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PGAM1 is overexpressed in a wide range of cancers, thereby promoting cancer cell
proliferation and tumor growth, so it is gradually becoming an attractive target. Recently, a
series of inhibitors with various structures targeting PGAM1 have been reported,
particularly anthraquinone derivatives. In present study, the structure–activity
relationships and binding mode of a series of anthraquinone derivatives were probed
using three-dimensional quantitative structure–activity relationships (3D-QSAR), molecular
docking, and molecular dynamics (MD) simulations. Comparative molecular field analysis
(CoMFA, r2 � 0.97, q2 � 0.81) and comparative molecular similarity indices analysis
(CoMSIA, r2 � 0.96, q2 � 0.82) techniques were performed to produce 3D-QSAR models,
which demonstrated satisfactory results, especially for the good predictive abilities. In
addition, molecular dynamics (MD) simulations technology was employed to understand
the key residues and the dominated interaction between PGAM1 and inhibitors. The
decomposition of binding free energy indicated that the residues of F22, K100, V112,
W115, and R116 play a vital role during the ligand binding process. The hydrogen bond
analysis showed that R90, W115, and R116 form stable hydrogen bonds with PGAM1
inhibitors. Based on the above results, 7 anthraquinone compounds were designed and
exhibited the expected predictive activity. The study explored the structure–activity
relationships of anthraquinone compounds through 3D-QSAR and molecular dynamics
simulations and provided theoretical guidance for the rational design of new anthraquinone
derivatives as PGAM1 inhibitors.
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INTRODUCTION

Reprogramming energy metabolism has been regarded as one of the 10 essential hallmarks of cancer
cells (Hanahan and Weinberg, 2011), which was called the “Warburg effect.” In 1924, Warburg found
that cancer cells are more likely to metabolize glucose by means of aerobic glycolysis instead of
oxidative phosphorylation as in normal cells (Wang et al., 2018a; Huang et al., 2019b). Cancer
metabolic reprogramming is the performance of adapting to the environment during tumor formation
or metastasis. More and more scientists are focusing on the pivotal enzymes in the metabolic
reprogramming of cancer cells in order to find new cancer treatment targets (Wang et al., 2018b).
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Phosphoglycerate mutase 1 (PGAM1) is a key enzyme that
catalyzes the invertible conversion of 3-phosphoglycerate (3-PG)
and 2-phosphoglycerate (2-PG) during the process of glycolysis
(Fothergill-Gilmore and Watson, 1989). Recent studies have
proven that once the expression of PGAM1 is upregulated, it
will promote tumor cell proliferation and tumor growth in
coordination with glycolysis and biosynthesis (Hitosugi et al.,
2012). PGAM1 regulates the proliferation of cancer cells in term
of biosynthesis regulation, partly by regulating intracellular levels
of its product 2-PG and 3-PG (Hitosugi et al., 2012). In the
oxidative pentose phosphate pathway (PPP), 3-PG inhibits 6-
phosphogluconate dehydrogenase after binding, while 2-PG
feedback control of the levels of through activates 3-
phosphoglycerate dehydrogenase. In addition, PGAM1 is
overexpressed in multiple cancers (Li and Liu, 2020),
including ovarian cancer (Zhang et al., 2020), non–small-cell
lung cancer (NSCLC) (Li et al., 2020), colorectal cancer (Liu et al.,
2008; Lei et al., 2011), pancreatic ductal adenocarcinoma (PDAC)
(Liu et al., 2018), prostate cancer (PCa) (Wen et al., 2018), and
glioma (Xu et al., 2016). Particularly, high expression of PGAM1
was associated with poor prognosis in NSCLC patients (Sun et al.,
2018; Li et al., 2020). Downregulation of the expression of
PGAM1 or suppression of its metabolic activity will lead to
weakened cell proliferation and tumor growth (Hitosugi et al.,
2012; Peng et al., 2016; Liu et al., 2018). Thus, PGAM1 is
considered to be an emerging target for cancer treatment.

Due to the important role of PGAM1 in the occurrence and
development of tumors, many researchers have focused on the
discovery and characterization of small molecules that can target
and modulate the metabolic activity of PGAM1 (Huang et al.,
2019a). MJE3 was first revealed as a covalent PGAM1 inhibitor
on Lys 100 by the Cravatt group in 2005 (Evans et al., 2005).
(-)-Epigallocatechin-3-gallate (EGCG) is a natural product
extracted from green tea, which was first discovered as a non-
substrate competitive PGAM1 inhibitor with potent inhibition
activity against PGAM1 (Li et al., 2017). Anthraquinone
derivatives PGMI-004A (Hitosugi et al., 2012) and xanthone
derivatives (Wang et al., 2018b) were identified as allosteric
PGAM1 inhibitors by the Zhou group, which exhibited
moderate inhibition activity on PGAM1. As another
anthraquinone derivative, HKB99 was identified to
allosterically obstruct the activation of PGAM1, thereby
affecting its catalytic activity and the intermolecular
interaction of ACTA2 (Huang et al., 2019c; Liang et al., 2021).
Based on the excellent anticancer activity of PGMI-004A and
HKB99, new small molecules with the anthraquinone core have
been synthesized, which may have similar mechanisms of action
and therapeutic potential. Therefore, the design and development
of novel small molecules with an anthraquinone core targeting
PGAM1may prove to be an effective strategy for the treatment of
cancer cells.

Computer-aided drug design is an effective tool in the drug
discovery and design process. It can not only be used to predict
the activity of small molecules, explain the action mechanism,
and provide guidance for the design of more effective drug
molecules but also reduce the consumption of manpower and
material resources (Jorgensen, 2004). To elucidate the

structure–activity relationships and provide optimization
guidance for anthraquinone derivatives, 62 collected
compounds were employed to construct 3D-QSAR models
using CoMFA and CoMSIA methods. According to the
contour maps by 3D-QSAR and the crucial residues by MD
simulations, 7 compounds with high predictive activity were
designed. This study will provide a valuable theoretical basis
for the activity prediction and structural modification of targeted
PGAM1 inhibitors containing anthraquinone structures.

MATERIALS AND METHODS

Data Sets and Preparation
In order to ensure the reliability of activity values and reduce
accidental errors, a set of 78 PGAM1 inhibitors were retrieved
from different literature sources in terms of the same group
(Wang et al., 2018a; Wang et al., 2018b; Huang et al., 2019a;
Huang et al., 2019b). The molecular structure and experimental
bioactivity of all chemicals are listed in Table 1. First,
corresponding IC50 values of experimental bioactivity
expressed in nM were converted into negative logarithm
(–lgIC50) and acted as the dependent variable for the QSAR
modeling. According to the diversity of the molecular structure
and activities, all compounds were split into a training set and a
test set at a ratio of approximately 4:1. Finally, 62 compounds
were selected randomly as the training set and the remaining 16
compounds as the test set. The molecular structure of each
compound was determined using ChemDraw 18.0 and then
imported to SYBYL 6.9 (SYBYL, XX) to minimize the energy
based on the Tripos force field with a convergence criterion of
0.01 kcal/mol. The Gasteiger–Hückel method was employed to
calculate the partial atomic charges. Then, the multisearch
strategy was performed to obtain the lowest energy
conformation, and the lowest energy geometry after being
filled with energy was reserved for alignment.

Molecular Alignment
Molecular alignment in terms of the same structure is considered
to be one of the most significant elements in the process of built
3D-QSAR modeling. Hence, molecular alignment based on the
most active molecule, 35, was employed by atom-by-atom fits.
After a common substructure is set, the dominant conformations
of the remaining 77 compounds are selected for superimposition.

Construction of CoMFA and CoMSIA
Models
The 3D-QSAR model for the training set compound was built
after alignment by using SYBYL 6.9 software. The CoMFA
(Cramer et al., 1988b) and CoMSIA (Cramer et al., 1988b) are
the most widely used methods for constructing 3D-QSAR. The
CoMFA and CoMSIA descriptors were obtained by placing the
superposed compound in a 3D cubic lattice with a grid spacing of
2 Å. Using the SP3 hybrid carbon as the probe atom, the
Lennard–Jones and the coulomb potential were applied to
obtain the steric field energy and electrostatic field energy of
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TABLE 1 | Structure and corresponding activity data of reported PGAM1 inhibitors.

Number R1 R2 R3 R4 R5 R6 X IC50

(μM)
pIC50

1 H OH H H H O 10.10 5.00

2 H OH H H H O 13.20 4.88

3a H OH H H H O 6.40 5.19

4 H OH H H H O 10.2 4.99

5 H OH H H H O 8.40 5.08

6 H OH H H H O 5.90 5.23

7 H OH H H H O 5.50 5.26

8 H OH H H H O 6.00 5.22

9a H H H H H O 14.3 4.84

10 H H H H -OCH3 O 6.50 5.19

11a H H H H -CH3 O 8.60 5.07

12 H H -OCH3 H H O 4.60 5.34

13 H H -CH3 H H O 8.00 5.10

(Continued on following page)
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TABLE 1 | (Continued) Structure and corresponding activity data of reported PGAM1 inhibitors.

Number R1 R2 R3 R4 R5 R6 X IC50

(μM)
pIC50

14 H H Cl H H O 3.50 5.46

15 H H F H H O 13.7 4.86

16 H H -NO2 H H O 2.10 5.68

17 H H OH H H O 6.40 5.19

18 H H −COOCH3 H H O 2.70 5.57

19 -CH3 OH H H H H -C�O 5.37 5.27
20 OH H H H H -C�O 2.05 5.69

21 OH H H H H -C�O 1.75 5.76

22 OH H H H H -C�O 1.50 5.82

23a OH H H H H -C�O 0.36 6.44

24 OH H H H H -C�O 0.84 6.08

25 OH H H H H -C�O 0.55 6.26

26 OH H H H H -C�O 0.48 6.32

(Continued on following page)
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TABLE 1 | (Continued) Structure and corresponding activity data of reported PGAM1 inhibitors.

Number R1 R2 R3 R4 R5 R6 X IC50

(μM)
pIC50

27 OH H H H H -C�O 2.81 5.55

28 OH H H H H -C�O 2.86 5.54

29 OH H H H H -C�O 0.63 6.20

30 OH H H H H -C�O 0.55 6.26

31 OH H H H H -C�O 0.49 6.31

32a OH H H H H -C�O 0.19 6.72

33a OH H H H H -C�O 1.29 5.89

34 OH H H H H -C�O 2.05 5.69

35 OH H H H H -C�O 0.097 7.01

36 OH H H H H -C�O 0.25 6.60

37a OH H H H H -C�O 0.26 6.59

(Continued on following page)
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TABLE 1 | (Continued) Structure and corresponding activity data of reported PGAM1 inhibitors.

Number R1 R2 R3 R4 R5 R6 X IC50

(μM)
pIC50

38 OH H H H H -C�O 0.14 6.85

39 OH H H H H -C�O 0.33 6.48

40 OH H H H H -C�O 2.60 5.59

41 OH H H H H -C�O 0.54 6.27

42 OH H H H H -C�O 0.90 6.05

43 OH H H H H -C�O 0.47 6.33

44 OH H H H H -C�O 2.20 5.66

45a OH H H H H -C�O 0.61 6.21

46 OH H H H H -C�O 0.54 6.27

47 OH H H H H -C�O 0.79 6.10

48a OH H H H H -C�O 0.89 6.05

49 OH H H H H -C�O 0.27 6.57

50 OH H H H H -C�O 0.28 6.55

51 OH H H H H -C�O 0.89 6.05

(Continued on following page)
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TABLE 1 | (Continued) Structure and corresponding activity data of reported PGAM1 inhibitors.

Number R1 R2 R3 R4 R5 R6 X IC50

(μM)
pIC50

52 OH H H H H -C�O 0.90 6.05

53 OH H H H H -C�O 0.26 6.59

54 OH H H H H -C�O 0.20 6.70

55 OH H H H H -C�O 0.35 6.46

56 OH H H H H -C�O 0.47 6.33

57 OH H H H H -C�O 0.26 6.59

58 -OCH3 H H H H -C�O 2.92 5.53

59 H H H H -C�O 2.00 5.70

60 OH OH H H H O 2.80 5.55

61 OH OH H H H O 7.20 5.14

62 OH OH H H H O 1.90 5.72

63 OH OH H H H O 3.50 5.46

64 OH OH H H H O 6.30 5.20

65a OH OH H H H O 5.80 5.24

(Continued on following page)
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TABLE 1 | (Continued) Structure and corresponding activity data of reported PGAM1 inhibitors.

Number R1 R2 R3 R4 R5 R6 X IC50

(μM)
pIC50

66 OH OH H H H O 5.50 5.26

67 OH OH H H H O 3.60 5.44

68a OH OH H H H O 2.90 5.54

69a OH OH H H H O 1.90 5.72

70a OH OH H H H O 4.20 5.38

71a OH OH H H H O 2.10 5.68

72 OH OH H H H O 1.70 5.77

73 OH OH H H H O 1.60 5.80

74 OH OH H H H O 1.20 5.92

75 OH OH H H H O 2.60 5.59

76a OH OH H H H O 0.50 6.30

77a OH OH H H H O 2.70 5.57

78 OH OH H H H O 1.00 6.00

aTest set for the validation of the 3D-QSAR model.
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each lattice point. The contributions of the hydrogen bond
acceptor field, hydrogen bond donor field, and hydrophobic
field were calculated by the probe atom. The partial least
squares method (Cramer et al., 1988a) was employed to deal
with the linear correlation between the CoMFA and CoMSIA
fields and biological activity. The cross-validation correlation
coefficient (q2) and optimum number of components (N) were
obtained using the leave-one-out method for cross-validation
analysis. In addition, the r2m (Roy et al., 2013; Cardoso et al.,
2016), r2pred, external standard deviation error of prediction
(SDEPext), and applicability domain (Roy et al., 2015; de Assis
et al., 2016) were also calculated to evaluate the performance of
built models.

Evaluation of the 3D-QSAR Models
The predictive capabilities of built 3D-QSAR models were
evaluated via the test set of 16 compounds. After all
compounds were superimposed upon compound 35, the pIC50

values of all compounds were estimated through the built
CoMFA and CoMSIA models.

Molecular Docking
To obtain more accurate docking results, the resolution of all
crystal structures of PGAM1 in complex with small molecules
obtained from the RSCB Protein Data Bank (PDB) was
compared, and 5Y35, with the best resolution of 1.99 Å, was
preserved as the docking template. Subsequently, the Protein
Preparation Wizard module within (Schrödinger, 2015) was
utilized to preprocess the crystal structure, including adding
hydrogens and side chains, deleting water molecules, and
calculating partial charges and protonation states by using the
OPLS2005 force field (Jorgensen et al., 1996). Then, a grid box
centered at the native ligand with a similar size was produced to
determine the binding pocket of PGAM1 by using the Grid
Generation module of the Schrödinger package. All molecules
were preprocessed using the LigPrep module implemented in the
Schrödinger package, and the ionization states were calculated
using Epik (Shelley et al., 2007) at pH � 7.0 ± 2.0. Finally, all
chemicals were docked into the binding pocket of PGAM1 and
evaluated using the standard precision (SP) mode of Glide. The
scale factor was set at 0.8, and the partial charge intercept was set
at 0.15. The 10,000 poses of each ligand during the initial docking
phase were preserved for evaluation.

Molecular Dynamics Simulations
To obtain the structural basis and significant residues involved in
the process of ligand binding, molecular dynamics simulations
were employed in terms of the crystal structure of compounds 23
and 49 using Amber16 (Case et al., 2005). The general AMBER
force field (GAFF) (Wang et al., 2004) was employed to
parameterize the compounds, while the AMBER ff14SB force
field (Maier et al., 2015) was employed for the PGAM1 structure.
The partial charges of compounds were calculated by using the
restrained electrostatic potential fitting procedure (Bayly et al.,
1993; Cieplak et al., 1995; Fox and Kollman, 1998) based on the
electrostatic potentials calculated using the Hartree–Fock (HF)
method with the 6-31G* basis set in the Gaussian 09 package

(Frisch et al., 2009). Then, the complex was solvated in a cubic
box of TIP3P waters, with the solute 10 Å away from the water
box boundary. After adding sodium ions to neutralize each
system, the steepest descent method followed by the
conjugate-gradient method were employed to minimize the
system every 2,500 steps. Subsequently, each system was
heated in the NVT ensemble from 0 to 300 K in 50 ps
restraint on backbone atoms. The restraint force was gradually
decreased from 5 to 0.1 kcal/(mol Å2) within 0.9 ns. Under a
periodic boundary condition, 50 ns MD simulations were
performed at 300 K and 1 atm without any restraint. The
particle mesh Ewald method (Linse and Linse, 2014) was used
to calculate the long-range electrostatic interactions, and the
SHAKE method (Ryckaert et al., 1977) was employed to
constrain all covalent bonds containing hydrogen atoms.

Trajectory Analysis
After the MD simulation finished, trajectories were dissected via
the Cpptraj module (Roe and Cheatham, 2013) in AmberTools
16. First, the root mean square deviations (RMSDs) value was
calculated in terms of the last 10 ns of each MD trajectory.
Second, the molecular mechanics/generalized born surface area
(MM/GBSA) approach (Massova and Kollman, 2000) was
applied to calculate the binding free energy. After withdrawing
a total of 2,500 snapshots, the MM/GBSA calculation was
executed on each snapshot. The binding free energy (ΔGbind)
was calculated as follows (Hou et al., 2011; Sun et al., 2014):

ΔGbind � Gcomplex − (Gprotein + Gligand)

where the energy term (G) is estimated as follows:

G � Evdw + Eele + GGB + GGBSUR

In the equations above, the Evdw, Eele, GGB, and GGBSUR

represent van der Waals, electrostatic energy, the electrostatic
contribution to the solvation free energy, and non-polar
contribution to the solvation free energy, respectively. The
changes of conformational entropy were ignored. Moreover,
the total free energy was decomposed to each residue in
PGAM1 to obtain the crucial residues contributed to the
ligand binding process.

RESULTS AND DISCUSSION

CoMFA and CoMSIA Models
In the present study, a series of 78 PGAM1 inhibitors were
obtained. The molecular structures and pIC50 values of all
molecules are listed in Table 1. The quality of molecular
superposition is considered to be one of the important factors
affecting 3D-QSAR prediction accuracy (Cho et al., 1996). On the
basis of the structure and bioactivity of PGAM1 inhibitors, the
compounds in the training set were aligned to compound 35,
which had the highest activity based on the common
substructure. It can be seen from Figure 1 that the common
skeleton of all molecules is overlapped. However, the side chains
of several compounds surround the common skeleton due to the
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large difference. Then, the 3D-QSAR models of CoMFA and
CoSIA were successfully developed.

To examine the predictive ability and reliability of the built
model, q2 and r2 were applied to evaluate the predictive power of
the built 3D-QSARmodel, r2, F, and SEE values were employed to
assess the reliability of the model, and r2m, r

2
pred, and SDEPext

values were utilized for external validation of the model. Table 2
lists the classical parameter statistics of CoMFA and CoMSIA
models. In general, r2 > 0.7 and q2, r2m, r

2
pred >0.5 are necessary for

a good model (Pratim Roy et al., 2009). As shown in Table 2, the
values of q2, N, SEE, r2, r2m, r

2
pred, SDEPext, and F are 0.81, 6, 0.106,

0.97, 0.78, 0.89, 0.22, and 258.06, respectively. The results show
that the built CoMFA model exhibits a good stability and
predictive ability. The contribution of the steric field and the
electrostatic field is 81 and 19%, respectively, indicating that the
biological activity of compounds is more affected by the steric
field. In addition, the predicted activity of the new chemical is
only valid when the predicted compound falls within the
applicability domain of the developed model (Roy et al., 2015).
The calculated results show that all compounds are within the
application domain of the built CoMFA model, so this prediction
result is reliable.

Different field combinations of CoMSIA models were
constructed, and it had been proved that CoMSIA-SEHA is
the best model. Based on this model, the values of q2, N, SEE,
r2, r2m, r

2
pred, SDEPext, and F are 0.82, 6, 0.11, 0.96, 0.79, 0.89, 0.23,

and 228.71, respectively. In this model, the contribution of the
steric field is 20%, that of the electrostatic field is 22%, that of the
hydrophobic field is 40%, and that of the hydrogen bond acceptor
field is 18%, respectively. The results show that the hydrophobic
field has a greater effect on the bioactivity of the PGAM1
inhibitors. The calculation results of the application domain
show that almost all the compounds are within the application
domain of the CoSIA model, except for compound 24 with an

Snew of 3.87 and compound 25 with an Snew of 4.06. By analyzing
the descriptors in CoMSIA, we found that compounds 24 and 25
have the largest electrostatic field contribution. The experimental
and predicted values of the biological activity of the training set
and the test set in the established CoMFA and CoMSIA models
are shown in Table 3.

The scatter plot of the experimental and predicted values of the
studied PGAM1 inhibitor is shown in Figure 2. It can be seen
from Figure 2 that the experimental and predicted bioactivity
values of all molecules are distributed around the Y � X equation,
indicating that the predicted values are in good accord with the
experimental values, which further demonstrates that the model
has good predictive ability.

Contour Maps Analysis of CoMFA and
CoMSIA
The structure–activity relationships between PGAM1 inhibitors
and activity can be well demonstrated by using 3D contour maps

FIGURE 1 | Structural alignment of all the molecules in the training set based on the common substructure of compound 35.

TABLE 2 | Summary of CoMFA and CoMSIA models.

PLS statistics CoMFA CoMSIA

q2 0.81 0.82
N 6 6
r2 0.97 0.96
F 258.06 228.71
r2m 0.78 0.79

r2pred 0.89 0.89

SDEPext 0.22 0.23
SEE 0.11 0.11
Steric 0.81 0.20
Electrostatic 0.19 0.22
Hydrophobic - 0.40
Hydrogen bond acceptor - 0.18
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to display the QSAR equation. The field type Stdev* Coeff was
used to generate 3D contour maps. As shown in Figures 3, 4,
compound 35 with the best anti-PGAM1 activity was selected as
the template compound to dissect the results of CoMFA and
CoMSIA models.

The contour map of the steric field of CoMFA is shown in
Figure 3A, and the effect of the steric field on the activity is shown
in green and yellow. The presence of green regions around the
molecule indicates that the group with a large connecting space
contributes to increasing the activity of the compound, while the
presence of yellow regions indicates that the group with a large
connecting space may decrease the activity of the compound. As
can be seen from Figure 3A, there is a green region distributed on
the R1 substituent, so the introduction of a slightly larger volume
of groups at the R1 substituent site is conducive to the
improvement of the activity of the compound. For example,
compound 22 (pIC50 � 5.82) with a benzene ring was
significantly higher than compound 19 (pIC50 � 5.27) in
bioactivity. The contour map of the electrostatic field of
CoMFA is shown in Figure 3B, and the effect of the
electrostatic field on the activity is shown in blue and red. The
blue regions around the molecule indicate that the connection of
the electron-donating group is beneficial to the improvement of
the activity of the compound, while the red regions indicate that
the connection of the electron-withdrawing group is beneficial to
the improvement of the activity of the compound. From
Figure 3B, we can see that the connection of electron-
withdrawing groups near the R1 substituent is conducive to
improving the activity of the compound, so it can explain how
the activity of compound 22 (pIC50 � 5.82) is higher than that of
compound 19 (pIC50 � 5.27). There is a blue region around the R2

substituents of anthraquinone, where the introduction of electron
groups is beneficial. For example, the bioactivity of compound 72
(pIC50 � 5.77) with a hydroxyl group was significantly higher
than that of compound 8 (pIC50 � 5.22).

The contour map of the steric field (Figure 4A) and the
electrostatic field (Figure 4B) of the CoMSIA is very similar

TABLE 3 | Experimental pIC50 (Exp.), predicted pIC50 (Pred.), and corresponding
residuals (Res.) of the anthraquinone derivatives.

Number pIC50 CoMFA CoMSIA

Exp Pred Res Pred Res

1 5.00 5.00 0.00 5.02 0.03
2 4.88 5.00 0.12 5.05 0.17
3 5.19 4.98 −0.21 5.14 −0.05
4 4.99 4.94 −0.05 5.11 0.12
5 5.08 5.11 0.04 5.11 0.03
6 5.23 5.34 0.11 5.15 −0.08
7 5.26 5.28 0.02 5.31 0.05
8 5.22 5.16 −0.06 5.18 −0.05
9 4.84 5.33 0.49 5.29 0.44
10 5.19 5.18 −0.01 5.29 0.10
11 5.07 5.26 0.19 5.21 0.15
12 5.34 5.35 0.01 5.24 −0.10
13 5.10 5.27 0.17 5.31 0.21
14 5.46 5.34 −0.12 5.29 −0.17
15 4.86 4.94 0.08 4.84 −0.03
16 5.68 5.78 0.10 5.67 −0.01
17 5.19 5.23 0.03 5.17 −0.02
18 5.57 5.38 −0.19 5.51 −0.05
19 5.27 5.46 0.19 5.31 0.04
20 5.69 5.61 −0.08 5.74 0.05
21 5.76 5.70 −0.06 5.74 −0.02
22 5.82 5.84 0.02 5.76 −0.07
23 6.44 6.33 −0.12 6.32 −0.13
24 6.08 6.09 0.01 5.88 −0.20
25 6.26 6.44 0.18 6.26 0.00
26 6.32 6.38 0.06 6.24 −0.08
27 5.55 5.59 0.03 5.48 −0.07
28 5.54 5.54 −0.01 5.46 −0.08
29 6.20 6.21 0.01 6.25 0.04
30 6.26 6.27 0.01 6.33 0.07
31 6.31 6.35 0.04 6.42 0.11
32 6.72 6.61 −0.11 6.51 −0.21
33 5.89 5.96 0.07 6.45 0.56
34 5.69 5.65 −0.04 5.69 0.00
35 7.01 7.08 0.07 6.97 −0.04
36 6.60 6.69 0.09 6.53 −0.07
37 6.59 6.84 0.26 6.80 0.21
38 6.85 6.84 −0.01 6.82 −0.03
39 6.48 6.48 0.00 6.66 0.18
40 5.59 5.61 0.03 5.53 −0.06
41 6.27 6.19 −0.07 6.33 0.06
42 6.05 6.08 0.03 6.13 0.08
43 6.33 6.31 −0.02 6.39 0.06
44 5.66 5.77 0.12 5.53 −0.12
45 6.21 6.21 0.00 6.38 0.17
46 6.27 6.43 0.16 6.37 0.10
47 6.10 6.09 −0.01 6.14 0.04
48 6.05 6.05 0.00 6.11 0.06
49 6.57 6.53 −0.04 6.49 −0.08
50 6.55 6.36 −0.19 6.40 −0.16
51 6.05 6.13 0.08 6.24 0.19
52 6.05 6.04 0.00 6.32 0.27
53 6.59 6.54 −0.05 6.51 −0.08
54 6.70 6.50 −0.20 6.49 −0.21
55 6.46 6.11 −0.34 6.39 −0.07
56 6.33 6.49 0.16 6.41 0.08
57 6.59 6.55 −0.03 6.44 −0.15
58 5.53 5.39 −0.15 5.56 0.02
59 5.70 5.69 −0.01 5.72 0.02
60 5.55 5.40 −0.15 5.52 −0.03
61 5.14 5.33 0.19 5.47 0.33
62 5.72 5.72 −0.01 5.72 0.00

(Continued in next column)

TABLE 3 | (Continued) Experimental pIC50 (Exp.), predicted pIC50 (Pred.), and
corresponding residuals (Res.) of the anthraquinone derivatives.

Number pIC50 CoMFA CoMSIA

Exp Pred Res Pred Res

63 5.46 5.43 −0.03 5.46 0.00
64 5.20 5.17 −0.03 5.21 0.01
65 5.24 5.52 0.29 5.48 0.24
66 5.26 5.34 0.08 5.10 −0.16
67 5.44 5.33 −0.12 5.48 0.04
68 5.54 5.34 −0.20 5.47 −0.07
69 5.72 5.39 −0.33 5.69 −0.04
70 5.38 5.41 0.03 5.11 −0.27
71 5.68 5.31 −0.37 5.63 −0.04
72 5.77 5.78 0.01 5.70 −0.07
73 5.80 5.78 −0.02 5.75 −0.05
74 5.92 5.92 0.00 5.88 −0.04
75 5.59 5.51 −0.08 5.52 −0.07
76 6.30 6.30 0.00 6.27 −0.03
77 5.57 5.39 −0.18 5.57 0.00
78 6.00 5.96 −0.04 6.01 0.01
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to the CoMFA model, so they will not be explained here. The
contour map of the hydrophobic field of the CoMSIA model is
shown in Figure 4C. The cyan regions represent how the
introduction of the hydrophobic group is favorable to the
activity, while the white regions represent how the
introduction of the hydrophilic group is favorable to the
activity. There is a cyan region near the R1 substituent,
indicating that the introduction of the hydrophobic group is
very helpful to the improvement of the activity. Therefore, the
biological activity of compound 22 (pIC50 � 5.82) is higher than
that of compound 19 (pIC50 � 5.27). The contour map of the
hydrogen bond receptor field of CoMSIA is shown in Figure 4D.
The orange area is where the hydrogen bond acceptor group is
conducive to the activity of the compound, and the purple area is
where the hydrogen bond donor group is conducive to the activity
of the compound. As shown in Figure 4D, there are purple

regions with substituents of R6 and R2, where hydrogen bond
donors can be imported to improve the anti-PGAM1 activity of
the chemical. Moreover, a large purple region is near the nitrogen
atom on the amino group, suggesting that the group may be a
hydrogen bond donor.

Based on the outcome of CoMFA and CoMSIA analysis, we
obtained the structure–activity relationship diagram of
anthraquinone compounds (see Figure 5). The introduction of
hydrogen bond donors in Region A is beneficial to improving the
activity of the compounds, such as the carbonyl group. The group
with a large space in Region B is conducive to the activity of the
compounds, such as biphenyl or p-cyclohexylbenzene (Huang
et al., 2019b). The introduction of the hydrophilic group in
Region C is conducive to the activity, such as hydroxyl groups
(Wang et al., 2018a). The group with a small space in Region D
can improve the activity of the compound, such as hydrogen.

FIGURE 2 | Scatter plot of experimental and predicted bioactivity values (pIC50)of the CoMFA (A) and CoMSIA models (B), respectively.

FIGURE 3 | Steric contour map (A) and electrostatic contour map (B) of the CoMFA model based on molecule 35. Green regions represent bulky groups that
increase anti-PGAM1 activity, while yellow regions represent sterically unfavored regions. Blue regions show where positive groups are beneficial for increasing anti-
PGAM1 acitivity, and red regions show where negative groups are favored.

Frontiers in Pharmacology | www.frontiersin.org November 2021 | Volume 12 | Article 76435112

Wang et al. QSAR Study of PGAM1 Inhibitors

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Molecular Docking Analysis
The molecular docking method was employed to interpret the
3D-QSAR result and study the structural basis between PGAM1
and inhibitors. First, the reliability of the glide docking algorithm
with the SP mode was evaluated by redocking analysis. It can be
seen from Figure 6 that the redocking conformations of the
molecule are well superimposed with the initial structure in
PGAM1 protein. The RMSD value between docking
conformation and native conformation is 0.005Å. The results
suggest that the glide algorithm exhibits a good performance for
the PGAM1 protein, which can reproduce the binding pose of the
native ligand. Subsequently, all chemicals were docked into the
binding site of PGAM1. However, we discover that the docking
scores of these compounds are not correlated with the inhibitory
activity, and the r2 of pIC50 vs. the docking score is 0.051, which
demonstrates the fact that glide docking is not appropriate for all
compounds. We speculate that one of the most important reasons
is that 3-PG plays an important role in the process of compounds
binding to PGAM1, and the glide scoring function currently used
is not suitable for this system. In addition, because PGAM1
catalyzes the conversion of 3-PG to 2-PG in the physiological
process, the current docking simulation methods cannot
completely simulate this process. Therefore, the docking score
and activity do not show a correlation.

Molecular Dynamics Simulations
In order to further analyze the atomic details of the interaction
between small molecules and PGAM1, molecular dynamics
simulations were employed based on the co-crystal complex of
compounds 23 (PDB ID: 5Y35) and 49 (PDB ID: 6ISN) using
Amber 16, respectively. 50 ns simulation was performed for each
complex. The RMSD plots of Cα, residues within the range of
ligand 5Å, ligand, and 3-PG for complexes were shown in
Figure 7. By monitoring the fluctuation of RMSDs, it can be
found that the RMSD fluctuation of each system after 20 ns are all
within the range of 2Å. Moreover, the fluctuation of binding free
energy over time was also monitored. As shown in
Supplementary Figure S1, binding free energy of each system
fluctuates around 30 kcal/mol after 35 ns. In summary, these
results indicate that the two systems finally reached a stable state.

During the process of small molecules binding to PGAM1, the
hydrogen bond plays an important role as one of the most
important non-bonding interactions. In order to explore the
interaction between small molecules and PGAM1, the changes
of the hydrogen bond between each residue of PGAM1 and the
inhibitor were also monitored. The fraction of the hydrogen bond
is greater than 10% as listed in Table 4. The results show that two
hydrogen bonds formed between compounds 23 and 49 and
Arg116, and the total occupancies are 180.12% and 38.48%,

FIGURE 4 | Steric contour map (A), electrostatic contour map (B), hydrophobic contour map (C), and hydrogen bond acceptor contour map (D) of the CoMSIA
model based onmolecule 35. Green regions are sterically favored regions, while yellow regions are sterically unfavored regions. Blue regions are where electron-donating
groups are favored, and red regions are where electron-withdrawing groups are favored. The cyan regions are where the hydrophobic group is favorable to the activity,
while the white regions are where the hydrophilic group is favorable to the activity.
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respectively. The results indicate that the hydrogen bonds formed
between Arg116 of PGAM1 and inhibitors play a remarkable role
in the binding of molecules. Besides, another hydrogen bond is
also formed between compound 23 and Arg90 with the
occupancy of 12.14%. It is precisely because the small
molecules form hydrogen bonds with Arg116 and Arg90 to fix
the anthraquinone skeleton of the compounds that compounds
23 and 49 are stably binding with PGAM1.

Binding Free Energy Calculation
The binding free energy is used as a reference standard for
evaluating the activity of molecules. It is generally believed
that the lower the binding value, the more stable the complex
formed by the protein and the small molecule. To evaluate the
binding affinity of each complex, the MM/GBSA method was
performed to calculate the binding free energy of inhibitors. It can
be seen from Table 5 that the binding free energy of compounds
23 and 49 are −27.40 kcal/mol and −27.85 kcal/mol, respectively,
which are consistent with their biological activities. Among them,
van der Waals energies (ΔEvdw) are −38.68 kcal/mol and
−41.63 kcal/mol, respectively, and their values are much lower
than other energy terms, indicating that hydrophobic interaction
is the major contributor to the ligand binding process. In
addition, electrostatic energy (ΔEele) also contributes
significantly to the binding free energy, which indicates that
electrostatic interaction also plays a vital role in ligand
binding. It is worth noting that the polar contribution (ΔGGB)
is not conducive to ligand binding, which may be attributed to the
large size of the binding pocket and the exposure of the
hydrophobic ligand to the solvent.

To further confirm the key residues referred to in the ligand
binding process, MM/GBSA calculation was performed to
decompose the binding free energy into inhibitor–residue
pairs. It can be seen from Figure 8 that the primary residues
with binding free energy less than −1 kcal/mol contributing to the
ligand binding are F22, K100, V112, W115, and R116. In order to
further observe the orientation of compounds and the position of
the key residues, we extracted the average structure (see Figure 9).
It can be seen from Figure 9 that compounds 23 and 49 adopt a
similar binding pose, which is surrounded by those critical
residues. Compound 23 forms three hydrogen bonds with
R90, W115, and R116. Among the three of them, R90 and

FIGURE 5 | Structure–activity relationship diagram of anthraquinone PGAM1 inhibitors.

FIGURE 6 | Surface of PGAM1 and docking pose of the native ligand
based on the alignment. The yellow and cyan carbon atoms represent the
native ligand and the docking pose, respectively.
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R116 show higher fraction in hydrogen bond analysis, while the
bond length of W115 is 3.4 Å due to weak potency. For
compound 49, there is no hydrogen bond formed between
compound 49 and key residues, which may be due to the low
occupancy.

Design New PGAM1 Inhibitors
According to the structure–activity relationships obtained from
CoMFA and CoMSIA models, seven molecules with the
anthraquinone skeleton were designed as potential PGAM1
inhibitors by introducing new substituents at different
positions of compound 35 (see Table 6). Compounds 79 and
80 were designed by adding the hydrogen bond donor in the R6

position to form the key hydrogen bond. Compounds 81, 82, and
83 were designed by introducing the substituent in the R1 position

to increase volume. Based on the contribution of the steric and
hydrogen bond donor, compounds 84 and 85 were designed.
The pIC50 values of designed compounds were predicted by
built CoMFA and CoMSIA models. As shown in Table 6, all of
the designed compounds exhibit better inhibitory activity
targeting PGAM1 than compound 35, and the predictive
values are in accordance with the summarized
structure–activity relationships.

FIGURE 7 | Fluctuation of RMSD values for two complexes during 50 ns MD simulation.

TABLE 4 | Changes of the hydrogen bond over the MD simulations.

Complex Donor Acceptor Occupancy (%) Distance (Å) Angle (°)

PGAM1-Compound 23 Arg116@N-H Ligand@O5 75.08 2.93 152.74
Arg116@NE-H Ligand@O5 59.12 3.11 144.82
Arg116@NE-H Ligand@N1 45.92 3.24 152.12
Arg90@N-H Ligand@O1 12.24 3.12 130.43

PGAM1-Compound 49 Arg116@N-H Ligand@O1 20.20 2.96 148.26
Arg116@NE-H Ligand@O1 18.28 3.05 147.35

TABLE 5 | Calculated binding energy (kcal/mol) of inhibitor binding to PGAM1.

Terms PGAM1-Compound 23 PGAM1-Compound 49

ΔEele −26.51 ± 7.59 −20.76 ± 6.23
ΔEvdw −38.68 ± 2.92 −41.63 ± 3.31
ΔGgas −65.19 ± 8.35 −62.39 ± 8.01
ΔGGB 41.62 ± 5.97 38.35 ± 5.21
ΔGGBSUR −3.82 ± 0.16 −3.81 ± 0.15
ΔGsol 37.79 ± 5.91 34.55 ± 5.14
ΔGbind −27.40 ± 4.21 −27.85 ± 3.68

ΔGgas � ΔEele + ΔEvdw.
ΔGsol � ΔGGB + ΔGGBSUR.
ΔGbind � ΔGgas + ΔGsol.

FIGURE 8 | Binding free energy decomposition plots for the two
systems.
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CONCLUSION

In the present study, a combined strategy of 3D-QSAR, molecular
docking, and molecular dynamics simulations was applied to
explore the structure–activity relationships of anthraquinone
analogs. The built CoMFA (q2 � 0.81, r2 � 0.97, r2m � 0.78,
r2pred � 0.89) andCoMSIA (q2� 0.82, r2� 0.96, r2m � 0.79, r2pred � 0.89)

models have achieved satisfactory results in terms of the statistical
results. The results show that the built models have good internal
and external predictive power. The acquired contour maps
elaborate the structure–activity relationships of anthraquinone
derivatives and successfully predict the activity of the test set.
According to the results of contour maps, the introduction of
hydrogen bond donors in Region A, the group with a large

TABLE 6 | Newly designed PGAM1 inhibitors and the corresponding predicted activity value.

Number R1 R2 R3 R4 R5 R6 X CoMFA CoMSIA

79 OH H H H OH -C�O 7.07 7.03

80 OH H H H NH2 -C�O 7.05 6.99

81 OH H H H H -C�O 7.16 6.83

82 OH H H H H -C�O 7.14 7.07

83 OH H H H H -C�O 7.10 7.03

84 OH H H H OH -C�O 7.14 6.85

85 OH H H H OH -C�O 7.13 7.00

FIGURE 9 | Average structures of PGAM1with compounds 23 (A) and 49 (B). The bonds of residues and ligands are represented in stick, and the carbon atoms of
compound 23, compound 49, and residues are represented in yellow, cyan, and white, respectively. The red dotted line represents the hydrogen bond.
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space in Region B, the hydrophilic group in Region C, and the group
with a small space in Region D could improve the activity of the
compounds. The calculated results of binding free energy suggest
that van derWaals interaction is the major contributor to the ligand
binding process. The decomposition binding free energy and
hydrogen bond show that small molecules with the
anthraquinone core mainly interact with F22, R90, K100, V112,
W115, and R116 of PGAM1. Based on these findings, 7 new
compounds with the anthraquinone core were designed, and the
predicted results show that all of the designed compounds exhibit
great inhibitory activity against PGAM1. The constructed 3D-
QSAR model will provide theoretical guidance for improving the
activity of anthraquinone derivatives and help to develop inhibitors
with potent anti-PGAM1 activity.
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