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Abstract

Spatial heterogeneity and long-distance translocation (LDT) play important roles in the spatio-

temporal dynamics and management of emerging infectious diseases and invasive species. We

assessed the influence of LDT events on the invasive spread of raccoon rabies through Connecticut.

We identified several putative LDT events, and developed a network-model to evaluate whether they

became new foci for epidemic spread. LDTwas fairly common, but many of the LDTs were isolated

events that did not spread. Two putative LDT events did appear to become nascent foci that affected

the epidemic in surrounding townships.

In evaluating the role of LDT, we simultaneously revisited the problem of spatial heterogeneity.

The spread of raccoon rabies is associated with forest cover—rabies moves up to three-times slower

through the most heavily forested townships compared with those with less forestation. Forestation

also modified the effect of rivers. In the best overall model, rabies did not cross the river separating

townships that were heavily forested, and the spread slowed substantially between townships that

were lightly forested. Our results suggest that spatial heterogeneity can be used to enhance the effects

of rabies control by focusing vaccine bait distribution along rivers in lightly forested areas. LDT

events are a concern, but this analysis suggests that at a local scale they can be isolated and managed.
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1. Introduction

Infectious disease epidemics, like human history or evolutionary history, are historically

contingent processes—early events have a strong influence on later ones. Invasive

epidemics are particularly sensitive to rare events that introduce infectious agents into

naive populations such as through host species shifts or long-distance translocation (LDT)

of infected hosts (Mollison, 1986). The introduction of West Nile virus into New York City

(Lanciotti et al., 1999) and Severe Acute Respiratory Syndrome (SARS) coronavirus

throughout Asia and into several additional countries including Canada (Berger et al.,

2004), provide unambiguous demonstrations of the significance of LDTs in transforming

regional health concerns into pandemic threats. Spatial heterogeneity also plays an

important role in the spatio-temporal dynamics and management of emerging infectious

diseases and invasive species. Local spread across space is typically characterized as a

travelling wave, with a well-defined front generated by local transmission or dispersal.

Heterogeneity in the distribution of hosts or habitats warps the shape of the invasive front

(Murray et al., 1986). An invasive front may fail to propagate through areas with low host

population density. In other cases, the invasive front may be blocked by landscape features,

such as rivers or mountain ranges (Smith et al., 2002; Russell et al., 2004; Lucey et al.,

2002), in which case the front may stall or find another route across a landscape. An

invasion can leap across bad habitat or barriers by rare, but important, LDTevents that may

occur through atypical dispersal modes. These LDT events minimize the delay in spread

caused by spatial heterogeneity.

The combined effects of spatial heterogeneity and LDT generate a complicated history

of geographical spread. Here, we analyze the geographical spread of the initial wave of a

raccoon rabies epidemic in Connecticut. This epidemic was part of a larger, ongoing

epidemic that began in 1977 near the border between Virginia and West Virginia (Nettles,

1979). Earlier analysis suggested that LDT events were relatively common in Connecticut

(Smith et al., 2002).

The epidemic spread of rabies has been a useful system for understanding the spatio-

temporal dynamics of infectious agents. Early approaches to understanding the red fox

rabies epidemic in post-WWII Europe focused on using reaction-diffusion systems of

coupled partial differential equations, including terms for heterogeneity in the density of

foxes (Murray et al., 1986; Mollison, 1991; Shigesada and Kawasaki, 1997). On

homogeneous landscapes, these models predict that an epidemic front will move at a linear

rate away from the point of origin in concentric circles. Stochastic models generate

different predictions about the rate of spread and the coherent shape of the front (Mollison,

1991). In stochastic models, rare LDT events can generate nascent foci well in advance of

an epidemic front—stochastic simulation models produce such patterns when the

frequency of LDT is high enough, or in other words, if the dispersal kernel has a suitably fat

tail (Lewis and Pacala, 2000). Given a stochastic model, it is possible to predict the

frequency of LDT events, the distribution of their location relative to a front, and their

effect on the shape of the front. On the other hand, the location of nascent foci is

unpredictable. Moreover, many LDT events may establish nascent foci, followed by

stochastic fade-out. Such events may provide information about the frequency of LDT, but

failed foci are unimportant, historically, because they did not initiate sustained spread.
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Stochastic modeling approaches have been difficult to apply to raccoon rabies

surveillance data for several reasons. Usually, no comprehensive map of raccoon density

exists before the epidemic. By way of contrast, maps for the density of foxes in the UK

were used to make projections and establish management plans for a potential epidemic,

but fox rabies has never been introduced there, so the model remains un-validated (Murray

et al., 1986). The most detailed data available are from Connecticut and New York for

which the location of raccoons was recorded by township. Of course, townships are defined

politically and rarely describe relevant ecological boundaries. Thus, even if fine-scale

spatial heterogeneity were important, the data contain no information about it.

Nevertheless, townships may be considered as distinct habitat patches, and mathematical

models for the spread of rabies along the networks defined by the adjacency of townships

have been developed (Smith et al., 2002; Russell et al., 2004). Thus, mathematical models

for the spread of rabies could be applied to these patch-based models as if they were a meta-

population (Hanski, 1999). Using these network models in an exploratory data analysis, we

have asked different questions. Given the observed spatio-temporal record of rabies cases,

which putative LDT events influenced the time-course of the epidemic by initiating new

foci of infection beyond the advancing front? Of equal interest, which putative LDTs were

the result of ‘‘failed’’ introductions that did not initiate new epidemic foci or were ‘‘false’’

LDTs, possibly resulting frommis-classification due to false positive diagnoses of rabies at

laboratories conducting testing? False positives in rabies testing, or test results that cannot

be confirmed by multiple laboratories testing the same sample, are not uncommon

(McQuiston et al., 2001; CDC, 2002). Finally, real epidemics may have continued

generating cases that were undetected by surveillance.

In this paper, we identify several putative LDT events, and use the network model to

assess the importance of these events on the time course of the Connecticut epidemic. The

purpose of this modeling exercise was to find associations between heterogeneous

landscape features in Connecticut and the rate of rabies spread, while simultaneously

identifying and correcting for the distortions caused by LDT events.

2. Methods

2.1. Data

Raccoon-variant rabies virus was first detected in the township of Ridgefield,

Connecticut in April 1991. In the subsequent 48 months, at least one case of raccoon rabies

was detected in 168 of Connecticut’s 169 townships; no case was ever recorded from

Waterford township. More detailed descriptions of the data are provided elsewhere (Wilson

et al., 1997; Lucey et al., 2002). When the first case was detected in a township, that

township was considered ‘‘infected.’’ For most townships, several cases were reported in

the months following the first case. We restricted our analysis to the cases observed in the

36 months following the first reported case, after which the natural rate of wave front

spread masked our ability to discern LDTs. For modeling purposes, we let Oi denote the

number of months elapsed from the first observed case in Ridgefield and the first observed

case in the ith township. To compute the distances between townships, we used the
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township’s centroid, projected onto the plane. Let di,j denote the distance between the

centroids of townships i and j. We also defined the adjacency matrix among the 169

townships; two townships were said to be adjacent if they shared a common border at any

point. The adjacency matrix was generated by visual inspection of a map of Connecticut.

By inspection, we also identified townships that were separated from one another by a river

or other large body of water.

The adjacency relationship defines a network,Nwhich was used to model the spread. A

useful concept from network theory is the number of ‘‘degrees of separation,’’ an integer

number that describes the minimum number of edges that must be crossed to reach one

township from another. If two townships are adjacent, they are said to be separated by 1

degree of separation (DoS = 1).

2.2. Linear regression

A simple linear regression was developed to have a familiar example to compare with

the less familiar network distance analysis that follows. We regressed Oi on the distance to

Ridgefield (di,R). The intercept was forced through zero because we were interested in

estimating the rate of spread with respect to the time and place of the first detected case.

The regression equation was:

Oi ¼ bdi;R þ ei
where the ei are the residual errors. Since the observations were recorded month by month,

and distance was measured in kilometers, 1/b represents the rate of spread, in kilometers

per month.

2.3. Network distance model

We modeled the time to appearance of rabies in each township assuming that rabies

spreads among adjacent townships. Distance on heterogeneous landscapes is a difficult

concept. For example, the shortest path between two points on opposite sides of a lake is

different for a bird that flies across it, and a humanwhowalks around it.We circumvented this

problem by transforming Connecticut’s continuous landscape into an adjacency network,N
(for an introduction to networks, see Watts, 1999) (Fig. 1a). Each township was represented

by a vertex in a weighted graph. Each pair of adjacent townships was connected by a pair of

directed edges. The weight assigned to each edge was denoted ti,j, where:

(1) ti,j = di,j/li,j is interpreted as the expected time, in months, to reach township j directly

from township i;

(2) di,j is the distance, in kilometers, between the two townships’ centroids;

(3) li,j is interpreted as the rate of spread from i to j, in kilometers per month.

An algorithm computes the times to appearance, Ti, as a function of the adjacency

network, N, the set of pairwise distances, di,j, and a set of rates li,j:

Oi ¼ Tiðli; jÞ þ ei
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The best fit was the least sum of squared errors, LSS ¼ Sie2i . The parameters that

minimized the LSS were found using the Metropolis algorithm, and software written

by the author (DLS, available upon request).

The algorithm to compute the times to appearance proceeded by sequentially

identifying the next township to become infected (Fig. 1a). This was done by finding the

index j of an uninfected township that minimized Tj = Tk + tk,j, where k ranged over all the

infected townships, and j ranged over the uninfected townships adjacent to each infected

township k. The township was declared ‘‘infected’’ at the time to infection, Tj. The

algorithm is equivalent to driving cars away from each infected township, k, leaving each

township at the moment it became infected, Tk, driving along the edge at a constant speed,

lk,j, and recording which uninfected township, j, was first reached by one of these cars. The

algorithm was repeated until all the townships became infected.

Thus, the rates of spread, li,j, could take any value, independent of the rates in the

surrounding townships. In contrast, the times to arrival, Tk, depend on the rates, li,j, and the

network structure, and (as a result) they are highly spatially-correlated.
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Fig. 1. (a) A network distance model of rabies spread in Connecticut. The townships are the vertices of a graph

(circles) and rabies may spread, at different rates, along the edges that connect the vertices. Infected townships

(filled) and uninfected township (thick, open). (b) A spatial display of the network and putative LDT events. The

edges for townships separated by a river are colored blue.



The ‘‘boundary conditions’’ describe the set of townships that were ‘‘forced’’ rather than

fitted; forced townships initialize the process and become infected at the time when the first

case was actually observed, regardless of the algorithm. Initially, only Ridgefield was used

to ‘‘force’’ the epidemic. Later, other townships that were identified as putative long

distance translocation events were used to ‘‘force’’ the epidemic. To compare models with

different boundary conditions, we computed the LSS omitting any township in the

boundary conditions of either model.

Each fitted model consisted of a set of simple rules for generating the rates of spread, li,j,

as a function of heterogeneous environmental variables. We explored four models.

(1) Homogeneous: the homogeneous model fitted a constant rate of spread; li,j = a.

(2) Rivers: this model had two parameters. If two townships were separated by a river, then

li,j = b; otherwise li,j = a.

(3) Forest: in this model, the rate of spread was linearly proportional to the percent forest

in the jth township, Fj. Since it is absurd for a rate to be negative, the rule returned a

minimum rate of 0, li,j = max (a(1 + rFj), 0). If the rate was zero, rabies would never

move directly from one township to another, although it might reach one township

following an alternative path through other townships.

(4) Rivers and forest: in the maximally complicated model, we fitted different linear

functions of percent forest cover, depending on whether the townships were separated

by a river or not: li,j = max (b(1 + gFj), 0) if separated by a river; otherwise li,j = max

(a(1 + rFj), 0).

To further clarify the differences between the linear regression model and the network

distance model, consider that the regression model corresponds to a homogeneous network

model based on a network connecting each township directly to Ridgefield and a constant

rate of spread along this network. In contrast, the homogeneous network model also has a

constant rate of spread, but now over the adjacency network, rather than directly from

Ridgefield.

2.4. Putative long-distance translocation events

We identified two sets of putative LDTevents. The first set identified townships in which

rabies had not yet been documented among any adjacent townships (DoS = 1) and the

second set included only those when the infected township was farther removed

(0 < DoS � 2) from the nearest infected neighbor. We focused analysis on this second set

(locations shown in Fig. 1b).

We developed several tests for identifying ‘‘false foci,’’ defined as those cases that did

not seem to be associated with other rabies cases in the area. These apparently false foci

included real LDTs that did not initiate new foci but were followed by stochastic fade-out

and those due to possible laboratory misclassification.

Several simple metrics were used to evaluate and classify the type of LDT. The first

compared the intra-township lag between the date of the putative LDT and the date of the

second report of a rabid raccoon. Second, the intra-township lag between the putative LDT

was compared to the median date of the summed total of rabid raccoons reported from the
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county over the 36-month study interval. Third, the inter-township lag was the time

between the date of the putative LDT in a township and the date of the first rabid raccoon

detected in adjacent townships where DoS = 1.

The importance of each putative LDT event was then evaluated using the network

distance model by including the affected township as a boundary condition and forcing

epidemic spread from each potential new focus. Using the network distance model, the

LDT event was judged to be a ‘‘real’’ focus if it improved the model fit, compared to the

same model omitting the township from the boundary.

We classified the putative LDT events into focus types. A single isolated case was

considered a false positive or a failed introduction. Two isolated cases were considered a

failed introduction. The epidemic was considered local if no cases were detected in

subsequent months in the surrounding townships. For putative foci, the first case was

followed immediately by other cases within the township and in surrounding townships.

We also report the total number of cases recorded from a township. The more cases that

were reported, the more information that was available about the rabies epidemic within

that township. Hence, we can have more confidence about the conclusions from those

townships that reported more cases.

3. Results

By linear regression, the rate of wave front spread was 3.3 km/month. The adjusted R2

was 0.94 ( p < 0.001). The residuals from the linear regression (Fig. 2a) and the spatial

distribution of the residuals (Fig. 2b) are shown. The residuals are clearly correlated

spatially, and indicate the clumping of like-residuals consistent with the expected effect of

LDTs or local heterogeneities influencing wave front spread.

3.1. Model fitting

The best-fit homogeneous network distance model was nearly identical to the simple

linear regression; the fitted rate of spreadwas 3.5 km/month.However, network distances are

slightly longer and slightly distorted relative to the actual geographic distances. The residual

variance was slightly lower but the improvement should be regarded as an artifact of the

distortions, an unfortunate but unavoidable consequence of using a network distance model.

Table 1 reports the best-fit parameters for each of the four network distance models and

the associated measure of fit, LSS. These fits used the first reported case for most

townships, but the second reported case from Putnam and Bridgewater because the first
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Table 1

The parameter values for the LSS best fit, and the LSS

Model
ffiffiffiffiffiffiffiffiffi

LSS
p

a b

Homogeneous 80.2 3.5 –

Rivers 70.1 4.5 0.92

Forest 78.6 5.4–4.5F –

Rivers + forest 66.3 8.2–8.4F 0.97–1.4F



case was judged to be a failed, or false, foci by every criterion (see below). The Rivers and

Forest model provided the best fit. The improvement in the minimized LSS criterion over

the simpler models was large, even considering the addition of one or two additional model

parameters. In addition, the subsequent relative improvement in LSS provided insight into

the respective roles played by rivers and forest cover. Specifically, the model incorporating

rivers (one additional parameter) resulted in a 24% improvement to LSS, and subsequently

adding forest cover resulted in an additional 20% improvement (twice as much as the

relative improvement of adding forest cover alone).

The best overall model combined rivers, forest cover, and two additional foci in

Branford and Plainfield, forced as boundary conditions (see below). Unobstructed spread

occurred at the rate 7.1 km/month. Over the range of percent forest cover observed for

Connecticut townships, the predicted rate of spread between two townships that were not

separated by rivers varied by a factor of 3. Spread between townships obstructed by a river

occurred at the rate 6.3 km/month. The models predicted that rabies would not cross a river

in townships with more than 12% forestation. In the lightly forested townships (around 5%

D.L. Smith et al. / Preventive Veterinary Medicine 71 (2005) 225–240232

Fig. 2. (a) The residual errors (triangles) from the linear regression analysis. (b) The spatial distribution of the

residuals, and the expected location of the front (gray). Regions where the epidemic arrived earlier (orange,

upward pointing triangles) or later (purple, downward pointing triangles) than predicted by the model are shown.



forest cover), rivers slowed transmission by a factor of 2. Thus, the model identified only

five places where rabies could cross the rivers. The fastest rate of river crossing was 3.6 km/

month in two townships with around 5% forestation.

To interpret and visualize these results, we plotted the rate of spread from the best

overall model (Fig. 3a). First, we generated the predicted rate of unobstructed spread for

each township and plotted a smoothed surface (using the X–Y coordinates of the centroids

and the ‘‘akima package’’ from R (R Development Core Team, 2004). Second, we plotted

the adjacency matrix, varying the thickness of the edge so that it was proportional to the

rate of spread (Fig. 3b). Notably, those edges with forest cover that exceeded 12% were not

plotted because the model predicted rabies would never cross there.

The best overall model predicted a different epidemic than the homogeneous model (not

shown, but compare the concentric circles in Fig. 2b to the contours in Fig. 4a. Notably, the

Rivers and Forest model predicted the epidemic would arrive later in the south of the state,

on the east side of the rivers, but earlier in the north (Fig. 4c). The difference between the

best overall model and the homogeneous model is similar to the map of residual errors from

the homogeneous model (not shown, but very similar to (Fig. 2b), indicating an

improvement in local model fit over the homogeneous and linear regression models. Also

note that the residual errors from the best-overall model (Fig. 4d) are not as strongly

clustered as the residual errors from the linear regression (compare Fig. 2b and Fig. 4d).
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(yellow) and slowest (blue). (b) The adjacency matrix from the best fitting model. The thickness of the edge is

proportional to the rate of spread.



Taken together, the regression model suggests a broad linear rate of spread as the wave of

infection swept the state. The network models capture the same general pattern with local

improvements in fit capturing spatial heterogeneities in spread.

3.2. Putative long-distance translocation events

The putative LDTevents identified using a neighborhood defined by a DoS = 1 included

25 townships, in addition to Ridgefield. Using a larger neighborhood (DoS = 1 or 2), 7

putative LDT events were identified: Bridgewater, Greenwich, South Windsor, Clinton,

Putnam, Branford, and Groton. When analyzing these putative events, we omitted

Greenwich because it is near New York City and it likely was associated with the same

epidemic focus that sparked the epidemic in Ridgefield. When the remaining six histories

were examined in more detail (discussed below), the first cases in Putnam and Bridgewater

were classified as false/failed LDTs due to the long lag between the first case and
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Fig. 4. (a) A smoothed map of the time to appearance of rabies generated by the best overall network model. (b)

The reconstructed path of rabies spread. The orange cluster was associated with the LDTevent in Branford, and the

purple cluster was associated with the LDT event in Plainfield. (c) The difference in the predictions made by the

homogeneous model and the Rivers and Forest model forced by Ridgefield, Branford and Plainfield (filled black

circles). Note that rivers slow the appearance in the south behind the rivers (the purple differences) and speed it up

in the north (the orange differences), similar to the map of residual errors from the linear regression Fig. 2d. A

spatial plot of the residual errors from the best overall model. Purple, downward pointing triangles are townships

where rabies was observed later than predicted by the model, and orange upward pointing triangles are townships

where rabies was detected earlier than predicted.



subsequent cases (Table 2 ). After removing these isolated cases, Union and Plainfield were

identified as putative LDT events. The number of reported rabid raccoons from each of the

townships classified as putative LDTs (locations shown in (Fig. 1b) and those townships

that were immediately adjacent (Fig. 5) clearly demonstrate where neighborhoods are

influenced by early dates of detection and rabid raccoons in individual townships; these

findings are discussed in detail below. The summary statistics are reported in Table 2, and

the graphs in Fig. 5.

3.2.1. Bridgewater

The first of six cases occurred 2 months after Ridgefield followed by a 10 month lag. By

that time, several of Bridgewater’s neighbors had become infected.

3.2.2. South Windsor

There were 22 reported cases. None of South Windsor’s neighbors (DoS = 1) become

infected until Manchester, 8 months later, and Glastonbury 6 months after that.

3.2.3. Clinton

All four rabid raccoons were reported within a few months, and spread to surrounding

townships.

3.2.4. Putnam

The first of 11 cases was followed by a gap of 2 years before the second rabid raccoon

followed shortly by nine more cases. The lag to a second rabies case was the longest among

townships.

3.2.5. Branford

Branford township is separated by three degrees from Clinton (Fig. 2b), but two cases

were observed in the month after Clinton’s first case; these were followed by a large cluster

of cases.
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Table 2

Statistics summarizing the number of cases following the first reported case, including the number of months

elapsed between the first case and the second case within the township (2nd), the median case within the township

(Med), and the first case in a neighbor (N)

Township 1st case Lag to 2nd Rank Lag to Med Rank Lag to N Rank Total cases

Bridgewater 2 10 3rd 11.5 4th 6 5th 6

South Windsor 11 1 – 6 – 8 4th 22

Clinton 15 3 – 4 – 3 – 4

Putnam 15 24 1st 29 1st 21 1st 11

Brantford 16 0 – 5.5 – 1 – 28

Gordon 34 1 – 5 – 11 3rd 36

Union* 16 1 – 12 2nd 18 2nd 20

Plainfield* 36 3 – 4 – 1 – 11

The rank of the statistic among all townships is reported if it was in the top 5. The focus type summarizes these

measures (see text). Two additional putative LDT events (*) were identified and evaluated after concluding that

Putnam was a false focus.



3.2.6. Groton

There were 36 reported rabid raccoons but none of the townships in the neighborhood

(Dos = 1) became infected for 11 months.

3.2.7. Union

There were two rabid raccoons reported in consecutive months followed by a 12 month

gap before a cluster of cases occurred. The first two cases were assumed to be related to a

failed LDT, while the subsequent cases were assumed to be associated with the advance of

the wave front.

3.2.8. Plainfield

The first reported rabid raccoon was followed by a cluster of cases in Plainfield and in

the surrounding townships.

3.3. The influence of LDT events

To assess the influence of the putative LDTs (Table 2) on the epidemic spread of raccoon

rabies, each of 6 LDTs (omitting Putnam and Bridgewater) was initially forced as a
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Fig. 5. A plot of the reported cases in the 3 years after the first case (black) and all the reported cases in the

neighborhood (gray) using a degree of separation of 1 or less (DoS � 1) for each of the putative long-distance

translocation events.



boundary condition separately, and the resulting percent change in the LSS using the Rivers

and Forest model (omitting the boundary townships) was considered; LDTs either

improved (positive percentages) or decreased the overall model fit (Table 3).

We repeated the fitting, forcing the epidemic through boundary conditions which

included Branford and the other townships which had initially been considered separately.

Other combinations of LDT events were tested (results not reported), but no other

combination of boundary conditions improved the model fit. Only the inclusion of

Plainfield Township in combination with Branford Township improved the fit of the overall

Rivers and Forest model. Note that no question of parsimony is involved in comparing two

models with different boundary conditions; the models use the same number of parameters

and are compared based on their fit to the same data.

The Rivers and Forest model, with foci at Ridgefield, Branford, and Plainfield

produced the best overall fit (see Fig. 4a). Using this model, we generated the most

likely path of raccoon rabies spread, a best ‘‘historical reconstruction’’ of the epidemic,

including the extent of the epidemic surrounding Branford and Plainfield (Fig. 4b).

This historical reconstruction also serves as a putative phylogeny for rabies in Connecticut

during the initial wave, a phylogeny that could be tested in theory with molecular

data.

4. Discussion

Our analyses demonstrated the impact of spatial heterogeneities on the spread of rabies

in Connecticut by considering the additional effect of percent forest cover on the

previously described river effect (Smith et al., 2002). Most importantly, we developed a

method for systematically identifying putative LDT events, classifying these early reports,

and evaluating and quantifying their impact as nascent foci for rabies spread beyond the

wave front using a network model. The network model has inherent advantages over

regression analysis because the spread on networks mimics the underlying process, and

networks can represent arbitrary distributions of heterogeneous habitat variables and

complex landscape features (Lucey et al., 2002). In classifying these early cases, we

developed multiple, rigorous criteria for weighing other cases within the township and in
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Table 3

The best-fit parameter values for Rivers and Forest model forced by Ridgefield and six townships that were

identified as putative LDT events

Township �D (%) a b

South Windsor �58 4.1–4.0F 1.1–10.8F

Clinton 1.4 8.8–9.8F 1.7–9.9F

Branford 5.6 8.4–9.2F 1.9–11.2F

Groton 2.7 8.0–8.4F 1.4–4.7F

Union �49 7.2–8.7F 1.7–0.5F

Plainfield 1.3 7.2–8.7F 1.7–0.5F

–D is the percent improvement in the LSS over the Rivers and Forest forced only by Ridgefield, where the LSS for

both models is computed without the forced townships.



surrounding townships. In quantifying the impact, we have also developed a method for

reconstructing the historical path of an invasive species.

We confirmed the importance of spatial heterogeneity in the epidemic of raccoon rabies

in Connecticut (Smith et al., 2002). Using the network distance model, we found a five-fold

slowing effect associated with rivers, consistent with earlier findings of a factor of 7 (Smith

et al., 2002). Notably, we found a new, three-fold difference in the overland rate of spread

associated with the percent of forest cover in a township. Moreover, the slowing effect of

rivers was strongly modified by the amount of forest cover. In lightly forested areas, the rate

of rabies spread between townships separated by a river was a factor of 2 slower. In heavily

forested areas, the models predicted that rabies would never cross rivers, a much stronger

effect than previously estimated. The impact of human populations was also investigated

(results not shown); human population density was strongly negatively correlated with

forest cover, but forest cover consistently provided a better fit than human population

density.

The effect of long-distance translocation within Connecticut was limited. Eight

putative LDT events were identified in Connecticut in the townships of Putnam,

Bridgewater, South Windsor, Union, Clinton, Groton, Branford, and Plainfield. Two

other townships, South Windsor and Groton were associated with local epidemics that

did not spread. Only Branford had a strong influence, becoming a new focus of epidemic

spread to the local neighborhood. A secondary, minor focus was identified with a

putative LDT event in Plainfield. Even these two nascent foci that spread to surrounding

townships had a limited impact, as they occurred fairly close to the advancing wave

front.

Despite the limited impact of LDT in Connecticut, a relatively small state, long-distance

translocation has clearly played an important role in the spread of raccoon rabies to the

mid-Atlantic states and the subsequent epidemic spread of raccoon rabies through the New

England states. This raccoon rabies epidemic is unprecedented in size and scope, spreading

north through Connecticut and to the border of Canada, and east to Ohio (Hanlon and

Rupprecht, 1998; MMWR, 1999; Krebs et al., 2001). A long-distance translocation event

from Florida most likely initiated the epidemic near the border between West Virginia and

Virgina (Nettles, 1979). Moreover, the raccoon rabies epidemic in Connecticut was

initiated by a long-distance translocation event in southeastern New York (Russell et al.,

2004). Therefore, the scale at which these events are explored and defined are decisive

when considering their overall impact on epidemics.

LDT events are usually generated by a different process than local dispersal, and may

allow the epidemic to cross barriers to local dispersal or areas of poor habitat. Such events,

when viewed at smaller spatial scales, obscure the effects of heterogeneity and make the

landscape seem more homogeneous. For example, a LDT event in Branford allowed rabies

to jump the Housatonic river; by forcing the epidemic in Branford, we found a stronger

effect associated with forest cover compared with the analogous model unforced by

Branford. Another LDT event allowed rabies to jump the Housatonic river and the

Connecticut river into South Windsor less than a year after Ridgefield, but the epidemic

failed to spread into the surrounding townships. Similar LDT events in Groton, Enfield,

Union, and Putnamwould have reduced the delay in spread caused by the Connecticut river

had they become foci of infection.
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One possible reason why there was failure to spread from nascent foci may be fine-

grained local heterogeneity. Following translocation, stochastic fade-out at the nascent foci

is more likely in areas where the reproductive rate is near or below the threshold for

establishment. In other cases, long-distance translocation events may fail to affect the time-

course of an epidemic if they occur in host populations that are isolated; thus, spatial

heterogeneity can also limit the impact of LDT events.

Some of the problems in reconstructing the historical spread of rabies through

Connecticut are due to the quality of the data that were collected through passive

surveillance. We have identified reported raccoons that were likely to be either isolated

cases or misidentifications, but problems in the data set may include more pervasive and

systematic errors such as reporting bias. On the other hand, the results here are consistent

with other studies (Smith et al., 2002) and the model fitted in Connecticut was used to hind-

cast raccoon rabies spread in New York (Russell et al., 2004).

5. Conclusion

Spatial heterogeneity and the potential for LDT of rabid raccoons should figure into the

development of management and surveillance strategies. For example, where should efforts

be focused to contain the spread of emerging infectious diseases or invasive species? Is it

possible to create a cordon sanitaire? What are the best strategies for controlling rabies

around nascent foci that have jumped even the most effective barriers by LDT? Efforts to

contain an epidemic can be enhanced by using natural barriers and areas where dispersal is

naturally slowed.Ourmodels suggest that vaccine baitsmight bemost effective at containing

the spread if distributed along river banks in lightly forested areas, those with less than 12%

forestation. But, the unanswerable questions are how effective can natural or vaccine

enhanced-barriers be and for how long canwe expect them to remain effectivewhen given the

calculus of LDTs? LDTevents were common in Connecticut, but many did not spread rabies

to other townships. LDT events remain unpredictable, but may be discovered early by good

surveillance. Our analysis suggests that such foci may be amenable to control, but the

answerable questions need to be addressed and interventions planned before events occur.
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