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Polycystic ovary syndrome (PCOS) is a common reproductive endocrine disease in
women of reproductive age. Ovarian dysfunction including abnormal steroid hormone
synthesis and follicular arrest play a vital role in PCOS pathogenesis. Hyperandrogenemia
is one of the important characteristics of PCOS. However, the mechanism of regulation
and interaction between hyperandrogenism and ovulation abnormalities are not clear. To
investigate androgen-related metabolic state in granulosa cells of PCOS patients, we
identified the transcriptome characteristics of PCOS granulosa cells by RNA-seq. Gene
ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of
differentially expressed genes (DEGs) revealed that genes enriched in lipid metabolism
pathway, fatty acid biosynthetic process and ovarian steroidogenesis pathway were
abnormally expressed in PCOS granulosa cells in comparison with that in control. There
are close interactions among these three pathways as identified by analysis of the protein-
protein interaction (PPI) network of DEGs. Furthermore, in vitro mouse follicle culture
system was established to explore the effect of high androgen and its related metabolic
dysfunction on follicular growth and ovulation. RT-qPCR results showed that follicles
cultured with dehydroepiandrosterone (DHEA) exhibited decreased expression levels of
cumulus expansion-related genes (Has2, Ptx3, Tnfaip6 and Adamts1) and oocyte
maturation-related genes (Gdf9 and Bmp15), which may be caused by impaired steroid
hormone synthesis and lipid metabolism, thus inhibited follicular development and
ovulation. Furthermore, the inhibition effect of DHEA on follicle development and
ovulation was ameliorated by flutamide, an androgen receptor (AR) antagonist,
suggesting the involvement of AR signaling. In summary, our study offers new insights
into understanding the role of androgen excess induced granulosa cell metabolic disorder
in ovarian dysfunction of PCOS patients.

Keywords: polycystic ovary syndrome, ovarian dysfunction, metabolic disorders, in vitro follicle culture,
follicular development
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INTRODUCTION

PCOS is a common reproductive endocrine disorder in women of
reproductive age. Characterized by menstrual disorder, hirsutism
and acne induced by hyperandrogenism and polycystic ovarian
morphology, PCOS affects 5–10% of women worldwide and is the
primary cause of anovulatory infertility in women of reproductive
age (1). The ovulatory disorder in women with PCOS is due to
follicular development arrest, which is associated with the disorder
of hypothalamic gonadotropin secretion and hyperandrogenic
environment in ovaries (2). However, the precise network
regulation mechanism of follicular development arrest by
hyperandrogenism remains unclear.

As an important cell type in follicular formation and
ovulation, the function of granulosa cells is closely related to
anovulation and metabolic disorder in PCOS (3–6). Mounting of
evidence supported that the disruption of follicle development
and ovulation process in PCOS is associated with granulosa cell
dysfunction. It is reported that the activation of endoplasmic
reticulum (ER) stress in granulosa cells participated in
promoting follicular atresia and anovulation in DHEA-induced
PCOS like mouse model (7). Jin et al. further explored the effect
of androgen exposure on the function of granulosa cells and
found that testosterone significantly induced ER stress and
apoptosis of ovarian granulosa cells in vitro, indicating the
negative effect of androgen-induced ER stress on follicle
development (8). In addition, Li et al. revealed a positive
correlation between serum testosterone levels and the
expression of autophagy-related genes, suggesting that
androgen excess contributed to the activation of autophagy
and apoptosis in granulosa cells, which subsequently impairs
ovarian function (9, 10). Combined, these results suggested
androgens promote apoptosis of granulosa cells in PCOS,
while the specific role and mechanism of androgens in
regulating follicular growth and ovulation remains unclear.

Metabolic disorders also play a vital role in PCOS
pathogenesis. Compared to women with regular ovulation,
anovulatory PCOS patients showed obvious dyslipidemia,
namely, increased serum cholesterol, triglycerides, and also
low-density lipoprotein (LDL) levels and decreased high-
density lipoprotein (HDL) levels (11), which were closely
related to testosterone levels. In addition, lipid metabolism
dysfunction in granulosa cells was also found to contribute to
PCOS development (12). In human granulosa cells, oxidized
low-density lipoprotein induced cell death and subsequently
contributed to ovulatory dysfunction, indicating that disorders
of lipid metabolism in granulosa cells may be implicated in
PCOS development (13). On the other hand, fatty acid levels
were proposed as the predictors of in vitro fertilization outcomes
for their bi-directional effect on granulosa cell function and
oocyte competence. However, fatty acid profiles in PCOS
serum and follicular fluid were both found to significantly
differ from that in healthy women, suggesting the important
role of granulosa cell metabolic disorders in PCOS development
(14). Intriguingly, androgen excess has long been demonstrated
to participate in the development of various metabolic disorders
in PCOS (15). However, the mechanism of how high androgen
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exposure promotes metabolic disorders in PCOS granulosa cells
remains elusive.

As the basic functional unit of the ovary, ovarian follicle
consists of oocyte and surrounding granulosa cells.
Folliculogenesis is a vital process for the production of
fertilizable and developmentally-competent oocyte, which
requires the regulation of various signals including, but not
restricted to, hormonal regulation, paracrine signals and the
bidirectional communication between oocyte and granulosa cells
(4, 16, 17). To better understand the biology and regulatory
mechanism of follicle development, various culture methods
have been established (18–21). In vitro follicle culture system
which uses alginate as the scaffold to preserve the structural
integrity and function of ovarian follicle has been established to
explore the dynamic of follicle development (22–24).
Furthermore, mature oocyte and live birth were obtained from
mouse follicles cultured in vitro (25), suggesting the superiority of
this system in mimicking folliculogenesis process in vivo. In
general, in vitro follicle culture system enables us to investigate
the biology of folliculogenesis and oocyte maturation in vitro,
which has great significance for fertility preservation and provides
an excellent in vitro model to investigate the pathophysiology of
ovulatory disorder in anovulatory diseases.

Here we performed RNA-seq analysis to comprehensively
reveal the hyperandrogenism-induced functional disorders of
PCOS granulosa cells. In vitro mouse follicle culture system was
established to examine the effect of hyperandrogenic exposure on
the function of granulosa cells and ovarian follicles, with AR
antagonist supplied to figure out the action mode of androgen.
Overall, this study provides insights into hyperandrogenism
induced abnormal follicle development in PCOS.
METHODS AND MATERIALS

Human Subjects
The study protocol was approved by the Ethics Committee of
Peking University Third Hospital according to the Council for
International Organizations of Medical Sciences. According to
the 2003 Rotterdam criteria, women with PCOS were diagnosed
when at least two of the following clinical manifestations
occurred: (1) oligo-ovulation and/or anovulation; (2) clinical
and/or biochemical hyperandrogenism; and (3) polycystic
ovaries. Cushing syndrome, thyroid disease, 21-hydroxylase
deficiency, androgen-secreting tumors, congenital adrenal
hyperplasia, and hyperprolactinemia should be excluded before
the diagnosis of PCOS. Infertile individuals with only tubal
occlusion or male azoospermia were recruited as the control
subjects. Informed consent has been signed by all participants.
The clinical characteristics of enrolled individuals are listed
in Table 1.

Human Granulosa Cell Collection
and Culture
We enrolled 6 control and 6 women with PCOS for granulosa
cell collection and RNA extraction. Both individuals in control
February 2022 | Volume 13 | Article 815968
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group and women with PCOS were on the first in vitro
fertilization cycle. Both individuals in control group and
women with PCOS were on the first in vitro fertilization cycle.
A gonadotrophin releasing hormone antagonist protocol was
applied for all donors. After 36 h of human chorionic
gonadotropin (hCG) administration, follicular fluid was
obtained from controls and PCOS women through
transvaginal ultrasound-guide follicle aspiration. As described
previously (26), human granulosa cells were separated with
density gradient centrifugation and culture in DMEM-F12
supplemented with 10% fetal bovine serum (FBS), and 1%
penicill in–streptomycin (5,000 U/ml) for 12 h, and
subsequently collected for RNA extraction.

RNA Extraction and RNA Sequencing
(RNA-seq) Analysis
Total RNA was extracted from collected human granulosa cells
with TRIzol reagent (15596018; Life Technologies) according to
the manufacturer’s protocol. Total RNA from two individuals
were mixed for RNA-seq. After RNA quantification and
qualification, a total amount of 1mg RNA per sample was used
as input material for the RNA ample preparation. Sequencing
libraries were generated using NEBNext® UltraTM RNA Library
Prep Kit for Illumina® (NEB, USA) following manufacturer’s
recommendations and index codes were added to attribute
sequences to each sample. The clustering of the index-coded
samples was performed on a cBot Cluster Generation System
using TruSeq PE Cluster Kit v3-cBot-HS (Illumia) according to
the manufacturer’s instructions. After cluster generation, the
library preparations were sequenced on an Illumina Novaseq
platform and 150 bp paired-end reads were generated. Before
data analysis, raw data (raw reads) of fastq format were firstly
processed through in-house perl scripts for quality control. In
this step, clean data (clean reads) were obtained by removing
reads containing adapter, reads containing ploy-N and low-
quality reads from raw data. At the same time, Q20, Q30, and
GC content the clean data were calculated. All the downstream
analyses were based on the clean data with high quality. As to
data analysis, raw data (raw reads) of fastq format were firstly
processed through in-house perl scripts, at the same time, Q20,
Q30, and GC content the clean data were calculated. All the
downstream analyses were based on the clean data with high
quality. Reference genome and gene model annotation files were
downloaded from genome website directly. Index of the
Frontiers in Endocrinology | www.frontiersin.org 3
reference genome was built using Hisat2 v2.0.5 and paired-end
clean reads were aligned to the reference genome using Hisat2
v2.0.5. Significant differentially expressed genes were defined by
the criteria of FDR q <0.05 and log2(FC) ≥1. Bioinformatic
analysis was performed using the OmicStudio tools at https://
www.omicstudio.cn/tool. The data presented in the study are
deposited in the GEO database, accession number GSE193123.

In Vitro Culture of Mouse Ovarian Follicles
Used for the mechanical separation of secondary follicles were 18
to 21-day-old C57BL/6J mice. Healthy follicles (intact and round
oocyte in the central of follicles, with 2–3 layers of granulosa cells
surrounded and covered with intact theca cell layer) were
selected for culturing. While atretic follicles (follicles with
darken granulosa cells) and damaged follicles (follicles with the
extrusion of oocyte or granulosa cells) were excluded at the
beginning of in vitro culture. Healthy follicles were incubated in
maintenance media (aMEM [32571036, Sigma-Aldrich] with 1%
FBS) for 1 h before encapsulation. As described previously (25,
27), each follicle was capsulated with 0.5% alginate (Sigma-
Aldrich) to maintain its architecture, and then cultured with
100 ml growth media (aMEM, 3 mg/ml BSA [B2064, Sigma-
Aldrich], 1 mg/ml bovine fetuin [F2379, Sigma-Aldrich], 10
mIU/ml recombinant follicular stimulating hormone, 5 mg/ml
insulin, 5 mg/ml transferrin, and 5 mg/ml selenium [I3146,
Sigma-Aldrich]) in 96-well plate. DHEA (10 mM; HY-14650;
Med Chem Express) was supplied into growth media to mimic
hyperandrogenic environment in PCOS ovaries, flutamide (10
mM; F9397; Sigma-Aldrich) was supplied into growth media to
block androgen receptor. Half of the growth media was changed
every 2 days and the supernatants were collected for estradiol
detection after culture. Follicles were imaged by fluorescence
microscope at each media change. The average length of two
perpendicular measurements from basal lamina to basal lamina
in ImageJ was considered as the follicle diameter.

In Vitro Maturation of Mouse
Ovarian Follicles
On the 6th day of culturing, follicles were released from alginate
beads using alginate lyase (A1603, Sigma-Aldrich) and incubated
in maturation media (aMEM with 10% FBS, 1%PS, 1.5 IU/ml
human chorionic gonadotropin, 10 ng/ml epidermal growth
factor [EGF] [PHG0311, Gibco]) for 18 h. After 18 h of
TABLE 1 | Clinical characteristics in women with and without PCOS.

Control (n = 6) PCOS (n = 6) P-value

Age (year) 30.3 ± 4.63 29.0 ± 4.94 0.6400
Body Mass Index 23.9 ± 1.72 22.7 ± 1.86 0.2658
FSH (mIU/ml) 6.35 ± 1.37 6.35 ± 1.21 0.9896
LH (mIU/ml) 3.09 ± 1.19 11.5 ± 5.77 0.0151
LH/FSH 0.48 ± 0.13 1.94 ± 1.36 0.0467
Estradiol (pmol/ml) 224.58 ± 146.89 219.5 ± 106.6 0.9468
Testosterone (nmol/L) 0.69 ± 0.03 1.90 ± 0.53 0.0026
Androstenedione (nmol/L) 5.37 ± 1.94 16.4 ± 2.71 1.95E-5
February 2022 | Volume 13 | Article
FSH, follicle-stimulating hormone; LH, luteinizing hormone. All data are expressed as the mean ± S.E.M. Data were analyzed by two-tailed Student’s t-test.
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incubation, ruptured follicles, ovulated COCs and oocytes were
imaged, and the ovulation rate was calculated by observing the
ovulation of 7 follicles. The follicular wall of ovulated follicles was
ruptured, with ovulated cumulus–oocyte-complex (COC)
around. Oocytes with first polar body extrusion were classified
as mature oocytes. Every 3 follicles were collected for RNA
extraction using RNeasy Mini Kit (74104, QIAGEN).

cDNA Synthesis and Quantitative
Real-Time PCR Analysis
cDNA was synthesized from 1,000 ng RNA using the RevertAid
First cDNA Synthesis Kit (K1622; Thermo Scientific) according
to the manufacturer’s protocols. The primers used for Real-time
qPCR are listed in Table 2. Real-time qPCR was performed in an
ABI 7500 real-time PCR system (Applied Biosystems) using
SYBR Green PCR Master Mix (Invitrogen). The relative
expression level of genes was normalized to those of 18S rRNA
in mouse and ACTIN in human.

Screening of Hub Genes
The PPI network of the STRING database was applied to reveal
the relationship between the DEGs. Then, the network
relationship file was downloaded, and the top 10 hub genes
were identified in accordance with Cytoscape 3.6.1 and its plug-
in (degrees ranking of cytoHubba).

Statistical Analysis
The data are shown as Mean ± SEM. For parametric data,
statistical analyses were carried out using SPSS version 23 by
two-tailed Student’s t-test or one-way ANOVA with Tukey’s post
hoc test and represented with GraphPad Prism version 8.0
(GraphPad Software). For nonparametric data, statistical
analyses were carried out by the two-tailed Mann–Whitney U-
test or the Kruskal–Wallis test followed by Dunn’s post hoc test. *P
<0.05, ** P <0.01, *** P <0.001; #P <0.05, ## P <0.01, ### P <0.001.
RESULTS

Identification of the Transcriptional
Landscapes of PCOS Granulosa Cells
To investigate the potential effects of hyperandrogenism on
granulosa cells from PCOS patients, we performed RNA-seq
analysis on granulosa cells using a PCOS cohort with
significantly upregulated serum testosterone and androstenedione
levels in comparison with BMI-matched individuals in control
group. The raw data of RNA-seq analysis were firstly processed for
quality control and downstream analyses were based on the clean
data with high quality. According to the heatmap, the transcripts of
PCOS granulosa cells evidently differed from that of control
(Figure 1A). In comparison with control, a total of 1,172 genes
were significantly changed in PCOS granulosa cells, of which 521
genes were upregulated and 651 genes were downregulated
respectively in PCOS granulosa cells. Genes encoding
inflammatory factors including interleukin-1beta (IL1B) and
interleukin-1alpha (IL1A) showed remarkable upregulation in
Frontiers in Endocrinology | www.frontiersin.org 4
PCOS granulosa cells; besides, the expression of arachidonate 15-
lipoxygenase (ALOX15) was also evidently upregulated. ALOX15 is
a member of the lipoxygenase family, which plays an important
TABLE 2 | Primer Sequence used in quantitative real-time PCR analysis.

Target genes Primer sequence

18S (mouse) Forward 5’-GAAACGGCTACCACATCCAAGG-3’
Reverse 5’-GCCCTCCAATGGATCCTCGTTA-3’

Cyp17a1 (mouse) Forward 5’-GCCCAAGTCAAAGACACCTAAT-3’
Reverse 5’-GTACCCAGGCGAAGAGAATAGA-3’

Cyp19a1 (mouse) Forward 5’-ATGTTCTTGGAAATGCTGAACCC-3’
Reverse 5’-AGGACCTGGTATTGAAGACGAG-3’

Amh (mouse) Forward 5’-CCACACCTCTCTCCACTGGTA-3’
Reverse 5’-GGCACAAAGGTTCAGGGGG-3’

Gdf9 (mouse) Forward 5’-TCTTAGTAGCCTTAGCTCTCAGG-3’
Reverse 5’-TGTCAGTCCCATCTACAGGCA-3’

Bmp15 (mouse) Forward 5’-TCCTTGCTGACGACCCTACAT-3’
Reverse 5’-TACCTCAGGGGATAGCCTTGG-3’

Has2 (mouse) Forward 5’-TGTGAGAGGTTTCTATGTGTCCT-3’
Reverse 5’-ACCGTACAGTCCAAATGAGAAGT-3’

Ptx3 (mouse) Forward 5’-CCTGCGATCCTGCTTTGTG-3’
Reverse 5’-GGTGGGATGAAGTCCATTGTC-3’

Adamts1 (mouse) Forward 5’-CATAACAATGCTGCTATGTGCG-3’
Reverse 5’-TGTCCGGCTGCAACTTCAG-3’

Tnfaip6 (mouse) Forward 5’-GGGATTCAAGAACGGGATCTTT-3’
Reverse 5’-TCAAATTCACATACGGCCTTGG-3’

Hmgcr (mouse) Forward 5’-AGCTTGCCCGAATTGTATGTG-3’
Reverse 5’-TCTGTTGTGAACCATGTGACTTC-3’

Fads2 (mouse) Forward 5’-GATGGCTGCAACATGACTATGG-3’
Reverse 5’-GCTGAGGCACCCTTTAAGTGG-3’

Fasn (mouse) Forward 5’-GGAGGTGGTGATAGCCGGTAT-3’
Reverse 5’-TGGGTAATCCATAGAGCCCAG-3’

Srebf1 (mouse) Forward 5’-GCAGCCACCATCTAGCCTG-3’
Reverse 5’-CAGCAGTGAGTCTGCCTTGAT-3’

Insig1 (mouse) Forward 5’-CACGACCACGTCTGGAACTAT-3’
Reverse 5’-TGAGAAGAGCACTAGGCTCCG-3’

Ldlr (mouse) Forward 5’-AGTGGCCCCGAATCATTGAC-3’
Reverse 5’-CTAACTAAACACCAGACAGAGGC-3’

Acss2 (mouse) Forward 5’-AAACACGCTCAGGGAAAATCA-3’
Reverse 5’-ACCGTAGATGTATCCCCCAGG-3’

Lss (mouse) Forward 5’-TCGTGGGGGACCCTATAAAAC-3’
Reverse 5’-CGTCCTCCGCTTGATAATAAGTC-3’

ACTB (human) forward 5’-GAGCACAGAGCCTCGCCTTT-3’
reverse 5’-TCATCATCCATGGTGAGCTGG-3’

HMGCR (human) Forward 5’-TGATTGACCTTTCCAGAGCAAG-3’
Reverse 5’-CTAAAATTGCCATTCCACGAGC-3’

FASN (human) Forward 5’-TGATTGACCTTTCCAGAGCAAG-3’
Reverse 5’-CTAAAATTGCCATTCCACGAGC-3’

SREBF1 (human) Forward 5’-CGGAACCATCTTGGCAACAGT-3’
Reverse 5’-CGCTTCTCAATGGCGTTGT-3’

SCD (human) Forward 5’-TTCCTACCTGCAAGTTCTACACC-3’
Reverse 5’-CCGAGCTTTGTAAGAGCGGT-3’

INSIG1 (human) Forward 5’-GCCTACTGTACCCCTGTATCG-3’
Reverse 5’-TGGTTAATGCCAACAAAAACTGC-3’

LDLR (human) Forward 5’-ACGGCGTCTCTTCCTATGACA-3’
Reverse 5’-CCCTTGGTATCCGCAACAGA-3’

LSS (human) Forward 5’-GTACGAGCCCGGAACATTCTT-3’
Reverse 5’-CGGCGTAGCAGTAGCTCAT-3’

SCD5 (human) Forward 5’-TGCGACGCCAAGGAAGAAAT-3’
Reverse 5’-CCTCCAGACGATGTTCTGCC-3’

FADS2 (human) Forward 5’-GACCACGGCAAGAACTCAAAG-3’
Reverse 5’-GAGGGTAGGAATCCAGCCATT-3’

ACSS2 (human) Forward 5’-AAAGGAGCAACTACCAACATCTG-3’
Reverse 5’-GCTGAACTGACACACTTGGAC-3’
February 2022 | Volume 13 | Article 815968
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role in polyunsaturated fatty acid metabolism, indicating that
metabolic disorders may have occurred in PCOS granulosa cells
(Figure 1B). To investigate the specific signaling pathway involved
in PCOS pathogenesis, we performed GO enrichment analysis and
KEGG analysis of all DEGs and found that DEGs were evidently
enriched in immune related pathways, namely, chemokine-
mediated signaling pathway and humoral immune response,
indicating the possible role of immune factors in PCOS
development. In addition, fatty acid biosynthetic process and
lipid metabolism-related pathways were also enriched in PCOS
granulosa cells (Figure 1C). Furthermore, more than one fifth of
the top 50 pathways enriched through GO analysis were metabolic
related pathways (Table 3), suggesting that the impairment of
metabolic process, especially fatty acid biosynthetic and lipid
metabolism pathways may play a vital role in promoting
granulosa cells dysfunction in PCOS. Similarly, KEGG analysis of
DEGs also suggested the misexpression of genes related to
chemokine signaling pathway in PCOS granulosa cells.
Moreover, PPAR signaling pathway were enriched in KEGG
analysis, suggesting that metabolic state in PCOS granulosa cells
evidently differed from that in control, and the enrichment of
DEGs in ovarian steroidogenesis may further support the abnormal
secretion of steroid hormones by granulosa cells in women with
Frontiers in Endocrinology | www.frontiersin.org 5
PCOS (Figure 1D). Overall, these results indicated that lipid
metabolism disorders are important characteristics of granulosa
cells in PCOS patients.

Interaction Between Metabolic Disorders
and Ovarian Steroidogenesis in PCOS
Granulosa Cells
Given the significant enrichment of DEGs in metabolic-related
pathways in PCOS granulosa cells, we further analyzed the
specific genes involved in these pathways. Among genes
involved in the regulation of lipid biosynthetic process,
APOC1, APOE, SCAP, SREBF1, and LDLR, which played a
vital role in lipid transportation and metabolism, were
significantly downregulated in PCOS patients (Figure 2A);
some of these genes were also enriched in fatty acid
biosynthetic process. ALOX15 and ALOX5AP, members of
lipoxygenases which promote oxygenation of poly-unsaturated
fatty acids and produce pro-inflammatory agents, were
upregulated in PCOS granulosa cells. Misexpression of
CYP1A1, which encodes a member of the cytochrome P450
superfamily of enzymes, also contributed to the difference in fatty
acid biosynthesis process in healthy control and women with
PCOS (Figure 2B). DEGs involving CYP11A1 and CYP19A1
A B

DC

FIGURE 1 | Identification of the transcriptional landscapes of PCOS granulosa cells. (A) Heatmap of differential expressed genes in the control and PCOS granulosa
cells. (B) Volcano plot showing transcriptomic landscapes in control and PCOS group. Significant differentially expressed genes (DEGs) were examined with padj
(adjusted p-value) < 0.05. Meanwhile, log2 fold change >1 was set as the threshold for significant differential expression. (C) GO enrichment analysis showing 15
pathways from the top 50 pathways enriched in PCOS granulosa cells; (D) KEGG pathway analysis showing the top 15 pathways involved in PCOS pathogenesis.
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were significantly enriched in ovarian steroidogenesis pathway,
and this may be related to abnormal steroid hormone synthesis
in PCOS (Figure 2C). Furthermore, the PPI network of these
pathways identified a close interaction between ovarian
steroidogenesis, lipid biosynthetic and fatty acid biosynthetic
process in PCOS granulosa cells. This network had 36 nodes and
125 interactions, indicating that abnormal ovarian
steroidogenesis was evidently correlated with lipid metabolism
and fatty acid biosynthetic process in PCOS granulosa cells
(Figure 2D). Besides, 10 hub genes, including SREBF1,
HMGCR, FASN, SCD, INSIG1, FADS2, SCD5, ACSS2, LDLR,
and LSS, were identified by Cytohubba (Figure 2E), and the RT-
qPCR result indicated the decreased expression of these 10 hub
genes, among which SREBF1, SCD, INSIG1, FADS2, ACSS2, and
LDLR were significantly decreased in granulosa cells from
women with PCOS, which was consistent with the RNA-Seq
result (Figure 2F). These results suggested that the impairment
of ovarian steroidogenesis and lipid metabolism interact and
may contribute to PCOS development.
Frontiers in Endocrinology | www.frontiersin.org 6
DHEA Impaired Mouse Follicular Growth,
Steroidogenesis and Lipid Metabolism
In Vitro
As mentioned above, granulosa cells from women with PCOS
were characterized by the disorder of ovarian steroidogenesis and
lipid metabolism, whether the dysfunction of granulosa cells may
be related to the impairment of follicle growth and ovulation in
PCOS remains unclear. To explore the effect of high androgen
exposure-induced lipid metabolism disorder on follicular
development, we established an in vitro follicle culture system
and DHEA was added to simulate the hyperandrogenic
environment in PCOS patients. We observed that in the process
of in vitro culture, separated secondary follicles in control group
gradually grew, oocytes moved to one side of the follicle, thus
forming antral in the other side of the follicles (Figure 3A). After 6
days of in vitro culture, follicle diameter could increase from 180 to
360 mm; while supplying DHEA significantly inhibited follicle
growth, as the follicles are blocked at 300 mm in diameter
(Figure 3B). In addition, steroidogenesis process was also
TABLE 3 | GO enrichment analysis of differential expressed genes (metabolic-related pathways in the top 50 GO terms).

GOID Description p-
value

padj Gene Name

GO:0006694 steroid
biosynthetic
process

1.14E
−07

3.30E
−05

IL1B/SCAP/NR1H4/SREBF1/HMGCR/FAXDC2/PRLR/TM7SF2/APOE/HSD11B2/ACOX2/CYP19A1/INSIG1/FASN/
CYP11B1/LSS/BMP6/CYP1A1/DHCR24/SCD/CYP11A1/BMP2/FDXR/CYP27B1/SCARB1/WNT4/ABCB11

GO:0019218 regulation of
steroid
metabolic
process

4.22E
−06

0.000985 IL1B/SCAP/NR1H4/APOC1/SREBF1/HMGCR/TM7SF2/APOE/EPHX2/INSIG1/FASN/LSS/BMP6/LDLR/SCD/BMP2/
CYP27B1/WNT4

GO:0010876 lipid localization 7.08E
−06

0.001505 ABCA5/IL1B/NR1H4/APOC1/ZC3H12A/IL6/LCN12/ABCA10/CLU/KCNN4/C3/SERPINA5/ATP8A2/ABCA9/
TNFAIP8L3/ATP8B3/APOE/EDN1/PRKN/SLC51A/MTTP/SPNS3/GULP1/CYP19A1/SLC27A6/SLCO1A2/
OSBPL10/PLA2G12A/FABP6/BMP6/SPNS2/LDLR/PNLIP/SCARB1/ABCA13/ABCB11/ANO9/ACSL4

GO:0050810 regulation of
steroid
biosynthetic
process

7.37E
−06

0.001505 IL1B/SCAP/NR1H4/SREBF1/HMGCR/TM7SF2/APOE/INSIG1/FASN/LSS/BMP6/SCD/BMP2/CYP27B1/WNT4

GO:0006869 lipid transport 1.23E
−05

0.002105 ABCA5/IL1B/NR1H4/APOC1/LCN12/ABCA10/CLU/KCNN4/SERPINA5/ATP8A2/ABCA9/TNFAIP8L3/ATP8B3/
APOE/EDN1/PRKN/SLC51A/MTTP/SPNS3/GULP1/CYP19A1/SLC27A6/SLCO1A2/OSBPL10/PLA2G12A/FABP6/
BMP6/SPNS2/LDLR/PNLIP/SCARB1/ABCA13/ABCB11/ANO9/ACSL4

GO:0046890 regulation of
lipid
biosynthetic
process

1.29E
−05

0.002105 IL1B/SCAP/NR1H4/APOC1/SREBF1/HMGCR/SPHK1/C3/TM7SF2/APOE/PTGS2/INSIG1/FASN/SMPD3/LSS/
BMP6/LDLR/SCD/BMP2/CYP27B1/SCARB1/WNT4/PDGFB

GO:0008202 steroid
metabolic
process

1.47E
−05

0.002328 IL1B/SCAP/NR1H4/APOC1/SREBF1/HMGCR/FAXDC2/DHRS9/PRLR/TM7SF2/APOE/HSD11B2/EPHX2/ACOX2/
CYP19A1/INSIG1/FASN/CYP11B1/LSS/BMP6/CYP1A1/DHCR24/LDLR/SCD/CYP11A1/BMP2/WWOX/FDXR/
CYP27B1/SCARB1/WNT4/ABCB11

GO:0016125 sterol
metabolic
process

2.91E
−05

0.003445 SCAP/NR1H4/APOC1/SREBF1/HMGCR/FAXDC2/TM7SF2/APOE/EPHX2/CYP19A1/INSIG1/FASN/CYP11B1/LSS/
DHCR24/LDLR/SCD/CYP11A1/FDXR/SCARB1

GO:0090181 regulation of
cholesterol
metabolic
process

3.72E
−05

0.003965 SCAP/NR1H4/SREBF1/HMGCR/TM7SF2/APOE/EPHX2/FASN/LSS/LDLR/SCD

GO:1902652 secondary
alcohol
metabolic
process

3.91E
−05

0.004082 SCAP/NR1H4/APOC1/SREBF1/HMGCR/TM7SF2/APOE/EPHX2/INSIG1/FASN/CYP11B1/LSS/DHCR24/LDLR/
SCD/CYP11A1/FDXR/CYP27B1/SCARB1

GO:0019216 regulation of
lipid metabolic
process

4.80E
−05

0.004903 IL1B/SCAP/NR1H4/APOC1/SREBF1/HMGCR/LGALS12/SPHK1/C3/TM7SF2/TNFAIP8L3/APOE/PSAPL1/PTGS2/
EPHX2/CCR7/INSIG1/CCKBR/FASN/NPAS2/PLPP1/SMPD3/LSS/BMP6/CYP1A1/SOCS1/LDLR/SCD/MTMR2/
BMP2/CYP27B1/ANKRD1/SCARB1/WNT4/EPHA8/PDGFB
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impaired by DHEA as estradiol (E2) levels in the supernatant of
DHEA-treated follicles was lower than that in control group
during 6 days of culturing (Figure 3C). E2 is an important
steroid hormone synthesized by granulosa cells in growing
follicles. It supports the development of ovarian follicles; besides,
the elevation of E2 concentrations triggers the LH surge via
positive feedback effect system, thus inducing ovulation. The
decreased E2 levels in DHEA-treated follicles may indicate the
impairment of follicle development and ovulation process. We
further explored the expression of gene associated with steroid
hormone synthesis in follicles. RT-qPCR result showed that
Cyp17a1 and Cyp19a1, genes encoding enzymes responsible for
the key step in the biosynthesis of androgen and estrogen
respectively, were evidently decreased by DHEA (Figure 3D),
indicating the impairment of steroidogenesis in DHEA-treated
follicles. Moreover, mRNA expression levels of hub genes
identified from the PPI network of lipid metabolism, fatty acid
biosynthesis and ovarian steroidogenesis were investigated in
DHEA-treated follicles. The RT-qPCR result indicated the
evident decreased expression of Lss, Insig1and Srebf1, which
Frontiers in Endocrinology | www.frontiersin.org 7
suggested the impairment of lipid metabolism in DHEA-treated
follicles and further verified that androgen excess had
metabolically harmful effect on granulosa cells (Figure 3E).
Overall, these results suggested that DHEA treatment induced
failure of ovarian steroidogenesis and lipid metabolism, whichmay
subsequently contribute to the disruption of follicle development.

Supplementation of DHEA Inhibited
Ovulation via Obstructing Cumulus
Expansion
To further investigate the effect of DHEA on ovulation, follicles
were released from alginate beads on day 6 and culture with hCG
for 18 h. After hCG treatment, we observed that the follicular
wall was ruptured, with ovulated cumulus–oocyte-complex
(COC) around the ruptured follicle; while no follicular rupture
occurred in DHEA treated follicles. We also assessed maturity of
follicular oocyte after hCG treatment in two groups. The first
polar body extrusion was observed in oocytes denuded from
ovulated COCs in control group, whereas oocyte from DHEA
group was immature oocyte with germinal vesicle (Figure 4A),
A B

D

E

F

C

FIGURE 2 | Interaction between metabolic disorders and ovarian steroidogenesis in PCOS granulosa cells. (A) Heatmap of differential expressed genes involved in
the fatty acid biosynthetic process, (B) lipid metabolism, (C) ovarian steroidogenesis in the PCOS group and control group. (D) Protein–protein interaction (PPI)
network between fatty acid biosynthetic process, lipid metabolism, and ovarian steroidogenesis. (E) Ten hub genes (SREBF1, HMGCR, FASN, SCD, INSIG1,
FADS2, SCD5, ACSS2, LDLR, and LSS) in the PPI network. (F) mRNA expression levels of 10 hub genes (SREBF1, HMGCR, FASN, SCD, INSIG1, FADS2, SCD5,
ACSS2, LDLR, and LSS) in granulosa cells from control and women with PCOS, N = 3. Data were analyzed by two-tailed Student’s t-test (F). All data are presented
as the Mean ± SEM.
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indicating the inhibition of DHEA on ovulation and oocyte
maturation. Statistical result showed that the ovulation rate in
DHEA treated follicles was significantly decreased (Figure 4B),
which was consistent with the result of morphological
observation. Ovulation is a complicated process, and the
interaction between oocyte and surrounding cumulus cells is
important for normal ovulation process. As oocyte secreted
factors, GDF9 and BMP15 act on follicular cells adjacent to
oocytes to modulate granulosa cells functions (17). GDF9 and
BMP15 levels have a positively relationship with oocyte
maturation (28). In the present study, Gdf9 and Bmp15 mRNA
levels were significantly inhibited in DHEA-treated mouse
follicles (Figure 4C). Additionally, expansion of the COC is
essential to ovulation and female fertility (29), the mRNA levels
of cumulus expansion related genes, namely, Has2, Ptx3,
Adamts1, and Tnfaip6 were all decreased in follicles treated
Frontiers in Endocrinology | www.frontiersin.org 8
with DHEA (Figure 4D), thus DHEA could inhibit ovulation
by suppressing oocyte maturation and cumulus expansion.

Flutamide Reversed DHEA-Induced
Impairment of Follicle Growth and
Ovulation Through Blocking AR
AR is considered as key mediators of androgen actions and play
an important role in the development of PCOS (30, 31). As a
competitive inhibitor of AR, flutamide exhibited therapeutic
effect on reproductive and metabolic disorders in PCOS (32).
To demonstrate the role of AR signaling in androgen excess
induced failure of follicle development and ovulation, flutamide
was supplied to DHEA-treated mouse follicles which grew
significantly slower than follicles in control group. Flutamide
evidently improved follicle growth as the follicle diameter was
significantly higher than that in DHEA-treated only group at
A

B D

E

C

FIGURE 3 | DHEA impaired mouse follicular growth and steroidogenesis in vitro. (A) Representative micrograph of mouse follicles cultured in vitro. (B) Follicle
diameters in control and DHEA group, N = 9. (C) Estradiol levels in the supernatant of control and DHEA-treated follicles, N = 3. (D) mRNA expression levels of
Cyp17a1, Cyp19a1, and Amh in follicles cultured in vitro, N = 3. (E) mRNA expression levels of Lss, Acss2, Ldlr, Insig1, Srebf1, Fasn, Fads2, and Hmgcr in follicles
cultured in vitro, N = 3. Scale bar: 100 mm. Data were analyzed by two-tailed Student’s t-test (B–E). All data are presented as the Mean ± SEM. *P < 0.05, **P < 0.01.
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days 4 and 6 (Figures 5A, B). In addition, mRNA expression
levels of Gdf9 and Bmp15 were significantly decreased in DHEA-
treated follicles, while the supply of flutamide significantly
reversed the inhibition of DHEA (Figure 5C). Furthermore,
the blockage of ovulation in follicles cultured with DHEA was
also ameliorated by flutamide. The expression of ovulation-
related genes Adamts1 and Tnfaip6 in follicles was disrupted
by DHEA, which was significantly improved by flutamide
(Figure 5D), indicating the involvement of AR signaling in
DHEA induced ovulation disorders. Overall, these results
supported that androgen excess induced impairment of follicle
growth and ovulation is AR-driven.
DISCUSSION

PCOS is a complicated reproductive and endocrine syndrome
which impairs female fertility. The interaction between
hyperandrogenism and metabolic disorders plays an important
role in PCOS pathogenesis. In the present study, we mainly focus
on the effect of androgen on metabolic dysfunction in PCOS
granulosa cells. We analyzed the transcriptome characteristics of
PCOS granulosa cells by RNA-seq analysis. The results of GO
and KEGG pathway analys is showed that ovar ian
steroidogenesis, lipid metabolism, and fatty acid biosynthetic
pathways were significantly enriched and closely interacted with
Frontiers in Endocrinology | www.frontiersin.org 9
each other in PCOS granulosa cells. To demonstrate the impact
of androgen excess induced lipid metabolism and steroidogenesis
disorders in granulosa cells on ovulatory disruption in PCOS,
mice ovarian follicles were separated and cultured in vitro with
DHEA supplementat ion . I t turns out that DHEA
supplementation inhibited follicle growth and steroid hormone
synthesis in vitro; in addition, the ovulation process and oocyte
maturation were also impaired by DHEA. Furthermore, the
blockage of AR signalling reversed the inhibition of follicle
growth and ovulation by DHEA. Combined, we have
characterized the transcriptome of PCOS granulosa cells, and
further identified the possible ovulation-inhibited effect of
altered ovarian steroidogenesis and metabolic disorders in
granulosa cells.

Reproduction is closely connected with metabolic status, as
oocyte development process requires the supplementation of
various nutrients. According to the analysis of the dynamic
metabolome profiles in oocytes during in vivo maturation, lipid
and fatty acid metabolism played a vital role in oocyte meiotic
process (5). Additionally, the bi-directional interaction between
oocyte and granulosa cells has long been proved to play a key role in
oocyte growth and maturation (4, 33), indicating the possible
correlation between granulosa cells metabolic status and oocyte
maturation, which is less investigated in previous studies. In the
present study, we compared the transcriptome of granulosa cells
from healthy women and women with PCOS, and found that
A B

DC

FIGURE 4 | Supplementation of DHEA inhibited ovulation via obstructing cumulus expansion. (A) The representative micrograph of follicles, ovulated COCs and
oocytes after 18 h of maturation. Oocyte with first polar body extrusion was classified as mature oocyte. (B) Ovulation rate of in vitro cultured follicles, N = 3. (C)
mRNA expression levels of Gdf9, Bmp15 and (D) Has2, Ptx3, Tnfaip6 and Adamts1 in follicles cultured in vitro, N = 6. Scale bar: 100 mm. Data were analyzed by
two-tailed Mann–Whitney U-test or the Kruskal–Wallis test followed by Dunn’s post hoc test (B) and two-tailed Student’s t-test (C, D). All data are presented as the
Mean ± SEM.
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metabolic process and ovarian steroidogenesis were significantly
impaired in PCOS granulosa cells throughGOandKEGGpathway
analysis. Although metabolic pathways were not ranking high, the
proportion of metabolic related pathways in top 50 GO terms were
relatively large. Lipid metabolism and fatty acid biosynthetic
process were significantly enriched in PCOS granulosa cell. More
specific roles that androgen-induced metabolic disorders played in
Frontiers in Endocrinology | www.frontiersin.org 10
granulosa cells dysfunction were further demonstrated in the PPI
network.Among the 10hub geneswe identified throughCytoscape,
the expression of 3-hydroxy-3-methylglutaryl-CoA reductase
(HMGCR), a rate-limiting enzyme catalyzing cholesterol
production, was decreased in human PCOS granulosa cells and
prenatally hyperandrogenized animals (34), which may be caused
by the feedback inhibitionof elevated androgen levels inPCOS (35).
A

B

D

C

FIGURE 5 | Flutamide reversed DHEA-induced impairment of mouse follicular growth and ovulation in vitro. (A) Representative micrograph of mouse follicles cultured
in vitro. (B) Follicle diameters in control, DHEA and DHEA + Flutamide group, N = 7. **P < 0.01, ***P < 0.001 versus Control; #P < 0.05, ###P < 0.001 versus DHEA.
(C) mRNA expression levels of Gdf9, Bmp15 and (D) Has2, Ptx3, Tnfaip6 and Adamts1 in follicles cultured in vitro, N = 3. Scale bar: 100 mm. Data were analyzed by
one-way ANOVA with Tukey’s post hoc test (B–D). All data are presented as the Mean ± SEM.
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Besides, the decline of fatty acid desaturase genes 2 (FADS2)
expression was also found in women with PCOS, which was
correlated with altered androgen levels and dyslipidemia (36).
Mediating the uptake of LDL by ovarian follicle cells, LDLR was
downregulated in PCOS granulosa cells, which is consistent with
previous studies (37, 38). In addition, lipid content in granulosa and
cumulus cells may affect likelihood of pregnancy, loss of function of
LDLR resulted in impaired lipid uptake and extracellular lipid
accumulation, thus leading to hyperlipidemia and poor fertility in
mice (39). Overall, our results showed that abnormal lipid
metabolism and fatty acid synthetic pathways were closely related
to the development of PCOS, while the specific mechanism
underlying how these metabolic disorders contributed to
ovulatory disorders in PCOS remains elusive. Actually, most of
genes involved in thesemetabolic disorders inPCOSgranulosa cells
catalyzed fatty acid biosynthesis, cholesterol synthesis and ovarian
steroidogenesis, besides, they were all downregulated under
hyperandrogenic environment (Figure 6), indicating that the
synthesis of fatty acid and cholesterol may be inhibited in PCOS
granulosa cells, which may finally contribute to the impairment of
oocyte maturation. However, there was no clue indicating changes
in the degradation offatty acid and cholesterol, the true state offatty
acid and cholesterolmetabolism in PCOS still needs to be explored.

In terms of the effect of androgen on lipid metabolism,
Abruzzese et al. established a prenatally hyperandrogenized rat
model and clarified the effect of prenatal androgen exposure on
Frontiers in Endocrinology | www.frontiersin.org 11
ovarian lipid metabolism (34). Sun et al. compared the steroid and
metabolic parameters between women with PCOS and healthy
womenand found the significantly increased serumandrogen levels
and upregulated lipid profiles in women with PCOS, which is
consistent with previous studies; besides, the cholesterol level was
also upregulated in PCOS offspring, indicating that lipid disorders,
just like hyperandrogenism and insulin resistance, is a heritable
clinical manifestation which may participated in the
pathophysiology of PCOS from fetal stage (40). These findings
suggested that abnormal lipid metabolism plays an important role
in shaping the metabolic and reproductive characteristics in
offspring of women with PCOS, in which androgen may
participated as well. Recently, Pan et al. reported the reduction of
global DNA methylation of PCOS granulosa cells in comparison
withgranulosa cells fromhealthy control,whichmaycontributed to
the abnormal expression of lipid and steroid synthesis genes for the
hypomethylation of their promoters, thus providing a new insight
into the possiblemechanism thatmediating the impact of androgen
on lipid and steroid synthesis in granulosa cells (41).

Oocyte and surrounding granulosa cells and theca cells consist
of ovarian follicle, the basic functional unit of ovary. In vitro
follicle culture system provides an opportunity for studying the
independent effect of androgen excess on follicle development
and ovulation. By adding DHEA into the in vitro culture system
of mice follicles, we found that lipid metabolism and steroid
hormone synthesis in follicles was significantly inhibited by
DHEA; additionally, the oocyte maturation-related gene
expr e s s i on was a l so downregu l a t ed a f t e r DHEA
supplementation, and also cumulus expansion-related genes.
Overall, these results indicated that lipid and fatty acid
metabolic dysfunction could impair the physiological function
of ovarian granulosa cells, which subsequently contribute to the
disruption of oocyte maturation and ovulation. During the oocyte
maturation process, beta-oxidation of fatty acid provides an
important source of ATP for maturing oocyte. Besides, 7 out of
8 enzymes catalyzing fatty acid degradation were upregulated in
oocyte meiosis (5), indicating that the increasing utilization of
fatty acid plays an important role in promoting oocyte
maturation. Furthermore, the follicular microenvironment plays
a vital role in modulating oocyte maturation and competence.
Fatty acid composition in follicular fluid and granulosa cells could
influence oocyte quality (42, 43). In the present study, we found
that genes encoding enzymes involved in fatty acid biosynthesis
were downregulated in PCOS granulosa cells, which may alter the
fatty acid profiles in granulosa cells, thus leading to insufficient
energy supply for oocyte maturation. Overall, androgen exposure
significantly influenced the metabolic status in granulosa cells
from women with PCOS and impaired follicle growth and oocyte
maturation, while the underlying molecular mechanism remains
to be explored in the future.

AR is widely expressed throughout the body and plays an
important role in the pathogenesis of PCOS (31, 44). Extra- and
intra-ovarian AR actions both contribute to PCOS development. It
is reported that DHT promoted the development of adipocytes
hypertrophy and the decrease of adiponectin levels, which was
disrupted in AR knockout mice (31). Besides, AR signaling also
plays a vital role in mediating the effect of androgen in liver lipid
FIGURE 6 | Changes of metabolic pathways in granulosa cells under high
androgen exposure. Overview of the pathways and enzymes involved in the
synthesis of fatty acids, cholesterol and ovarian steroid hormone. The enzymes
enriched in the present study are indicated in blue. TCA cycle, tricarboxylic
acid cycle; ACLY, ATP-citrate lyase; ACAT, acetyl-CoA acetyltransferase;
HMGCR, 3-hydroxy-3-methylglutaryl-CoA reductase; HMGCS, 3-hydroxy-3-
methylglutaryl-CoA synthase; FASN, fatty acid synthase; SCD, stearoyl-CoA
desaturase; FADS, fatty acid desaturase; ELOVL, fatty acid elongase; LDLR,
Low density lipoprotein receptor; CYP17A1, Cytochrome P450 17A1;
CYP19A1, Cytochrome P450 19A1.
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metabolism, as hepatic AR-knockout mice was characterized by
hepatic steatosis and insulin resistance (45). In addition, AR is
expressed by ovarian theca cells, granulosa cells, and oocyte (46),
and granulosa cell specific AR knockout mice exhibited estrous
cycle disorder and decreased fertilization rate (47). As a specific
androgen antagonist, flutamide competitively inhibits androgen
receptors and performs a direct blockage of androgenic effect (48).
In the present study, flutamide was found to ameliorate DHEA-
induced impairment of follicle development and ovulation, which
further supported thedirect inhibitionofandrogenexcesson follicle
development and suggested the involvement of AR signalling in
androgen-induced lipid metabolism and fatty acid synthetic
disorders in granulosa cell, which provides new insights into the
role of AR-driven metabolic dysfunction of granulosa cells in
PCOS pathogenesis.

Some limitations in our study, namely, limited number of
clinical samples from both control and women with PCOS, and
the functional differences between follicles cultured in vitro and
follicles grown in vivo should be taken into account. Given the
heterogeneity of clinical manifestations and the complexity of
pathogenesis in PCOS, it is hard to fully mimic the characteristics
of PCOS in vitro. In the current study, DHEA treatment simulate
the hyperandrogenic follicular environment of PCOS ovaries in
vitro, leading to impaired steroid hormone synthesis,
anovulation, and disruption of oocyte maturation, which were
partly consistent with the ovarian dysfunctions represented in
PCOS patients (49). Taken together, our in vitro follicle culture
system provided a new possibility for establishing the in vitro
model of PCOS follicle development, and more evidences are
needed to confirm this in vitro model.
CONCLUSION

In summary, ovarian dysfunction is the main cause for infertility
in women with PCOS, and the role of hyperandrogenism in
promoting ovarian dysfunction cannot be overlooked. Our study
illuminates the transcript characteristics of PCOS granulosa cell
and declares the interaction between ovarian steroidogenesis and
lipid metabolism and fatty acid biosynthetic process in granulosa
Frontiers in Endocrinology | www.frontiersin.org 12
cells, which is proved to be harmful for follicle growth and
ovulation in vitro. Furthermore, AR signalling may be the key
mediator of androgen action in hyperandrogenic environment.
Overall, these results provide new insights into the mechanism of
ovarian dysfunction in PCOS.
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