
difference between the channels as this plot is taken prior to amplitude fine adjustments.
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six polarization controllers are inserted into the Sagnac loop for
the alignment, as shown in Fig. 3. One PC at one end of a fiber
spool is designed to align the input-polarization state to the input
PSP, the other PC at the other end is used to align the
polarization state to the output PSP of the fibers. With such
alignment scheme, we are able to maintain our interference
visibility to be 97% over a 12 nm bandwidth.

Another challenge in our implementation is the calibration of
the fiber length. First of all, as indicated in Eq. (9), the lengths of
SMF and DCF determine the time difference of arrival δT among
different wavelength components. On one hand, we must ensure
that on Alice’s and Bob’s stations, δTA/B is large enough such that
Alice and Bob can modulate the different wavelength components
separately, on the other hand, when the pulses travel back to
Charlie’s station, δTC should be 0 ps. Therefore, the fiber lengths
of SMFA, SMFB, and DCF are carefully calibrated to fulfill these
two conditions. Additionally, it is also crucial to ensure that the
clockwise and counterclockwise traveling pulses should never
“collide” at Alice’s and Bob’s phase modulators. This is because
Alice (Bob) should only modulate the clockwise (counterclock-
wise) traveling pulses. To avoid the pulse collision, small
segments of fibers can be added or deleted on Alice’s and Bob’s
station. Meanwhile, all the phase and intensity modulators are
driven and synchronized by a high-speed arbitrary-waveform
generator (AWG, Keysight M8195A). The delays of Alice’s and
Bob’s phase-modulation signals are well adjusted to ensure that
the modulation signals only act on the intended pulses.

Experimental result. The experiment was run over seven dif-
ferent values of the input size n, ranging from 1.4 × 106 to 1.1 ×
109. For each input size n, we tested both the case where the
inputs are the same (x= y) and the case where the inputs have
one-bit difference (x ≠ y, E(x) and E(y) have (δm)-bit difference).
δ= 0.22 and the code rate c= 0.2398. The total photon numbers
sent out by Alice (μA) and Bob (μB) for different input sizes are
listed in Table 1. The reason why Alice and Bob have different μ is
that the channel loss between Alice and Charlie is slightly dif-
ferent from the loss between Bob and Charlie. Based on the
average photon numbers reported, we can determine the
threshold value of the total counts C1,th at detector D1 as well as
its corresponding error probability Perror. Note that the total mean
photon numbers in this implementation are close to but not
exactly the optimal values. Therefore, the error probabilities for
some cases are larger than ϵ= 10−5. Nevertheless, the largest
Perror is 2.7 × 10−5 that is tolerable30. The total counts recorded
by detector D1 for the equal-input case (C1,E) and the different
input cases (C1,D) are also listed in Table 1. For all the seven
different input sizes, Charlie could successfully differentiate
between the equal and different inputs by comparing the total
counts at D1 with the threshold C1,th. Q is the total amount of
information that has been transmitted to Charlie by Alice and
Bob. It is calculated as the equivalent number of qubits that has
been transmitted. To show the advantage of our WDM–CQF
protocol, we calculated the ratio γC ¼ 32

ffiffiffi
n

p
=Q (32

ffiffiffi
n

p
is the

minimum amount of communication required in the best-known
classical fingerprinting protocol25), as well as the ratio of the
amount of communication in the original CQF29 to Q (γQ). As
shown in Table 1, for all the tested input sizes, γC and γQ are
always larger than one, indicating that our WDM–CQF protocol
not only requires less communication than the best-known
classical protocol, but also beats the original CQF protocol. For
large input size, our implementation even reduces more than half
of the amount of communication in the CQF protocol.

The experimental results are also illustrated in Fig. 5, which is a
log–log plot of the amount of communication in different T
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fingerprinting protocols as a function of input size n. The solid
red line represents the amount of communication required in the
best-known classical fingerprinting protocol25. Our experimental
results are represented by purple squares. The orange circles
correspond to the simulation of the original CQF system with the
same experimental parameters. Figure 5 clearly shows that our
WDM–CQF system can beat the best-known classical finger-
printing protocol. More importantly, even with only six-
wavelength channels, out system still significantly reduces the
amount of communication in the original CQF protocol. For
input size 1.44 × 106 and 2.16 × 106, the amount of communica-
tion in the CQF system with a single wavelength is even higher
than the classical system. In our experiment, the amount of
communication is always less than the best-known classical
protocol. Especially for large input size, the advantage of using
WDM is remarkable. For further comparison, we plot the
experimental results reported in ref. 30, which uses the same SPDs
(ID220) to demonstrate the original CQF protocol with a single-
wavelength channel. Note that the total distance implemented in
ref. 30 is only about 5 km, which is much shorter than the 40 km
total distance in our implementation. Yet, the amount of
information communicated in ref. 30 is much higher than our
experimental results. This comparison further validates the fact
that by applying WDM and using simultaneous detection, one
can remarkably improve the performance of the original CQF
protocol and make the system more robust to experimental
imperfections (such as dark counts and channel losses).

Discussion
Ideally, through applying six-wavelength channels, the commu-
nication time can also be decreased by a factor of six if all the

wavelength components in each pulse are modulated simulta-
neously. But in our demonstration, we utilize the inherent
chromatic dispersion of single-mode fibers to simplify the phase-
modulation process. Considering that the six-wavelength com-
ponents are phase-modulated one by one on Alice’s and Bob’s
stations, our implementation does not strictly shorten the com-
munication time. As a proof-of-concept demonstration, our
experiment mainly proves that applying WDM to the CQF sys-
tem can significantly reduce the amount of communication. To
strictly show that our WDM–CQF protocol can also reduce the
communication time in experiment, one can simply change the
phase-modulation process to enable Alice and Bob to phase-
modulate the wavelength components simultaneously. This can
be done by replacing the use of temporal dispersion for phase
modulation in our demonstration by the use of spatial dispersion.

The main limitation of our experimental implementation is the
tolerable wavelength channels of our system. In order to avoid the
pulse collision during the phase-modulation process, the span of
different wavelength components on Alice’s and Bob’s stations
should be at most half of the pulse-repetition period, that is, 10 ns
in our system. Given the 800 ps modulation time for each channel
and a channel spacing of 2.4 nm, at most 12-wavelength channels
with a bandwidth around 26 nm can be applied to our system.
One can change the corresponding experimental parameters
(such as repetition rate, modulation window, and δλ) to increase
the tolerable channel numbers. More importantly, through using
spatial dispersion to replace temporal dispersion, the above lim-
itation can be removed. When the number of wavelength chan-
nels is increased, the current polarization-alignment method may
not work due to the increased bandwidth. In this case, one can
use a polarizer at the end of a long-fiber spool to enforce the same
polarization on different wavelength components. Since different
wavelength components would undergo different attenuations by
the polarizer, the signal intensities should be well adjusted to
guarantee the same arrival intensities at Charlie’s station for
different wavelength components. In our implementation, the
intensity (μ/m) of each wavelength component is very low and
channel spacing is not too narrow. Therefore, we ignore the
possible cross talk43,44 between the adjacent channels and assume
that the interference of pluses in each wavelength channel is
independent. Further study about the cross-talk effect may be
necessary if ultra-dense WDM (with a very small channel spacing
δλ) is used.

In summary, we propose a variant of coherent-state-based
quantum fingerprinting protocol with the use of WDM and
simultaneous detection. We show that by using WDM, our
proposed protocol can reduce the communication time of the
original CQF protocol. More importantly, because of the simul-
taneous detection of many bits of information, the required
amount of communication is significantly reduced in our
WDM–CQF protocol. For an overall distance of as long as 40 km,
our protocol with 100-wavelength channels can still beat the limit
of classical fingerprinting without using SNSPDs. We also show
that compared with the original CQF protocol, our WDM–CQF
protocol can surpass the best-known classical fingerprinting
protocol over a much longer distance. We have performed a
proof-of-concept experimental demonstration of the WDM–CQF
protocol with six-wavelength channels. The experimental results
clearly show that the WDM–CQF scheme significantly outper-
forms both the classical and coherent fingerprinting protocols.
Our practical and economical demonstration of quantum fin-
gerprinting further validates the superiority of quantum com-
munication complexity over its classical counterpart and shows
the feasibility of real applications.

We remark that we propose to use WDM to improve the
performance of the CQF protocol in this work. But WDM is not
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Fig. 5 Log–log plot of the amount of communication between Alice/Bob
and Charlie in different fingerprinting protocols, as a function of input
size n. The solid red curve represents the best-known classical
fingerprinting protocol25. The purple squares are the amount of
communication in our demonstration of coherent quantum fingerprinting
(CQF) with wavelength-division multiplexing (WDM). Six-wavelength
channels are used. Except for the 6.9 km DCF, the overall distance between
Alice and Bob is about 40 km. The orange circles correspond to the amount
of communication in the original CQF system (k= 1) under the same
experimental parameters. It is clear that less information is communicated
in our experiment than that in both the classical fingerprinting and the
original CQF protocol. We also plot out the amount of communication in
another CQF experiment with a single-wavelength channel30 (green
diamonds) for further comparison. Ref. 30 uses the same single-photon
detectors as ours, but has a much shorter distance (only about 5 km). As
shown, our WDM–CQF system outperforms the original CQF system.
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the only way. The key feature of our method is to take the
advantage of detecting many bits of information simultaneously.
One can use other types of multiplexing techniques, such as
TDM, or even use a combination of various multiplexing
schemes. Note that WDM would not help classical fingerprinting
protocol reduce the amount of communication. This is because,
in the classical fingerprinting protocol, no matter how many
wavelength channels are used, at most one bit of information can
be processed with a single pair of detectors. Moreover, in the
classical fingerprinting scheme, each classical bit is often sent with
many photons. While in our WDM–CQF protocol, many fewer
photons are sent from the users to the central node. So, there is a
huge saving in terms of the energy cost of communication too. It
would be interesting to expand our method to other quantum
communication protocols. In fact, in the coherent quantum fin-
gerprinting system, the measurement on Charlie’s side is
equivalent to a swap test, which has been applied in many other
quantum communication protocols, such as quantum digital
signature45. Our study introduces a promising method of using
WDM to do such a test and shows the feasibility of applying
WDM to other protocols.

Last but not least, in our implementation (and also in ref. 30,31),
a two-way quantum communication system is used to ensure that
Alice and Bob have the matched global phase. In this case, Alice’s
and Bob’s station are actually physically connected. To remove
this connection and to enable Alice and Bob independently
prepare their fingerprints, one could also employ the method in
ref. 46, where quantum fingerprinting based on higher-order
interference is proposed and phase reference is not needed. An
interesting question for future study could be whether we can still
apply WDM to this method to further improve the commu-
nication efficiency. It would also be interesting to explore the
possibility of using other degrees of freedom to increase the
quantum channel capacity and make quantum communication
more efficient.

Methods
Charlie’s decision mechanism. For Charlie to determine whether the inputs of
Alice and Bob are equal or not, we adopt the method introduced in ref. 30 where a
threshold value C1,th is needed. When the total counts detected at Charlie’s detector
D1 are smaller than the threshold C1,th, Charlie announces that the inputs x and y
are the same. Otherwise, Charlie announces that the inputs are different. The
choice of threshold C1,th is dependent on the input size n and the total average
photon number μ. The details of this decision mechanism are described as follows.

In each detection window, the probabilities for D1 obtaining a click for the equal
inputs (PE) and 1-bit different inputs (PD) are given by Eqs. (6) and (7). In these
two equations, M is the total number of pulses sent from Alice/Bob to Charlie and
equals to

M ¼ n=c
k

¼ m
k
: ð11Þ

As mentioned before, since each detection event is independent, the distributions
of the total counts registered at D1 f or the equal and different input cases can be
modeled as the binomial distributions B(M, PE) and B(M, PD), respectively.
Moreover, in each detection window, there are k pairs of coherent states at different
wavelengths interfering simultaneously. The distributions of the total counts at D1

depend on the total number of pulses M sent to Charlie and the total mean photon
number μ. Moreover, for the same M and μ, the distributions of the total counts at
D1 for the equal and different input cases are different, leading to different
expectation values

λE ¼ M ´ PE

λD ¼ M ´ PD:
ð12Þ

In the coherent fingerprinting scheme, the size of the inputs of interest is very large
(n > 105) and the detection probabilities PE and PD are always as small as the dark-
count probability. Therefore, the above binomial distributions in this case are well
described by the Poisson distributions Poi(λE) and Poi(λD).

Figure 6 shows an example of the distributions of the total counts at D1 for both
the same-input case (blue curve) and different-input (red curve) cases. As
indicated, the probability distributions for the two cases are away from each other.
For most of the time, the total counts for different-input cases C1,D are larger than

the counts for the equal-input cases C1,E. Therefore, Charlie could choose a
threshold total count C1,th and compare C1,th with the detected photon counts at
D1. If the number of the detected counts is smaller (larger) than C1,th, Charlie
concludes that Alice and Bob have the same (different) inputs. The errors exist
when C1,E is actually larger than the threshold, or C1,D is smaller than the
threshold. The error probability for Charlie’s decision is indicated by Eq. (8). As
long as Perror is smaller than the tolerable error probability ϵ, Charlie’s conclusion is
acceptable.

Upper bound of error probability. In this section, an upper bound of Charlie’s
error probability is discussed. For Poisson distributions, the Chernoff bound pro-
vides the upper bounds of probabilities Pr(C1,E > C1,th) and Pr(C1,D <C1,th) in Eq. (8)
as

PrðC1;E > C1;thÞ<
e�λE ðeλEÞC1;th

C1;th
C1;th

PrðC1;D <C1;thÞ<
e�λD ðeλDÞC1;th

C1;th
C1;th

;

ð13Þ

as long as the threshold C1,th is chosen to satisfy

λE <C1;th < λD: ð14Þ
Moreover, if threshold C1,th is the cross point of the two distributions Poi(λE) and
Poi(λD), i.e.,

PoiðC1;th; λEÞ ¼ PoiðC1;th; λDÞ; ð15Þ
then the upper bounds for the error probabilities Pr(C1,E > C1,th) and Pr(C1,D < C1,th)
are the same. In this case,

C1;th ¼ λE � λD
logeðλE=λDÞ

ð16Þ

and the upper bound for Charlie’s error probability is

Perror <Pupper ¼
e�λE ðeλEÞC1;th

C1;th
C1;th

: ð17Þ

Optimization of μ. As indicated by the above equations, the error probability
depends on the total number of pulses M and the total mean photon number μ. If
M and μ are known, one can use Eq. (8) to search an optimal threshold C1,th

(between λE and λD) which gives the minimum error probability. As shown in Eq.
(11), for a given system (ECC and k are fixed), M is only determined by the input
size n. Now, the question is how to determine the average photon number μ for
each value of M, as well as its corresponding optimal threshold C1,th. On one hand,
μ should be large enough such that the detection probabilities (PE and PD) are not
dominated by Pdark and the error probability is below ϵ. On the other hand, since
the amount of communication required is Q ¼ Oðμlog2nÞ, μ should be as small as
possible. Therefore, there is a trade-off between Perror and the minimum amount of
communication Q. In our work, C1,th is given by Eq. (16), which is a function of M
and μ. Then for each value of M, the optimization of μ can be done by searching

Fig. 6 Probability distribution of the total counts at detector D1 for the
equal-input case (blue curve) and different-input case (red curve). In this
figure, the total number of pulsesM is 5 × 109. δ and ν in Eq. (6) and Eq. (7)
are 0.22 and 97%, respectively. The detector’s dark-count rate is 100 Hz
and η= 0.25 is considered as the detector efficiency (25%). The detection
window is 500 ps. The average photon number μ is 1000. Note that this
figure just shows an example of the probability distributions. Hence, the
value of μ is not necessarily optimal and the corresponding error probability
might be large.
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the minimum value of μ and the corresponding C1,th, which satisfies the error-
probability condition, i.e., Perror < ϵ. As shown in Fig. 7a, the solid curves are the
error probability Perror given in Eq. (8) as a function of the total number of photons
μ for three different values of M (5 × 107, 5 × 108, and 5 × 109). The optimal μ for
different M is indicated by the yellow circle, the corresponding Perror of which is
just below the tolerable error probability ϵ= 10−5 (black solid line).

Or, more simply, we do not have to search the optimal μ one by one. We can fix
the upper bound of Perror to be equal to ϵ, i.e.,

Pupper ¼
e�λE ðeλEÞC1;th

C1;th
C1;th

¼ ϵ ¼ 10�5: ð18Þ

Then for each givenM, one can directly calculate μ from the above equation. In this
case, Perror can be always smaller than ϵ. In Fig. 7a, the dash curves are the upper
bounds of Perror as a function of μ for different sizes of M. The calculated μ based
on Eq. (18) for different M is indicated by the blue triangle. As shown in Fig. 7a,
this calculated μ is larger than the optimal μ. For a small size of M, as in our
experiment, searching the optimal μ can be done very quickly. For a very large size
of M, searching optimal μ might be time-consuming, while directly calculating μ is
very straightforward. Note that this calculated μ is actually the upper bound, as
indicated in Fig. 7b. The black solid curve is the optimal μ as a function of M and
the red dash curve is the upper bound of μ calculated based on Eq. (18). Since
Q ¼ Oðμlog2nÞ, for a given n, this upper bound of μ also gives the upper bound of
the amount of communication in our WDM–CQF protocol. We remark that this
upper bound might not be precise but fair enough as long as the Poisson
distribution approximation used in “section A” is valid. The strict proof of this
conclusion is out of the scope our paper.

Validity of simultaneous detection of k pairs of wavelength components. The
advantage of transmitting less amount of information in our WDM–CQF protocol
benefits from the shared detecting system for the k pair of wavelength components.
As shown in Fig. 7b, the total average photon number μ is a function of the total
number of pulses M sent out by Alice and Bob. In other words, as long as M is
fixed, the average photon number in each wavelength-composite pulse is fixed, no
matter how many wavelength components (k) it contains. For a fixed input size n,
if more wavelength channels are used, the number of pulses sent from Alice/Bob to
Charlie is reduced (M= n/(ck)). Consequently, less μ is required and the total
amount of communication is reduced. Figure 8 shows the total average photon
number μ required as a function of input size n for different values of k. It is clear
that for large-input size, the more wavelength channels are applied, the smaller
value of mean photon number is required.

In Eqs. (6) and (7), the k pair of wavelength components interferes
simultaneously and are detected by a single pair of SPDs. As mentioned before, we
assume that only the states in the same-wavelength channel would interfere with
each other. In fact, in the coherent quantum fingerprinting protocol, to minimize
the amount of communication, μ is always chosen to be so small that most of the
pulses arriving at Charlie’s station are vacuum. At Charlie’s station, before the
interference, the probabilities of each wavelength component being vacuum or
having photons are

Pvac ¼ e�
μη
m ð19Þ

and (1− Pvac), respectively. For each pair of interfering pulses sent out by Alice and
Bob, there are in total 2k components. Then, the probability that, more than one

component, either from Alice or Bob, carries photons when arriving at Charlie’s
station is given by

P ¼ 1� Pvca
2k � 2k ´ ð1� PvacÞ ´Pvac

2k�1: ð20Þ
In Fig. 9, we plot out the probability P as a function of the total number of pulses
M. As shown in Fig. 9, for different values of k, this probability is always few orders
of magnitude smaller than the dark count probability, which is around 5 × 10−8 in
our simulation, especially for large M. As indicated in the enlarged Fig. 9b and
Fig. 9c, when k increases from k= 1 to k= 1000, the increase of this probability is
very small. That is to say, even for a value of k as large as 1000, we could ignore the
case that more than one-wavelength component carries photons when each pair of
pulses arrive at Charlie’s beam splitter. In this case, even there are k pairs of
wavelength components that interfere simultaneously in each detection window,
the multiwavelength contributions to the detection event are negligible. The
detected clicks mainly come from the photons in one-wavelength component as
well as the dark counts. Moreover, the information about which wavelength
component has a photon is irrelevant, since Charlie’s decision is only determined
by the total number of counts at detector D1. Therefore, in our scheme,
demultiplexing is not needed on Charlie’s station and one pair of SPDs is adequate.

We remark that when M is relatively small (smaller than 106), the above
discussion would not be valid anymore, since the probability of the interfering
pulses having more than one non-empty wavelength component would be too large

(a) (b)

Fig. 7 Optimization of averge photon number μ. a Log–log plot of error probability as a function of the total average photon number μ. Three different
values ofM (total number of pulses) are tested, that are 5 × 107, 5 × 108, and 5 × 109. The solid curves indicate the error probability calculated based on Eq.
(8) and Eq. (16). The yellow circles are the optimal μ chosen for different sizes of M. The dash curves are the upper bounds Pupper in Eq. (17) for different
sizes of M. The blue triangles are the values of μ that satisfy Eq. (18). b Log–log plot of the total mean photon number μ as a function of the number of
pulsesM sent from Alice/Bob to Charlie. The black solid curve is the optimal μ searched for eachM. The red dash curve is the upper bound of μ calculated
from Eq. (18). In this simulation, an ECC with c= 0.2398 and δ= 0.22 is used. The interference visibility ν is assumed to be 97%. The detector’s dark-count
rate is 100 Hz and η= 0.25 is considered as the detector efficiency (25%). The detection window is 500 ps.

Fig. 8 Log–log plot of the total average photon number μ required by the
WDM–CQF protocol with different wavelength channels as a function of
the input size n. When k= 1, the scheme becomes to the original CQF
scheme. In this simulation, an ECC with c= 0.2398 and δ= 0.22 is used.
The interference visibility ν is assumed to be 97%. The detector’s dark-
count rate is 100 Hz and η= 0.25 is considered as the detector efficiency
(25%). The detection window is 500 ps.
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to be ignored. Therefore, for the WDM–CQF system with different wavelength
channels, the smallest size of input of interest is different. To benefit from applying
a large number of wavelength channels, the input size should also be large.

Data availability
The data generated during the study are available from the corresponding author upon
reasonable request.
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