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Abstract: Clostridium estertheticum is a psychrotolerant, gram-positive, motile, anaerobic,
spore-forming, rod-shaped bacteria that causes blown pack spoilage (BPS). Spoilage occurs in
vacuum-packed meat without temperature abuse. Having been reported in the last 30 years in several
countries, BPS by Cl. estertheticum is a major issue around the world and presents a huge economic
impact on the meat industry. Despite being an important spoilage microorganism, studies on
Cl. estertheticum are challenged by numerous aspects. These include, lack or poor growth in laboratory
media, long culturing periods, and unpredictable isolation on the media. These factors hamper the
detection of Cl. estertheticum before occurrence of BPS, which further undermines efforts to prevent
the occurrence of BPS. Nevertheless, considerable developments have taken place with regard to
culture-independent methods. Although information on Cl. estertheticum is available, it is limited and
remains highly fragmented. Therefore, this review collates the available information and discusses
relevant aspects of Cl. estertheticum as a specific spoilage organism of BPS in vacuum-packed meat.
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1. Introduction

Meat is a highly perishable food commodity hence prone to microbial or chemical spoilage.
Meat spoilage refers to alteration of color and production of off-odors, slime, and exudates that lead to
unacceptable sensorial and organoleptic properties [1]. Spoilage of meat can have a significant effect on
the global food supply. In Europe and Northern America, approximately 21% of food losses are from
meat and meat products [2]. On the other hand, meat spoilage accounts for up to 40% of the production
losses incurred by the meat processors and retailers [3]. These factors result in huge financial losses to
the meat industry and are also a big issue in view of sustainability.

Meat spoilage results from a combination of microbial and chemical activities. Both are considered
important, although microbial activities are a major cause of spoilage especially for raw meats [4,5].
Meat is generally considered sterile before slaughter, but the environment in which slaughter
processes take place are not sterile, and therefore a degree of microbial contamination can occur [6],
resulting in microbial spoilage. Post-slaughter microbial quality of meat is primarily determined by
meat type, processing, distribution, and storage conditions [7]. Contaminated slaughter equipment,
personnel, and environmental factors, such as water, air, and soil, can cross contaminate meat with
spoilage-related bacteria species [8,9]. Upon storage, various intrinsic and extrinsic factors influence the
process of microbial meat spoilage. These include oxygen demand, pH, temperature, and competing
organisms [10]. The diversity of these ecophysiological factors affect the microbial growth dynamics,
including succession of microorganisms and the microbiota composition and ultimately the type and
rate of meat spoilage.
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The ecosystem of meat offers easily available substrates among them glycogen and amino acids.
The nutrients provide an enabling environment for diverse microbial growth and metabolism that
results in spoilage [11]. Despite this, only a fraction of the initial microbial population on meat,
which are referred to as ‘specific spoilage organisms’ (SSO) can develop during storage and cause
spoilage [12,13]. In meat, the SSO metabolize available substrates, with subsequent changes in meat
texture and production of volatile organic compounds responsible for off-odors [14]. SSO can also
cause accumulation of purge especially in vacuum-packing [15].

Vacuum-packing is used by meat processors to control meat spoilage during storage. Its ability
to prevent the growth of some food-borne pathogens and spoilage bacteria commonly present on
meat makes it a widely used meat packing method [16]. In the vacuum-packing system, an anaerobic
environment is created by removing oxygen followed by immediate sealing [17]. It is generally
recognized that meat packing systems are important extrinsic factors that determines SSO in stored
meats [18]. Effectively, exhaustion of oxygen alters the gaseous composition within the packs creating
hurdles to the aerobic bacteria while enabling the growth of facultative and strict anaerobes [19].

In addition to creating anaerobic conditions, vacuum-packing maintains the pH of meat between
5.0 to 6.0 under long storage [20]. Lactic acid content in meat, which results from metabolism of
glycogen by some anaerobic SSO [21], may also affect the growth of other SSO in vacuum packed meat
by not only lowering the pH of meat but also favoring microorganisms that can metabolize it [22].
Cold storage of vacuum-packed meat further selects for psychrophilic or psychrotolerant SSO [12].
The main SSO in vacuum-packed meat include Streptococcus spp., Brochothrix spp., Psychrobacter spp.,
and Acinetobacter spp. [8,23,24]. A range of psychrotolerant and psychrophilic Clostridia have also
been identified as SSO of chilled, vacuum-packed red meat [25].

Among the Clostridia, Clostridium estertheticum, Cl. algidicarnis, Cl. frigidicarnis, Cl. gasigenes,
Cl. Frigoris, and Cl. bowmanii are particularly involved in spoilage of chilled vacuum-packed meat and
meat products [26,27]. Spoilage of vacuum-packed meat by Cl. algidicarnis, Cl. frigoris, Cl. bowmanii,
and Cl. frigidicarmis occurs without gas production while spoilage by Cl. estertheticum and Cl. gasigenes
is characterized by gas production [25]. The spoilage by Cl. estertheticum and Cl. gasigenes is commonly
referred to as ‘blown pack spoilage’ (BPS), and Cl. estertheticum is regarded as the main cause of
BPS [28], making it the main SSO of BPS.

There are two recognized subspecies of Cl. estertheticum, Cl. estertheticum subp. estertheticum and
Cl. estertheticum subp. laramiense [29,30], both of which are linked to BPS [31]. The first reports of
BPS by Cl. estertheticum were made in 1989 of vacuum-packed raw beef in the UK and USA [32,33].
Later, BPS was reported in New Zealand [34] and Ireland [35], making it a global phenomenon with
an impact on the meat industry. The present study reviews the characteristics of Cl. estertheticum as
an SSO of BPS in refrigerated vacuum-packed meat.

2. Taxonomic Classification of Clostridium estertheticum

The Clostridium genus is a large, diverse group consisting of Gram-positive, spore-forming, obligate
anaerobic firmicutes [36]. The genus was created in 1880 with the type species Cl. butyricum [37].
Currently, the genus consists of over 230 recognized species and subspecies [38]. This is attributed
to the wide range of phenotypes displayed by the different species within the genus, which include
synthesis of quinone and cytochromes, varying glycine and cysteine (GC) content, and wide growth
temperature and acidity ranges [39]. The application of molecular methods, which include DNA–rRNA
pairing and 16S rRNA cataloguing studies, have revealed the phylogenetic diversity and resulted in
reclassification of some species within the genus [39,40]. Based on the phylogenetic analysis, the genus
is currently divided into Cluster I and Cluster II with less than 80 species, among them Cl. estertheticum,
falling into the Cluster I and are referred to as Clostridium sensu stricto [29,30].

Despite having been first identified and reported in the same year, different names were assigned
to the species Cl. estertheticum [32,33], possibly because they were isolated in different countries.
The organism identified in spoilt vacuum-packed meat in UK, was named Cl. estertheticum due to
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its ability to form esters [41]. On the other hand, the organism identified in spoilt vacuum-packed
meat in the USA was named Cl. laramie in reference to the City of Laramie, Wyoming [42]. Collins [41]
characterized the organism through 16S ribosomal RNA (rRNA) while Kalchayanand et al. [42]
characterized it through phenotypic tests and its GC content. The taxonomy of the two species was
later resolved when DNA–DNA hybridization experiments revealed that they shared 79% DNA–DNA
similarity and 16s RNA analysis revealed they formed a tight cluster, indicating a close relationship at
the species level [43]. Therefore, Spring [43] proposed that the two species be merged into one species,
named Cl. estertheticum, which was divided into two subspecies, Cl. estertheticum subsp. estertheticum
and Cl. estertheticum subsp. laramiense.

Sequencing of Cl. estertheticum DSM 8809 strain, revealed that it harbors a marginally higher
GC content than Cl. botulinum and Cl. perfringens [44]. On the other hand, Cl. estertheticum subsp.
estertheticum and Cl. estertheticum subsp. laramiense do not cluster together in a phylogenetic tree despite
their 16s RNA sequence being similar [30,43]. In particular, Cl. estertheticum subsp. laramiense clusters
with Cl. frigioris, while Cl. estertheticum subsp. estertheticum clusters with Cl. lacusfryxellense in the range
of 98.7–99.6% [30,43]. These differences have raised questions of classifying the two subspecies as
a single species under the current classification system [45]. With respect to phenotypic characteristics,
the two subspecies were initially reported to have differences in hemolytic activity, growth conditions,
spore position and fermentation products [41,43]. These differences formed the basis for characterizing
the two subspecies of Cl. estertheticum. It was later reported that the two organisms did not display
these differences [45]. This exemplifies the challenges faced when using phenotypic traits within the
Clostridium genus for taxonomic classification.

3. Isolation and Conventional Culturing of Clostridium estertheticum

Even though Cl. estertheticum was first reported in 1989, its isolation was hampered by its failure to
grow in laboratory media available at the time, which included thioglycollate agar, brain heart infusion
agar, lactose egg-yolk-milk agar, and trypticase peptone glucose yeast extract agar [32,33]. Similar
results were reported 20 years later by Byrne et al. [35], whereby their efforts to isolate Cl. estertheticum
from vacuum-packed purge in BPS samples using Colombia blood agar, tryptose sulphite cycloserine,
Shahidi-Ferguson perfringens agar, reinforced clostridial agar, and brain-heart infusion agar resulted
only in growth of other facultative anaerobic non-spore-forming bacteria other than Cl. estertheticum.
Nevertheless, pure cultures of Cl. estertheticum could initially be grown on Reinforced Clostridium
Medium (RCM) [41]. Later, Broda et al. [46] developed a pre-reduced RCM-based protocol that
involved treatment of samples with ethanol and heat to recover Clostridia spores after inactivating
other microorganisms and applied it to isolate Clostridium spp. from vacuum-packed purge samples.
This method was used by Boerema et al. [47] to isolate Cl. estertheticum from slaughterhouse processing
environments, which could then be identified on colony-based morphologies on agar supplemented
with blood. The method was later compared against a method that included an enrichment step
using pre-reduced peptone yeast extract glucose starch (PYGS) medium (Table 1) in isolation of
Cl. estertheticum from abattoir samples and it was shown that the enrichment step enhanced the
successful isolation of the organism [48].

While unsuccessful culturing of Cl. estertheticum has been attributed to the production of butanol
within isolation media that eventually kills the organism’s cells [49], there are currently no dedicated
media to overcome this challenge. Furthermore, there are no differential media for its identification due
to variable phenotypic characteristics between the two subspecies [41,43,45,48] and among psychrophilic
Clostridia [50]. For these reasons, Cl. estertheticum is not detectable through most culturing methods
that are presently available [51]. Therefore, culture-based methods for Cl. estertheticum have, over the
years, been based on non-specific media including PYGS medium and Columbia blood agar (CBA)
supplemented with 5% defibrinated horse blood [52]. On CBA, Cl. estertheticum forms colonies that are
round with often coarsely granulated margins, smooth, slightly raised, cream-white to greyish and
semitransparent to opaque and can either be or not be β-hemolytic [48]. The current conventional
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based culture processes are time consuming because Cl. estertheticum’s optimal temperature for growth
is low, hence production of a workable culture is slow, often taking up to three months [44]. Even with
a working culture, lack of a comprehensive list of bacterial species in currently available commercial kits,
which allow for phenotypic differentiation of the species, may further hamper the correct identification
of Cl. estertheticum [53].

Table 1. Composition of peptone yeast extract glucose starch.

Substance g/L or mL/L

Proteose Peptone 5
Tryptone 5

Yeast extract 10
Meat extract Powder 10

Glucose 2
Soluble starch 1

Resazurin 0.001
Cysteine HCl 0.2

Solution of Silicon Antifoaming Agent 20% 0.25
Salts Solution A 40
Salts Solution B 40

Salts Solution A
CaCl2·2H2O 0.265

MgSO4·7H2O 0.48
NaCl 2

Salts Solution B
KH2PO4 1

K2HPO4·3H2O 1.3
NaHCO3 10

4. Molecular and Non-Molecular Based Identification of Clostridium estertheticum

Despite the different challenges of culture-dependent method, molecular methods, such as
polymerase chain reaction (PCR), have proven reliable for detection of Cl. estertheticum. The success of
some the methods is dependent on an enrichment step before molecular analysis [28,54]. Collins [41]
described the first molecular based detection method for Cl. estertheticum, which was based on
the 16S rRNA gene that allowed the differentiation of Cl. estertheticum from Cl. acetobutylicum,
Cl. aurantibutyricum and Cl. tetanomorphum. Thereafter, two ribosomal DNA (rDNA) based methods
were developed to detect Cl. estertheticum in broth, meat or meat purge [55]. Broda et al. [34] developed
a 16S rDNA gene-based restriction fragment length polymorphism (RFLP) analysis for Cl. estertheticum
differentiation from Cl. botulinum, Cl. algidicarnis, Cl. putrefaciens, Cl. Vincentii, and Cl. fimetarium.
In an additional study, Broda et al. [56] used an 16S-23S rDNA internal transcribed spacer analysis to
detect Cl. estertheticum in the meat processing environment. Broda et al. [57] then described the first set
of primers, 16SEF and 16SER, which allowed the differentiation of Cl. estertheticum from other closely
related Clostridia and microorganisms found in meat without RFLP analysis. The protocol was also
suitable for the detection of Cl. estertheticum in commercial blown packs with a detection limit of 100
Cl. estertheticum cells per gram. This method was thereafter used and validated in different further
studies [47,58,59].

In an effort to reduce detection time for Cl. estertheticum, Brightwell and Clemens [28] developed
and validated a real-time PCR (RT-PCR) assay that was applicable in a variety of matrices including soil,
hides, feces and meat (Table 2). Bonke et al. [50] compared this RT-PCR assay to the conventional PCR
method described by Broda et al. [57], and showed that the RT-PCR assay was more sensitive. Based
on the RT-PCR developed by Brightwell and Clemens [28], Reid et al. [60] developed and validated
a further RT-PCR method for the simultaneous detection of low concentrations Cl. estertheticum,
Cl. gasigenes and Cl. ruminantium in meat juice and wet or dry swab samples. The RT-PCR could detect
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five spores per milliliter without the need of an enrichment step, hence also speeding up the time
taken to identify Cl. estertheticum considerably. Recently, Dorn-In et al. [25] developed a multiplex
quantitative-PCR (q-PCR) (Table 2) for the detection of Cl. estertheticum as well as Cl. frigoriphilum,
Cl. bowmanii or Cl. tagluense and showed that the q-PCR could be applied directly with DNA extracts of
meat juice from BPS samples.

Table 2. Primers and probes used to detect Cl. estertheticum.

Assay Primer and Probe Sequence Reference

PCR Primer
16SEF 5′-TCG GAA TTT CAC TTT GAG-3′ [57]
16SER 5′-AAG GAC TTC ACT CAT CTC TG-3′

RT-PCR
Primer

TMF 5′-CGG CGG ACG GGT GAG TAA C-3′

[28]
TMR 5′-CGG GTC CAT CTC AAA GTG RAA CT-3′

Probe 5′-FAM-CGT GGG TAA CCT GCC TCA AAG AGG
GG-TAMRA-3′

qPCR
Primer

TMF 5′-CGGCGGACGGGTGAGTAAC-3′

[25]Cl642-R 5′-CCTCTCCTGCACTCTAGA-3′

Probe Cest 5′-HEX-CAAAGGAATTTTTCGGAATTTCACTTTGAG-BHQ1-3′

PCR: Polymerase chain reaction; RT-PCR: Real time PCR; and qPCR; Quantitative PCR.

Cl. estertheticum subsp. estertheticum, and Cl. estertheticum subsp. laramiense could be differentiated
by SmaI digestion of their DNA followed by pulsed-field gel electrophoresis (PFGE) analysis [45].
The PFGE analysis could differentiate between the two subspecies because of their distinctly different
PFGE patterns, with a Dice similarity coefficient of 90%. Most recently, Amplified rDNA Restriction
Analysis (ARDRA), which is a modified RFLP method, was used to differentiate Cl. estertheticum from
other spoilage-associated species of Clostridia as well as other pyschrotolerant Clostridium species
associated with meat production [61]. Most recently, Matrix Assisted Laser Desorption Ionization-Time
of Flight Mass Spectrometry (MALDI-TOF MS) was used to identify Cl. estertheticum isolated from
sheep and cattle carcasses at different slaughtering stages, and the results verified using 16S rDNA
gene sequencing [53].

5. Growth and Metabolism of Clostridium estertheticum

Cl. estertheticum is an obligate anaerobe bacterium, hence it is sensitive to oxygen when in
vegetative state [62]. Being a psychrotolerant Clostridia, Cl. estertheticum grows in a temperature
range between −2 and 22 ◦C [63,64], and does not grow at 25 ◦C or above [41]. The optimum growth
temperature ranges between 6–15 ◦C [43,45]. The type of substrate may also influence the growth
temperatures given that Cl. estertheticum grew in meat juice at 20 ◦C but not in PYGS broth [63].
Cl. estertheticum grows at pH values in the range of 5.5 to 7.5 with maximum growth occurring between
5.8 and 6.8 [63]. In a growth assay in meat juice, Cl. estertheticum utilized both glucose and glycogen for
growth, but exhaustion of glucose resulted in cessation of growth with a simultaneous utilization of
lactate and production of CO2 and H2, but without growth probably due to low levels of acetate [65].
Cl. estertheticum produced butyrate, acetate, and formate from glucose and 1-butanol, ethanol, butyrate,
and formate from lactate [45]. Cl. estertheticum also utilized amino acids that do not contain Sulphur for
growth hence do not produce hydrogen sulfide [45]. Meat with a high pH and glucose concentration is
the most conducive food matrix for the growth of Cl. estertheticum [66].

6. Clostridium estertheticum as a Causative Agent of Blown Pack Spoilage

It has been previously reported that BPS during refrigeration can also be caused by gas-producing
Enterobacteriaceae, including Hafnia spp., Enterobacter spp., Serratia spp., Rahnella spp., and Ewingella
spp. [67]. Nevertheless, these species do not grow below 4 ◦C [68]. Even though different SSO, including
the Enterobacteriaceae and lactic acid bacteria, can cause BPS at refrigeration temperatures of 4 ◦C to
15 ◦C [69], the spoilage below 2 ◦C would be a major characteristic for BPS by Cl. estertheticum [46].
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A four-year survey of BPS in Ireland found that the prevalence of Cl. estertheticum was higher
than that of other Clostridia [70]. In another study, beef and lamb samples from Europe, North and
South America and Oceania were investigated and it was also found that Cl. estertheticum was the most
prevalent Clostridia [50]. A comparison among 11 Clostridium species found that all species were able
to grow on vacuum-packed meat but only Cl. estertheticum and Cl. frigioris caused BPS [71]. Similar
results were obtained by Silva et al. [72]. These reports emphasize that Cl. estertheticum is by far the
most common psychrotolerant Clostridia associated with BPS of vacuum-packed raw meats, hence
an SSO of refrigerated vacuum-packed meat below 2 ◦C.

Typically, a pack suffering from BPS caused by Cl. estertheticum contains copious quantities of
drip and gas, whereby the latter leads to gross pack distension [64]. Upon opening of dissented packs,
BPS may be characterized by either a highly unpleasant odor followed by a very strong fruity and dairy
odors [33,63]. The three odors cannot be used conclusively to characterize BPS by Cl. estertheticum given
that, despite its inability to produce hydrogen sulfide [45], an unpleasant odor was perceived from
a naturally spoilt pack [32], but absent in another study [63]. Spoiled meat in BPS packs is nonetheless
discolored and excessively tender [33].

BPS is not regarded as a safety hazard, but meat spoiled in this way has no commercial value
and causes significant financial losses to the meat industry [70]. Losses that are specifically caused by
Cl. estertheticum are likely to occur in the summer, which is the season with the highest prevalence
of Cl. estertheticum [70,73]. Although the safety risks associated with Cl. estertheticum are regarded to
be low, genome analysis revealed that Cl. estertheticum harbors multiple genes potentially related to
antibiotic, biocide and metal resistance, along with several predicted virulence factor genes [44].

7. Factors Affecting Blown Pack Spoilage by Clostridium estertheticum

Being anaerobic, BPS by Cl. estertheticum is primarily dependent on the presence of spores on
meat prior to packing and their ability to germinate within vacuum packs. As low as one spore
of Cl. estertheticum is sufficient to cause BPS [64]. It was suggested that 100 spores per cm2 of
Cl. estertheticum is a critical number for vacuum-packed meat [74]. The rate of spore germination,
hence the ratio of spores and vegetative cells during the ongoing process of BPS, can also influence
the occurrence of BPS [75]. In particular, both neutral pH and lactate increase the rate of spore
germination [62]. On the other hand, the maximum numbers of Cl. estertheticum in the spoilage flora of
vacuum-packed meat was shown to depend on the amount of glucose available for its growth [65].
Therefore, the amount of glucose in meat after slaughter is a key factor because it is the first substrate
preferably utilized by most bacteria growing in raw meat during refrigerated storage [14]. Moreover,
the ability of Cl. estertheticum to compete with microflora that utilize glucose, such as Leuconostoc
mesenteroides in vacuum-packed meat can influence the occurrence of BPS [76].

Storage temperature has an influence on the occurrence of BPS. In order to minimize meat spoilage
by anaerobic bacteria, a storage temperature of −1.5 ◦C has been recommended, and in vacuum-packed
meat, temperature above 0 ◦C is considered abusive [77]. The shelf life for vacuum-packed meat
stored at −1.5 ◦C ranges between 60 to 70 days [78]. Unfortunately, BPS by Cl. estertheticum can
occur in the absence of temperature abuse or packaging failure [59]. As low as 10 spores per cm2 of
Cl. estertheticum can reduce the shelf life of vacuum-packed meat to 44 days at −1.5 ◦C [64]. At 2 ◦C
and 15 ◦C, packs inoculated with Cl. estertheticum presented the first signs of BPS after 15 and 4 days of
storage, respectively [72]. While storage of meat at −1.5 ◦C evidently slows the rate of BPS, the time it
takes for the meat to reach −1.5 ◦C after chilling had no effect on the occurrence of BPS [75]. Another
temperature related factor is the application of heat shrink. This involves dipping vacuum packs of
meats in water at 85–90 ◦C, for 2–3 s immediately after pack sealing to improve the pack integrity [79].
This practice has been shown to accelerate the onset of BPS by Cl. estertheticum whereby gas was
produced in heat-treated packs much earlier than pack without heat treatment [80].

Occurrence of BPS can also be influenced by post-slaughter deboning of carcasses. Deboning can
either be hot-boning, which involves deboning before chilling or cold-boning, which involves deboning
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after chilling [81]. Hot-boning has numerous economic and technological benefits that include less
chill and drip loss, cooler space, electricity, and capital investment and results in high quality meat
in terms of high pH, water-holding capacity, and emulsifying capacity [82,83]. A comparison of
the two deboning techniques showed that hot-boning resulted in earlier detection of BPS caused by
Cl. estertheticum than in cold-boning [60].

8. Intervention and Inactivation Strategies to Reduce Blown Pack Spoilage by
Clostridium estertheticum

The process of BPS occurs suddenly and is only detectable when packs are dissented indicating
that contamination with Cl. estertheticum occurred pre-packing. Cl. estertheticum spores have been found
on carcasses including primal cuts [53,70]. However, meat model experiments show that meat without
artificially inoculated spores of Cl. estertheticum did not show signs of BPS during the entire duration
of the trial 12–15 weeks [51,58,79]. Evidently, contamination of meat with Cl. estertheticum spores
before packaging plays an important role in occurrence of BPS. These spores are usually transferred
onto dressed carcasses during slaughter and processing [47,56]. The control of Cl. estertheticum must
therefore be eliminated from the meat-processing environment, including stockyard pens, slaughter
floor and soil, by means of extensive cleaning and sanitizing [59]. BPS in a meat plant can also be
controlled by developing technologies to remove, kill, or inactivate spores of Cl. estertheticum present on
dressed carcasses [58]. Given that Cl. estertheticum spores are resistant to heat, freezing, many chemicals
and harsh environments [49], highly innovative and effective strategies would be required.

A comparison of three inactivation methods for Cl. estertheticum spores found that use of heat
alone or ultrasound followed by heat treatment resulted in incomplete spore inactivation while
peroxyacetic acid (POAA) sanitizer used with or without heat resulted in at least 4 log CFU per milliliter
Cl. estertheticum spores at ambient temperature [49]. A similar effect of POAA on Cl. estertheticum was
observed whereby BPS was delayed with a higher impact observed at −1.5 ◦C than 0 ◦C and 2 ◦C [58].
A POAA spray treatment on stainless steel coupons for 1 min resulted in a 2.3 log CFU per coupon
reduction of Cl. estertheticum spores [84]. In the same experiment, a hydrogen peroxide vapor treatment
for 150 min effectively inactivated Cl. estertheticum spores on the stainless-steel coupons [84]. On other
hand, a hydrogen peroxide (15%) gel treatment for ten minutes on raw and pre-washed fleece resulted
in a significant reduction of Cl. estertheticum spores [84]. Incubation of spores in meat juice at 80 ◦C for
10 min resulted in a 0.7 log CFU reduction in spore numbers, due to a likely loss of heat resistance of
germinating spores [62].

In an in vitro experiment, Cl. estertheticum was inhibited by cultures of Lactococcus lactis, Lactobacillus
sakei, Lactococcus garvieae and Leuconostoc carnosum but not by their cell-free fractions [73]. Similar results
were reproduced in a meat model system, whereby BPS was delayed in meat inoculation with both
Cl. estertheticum and L. lactis compared to inoculation with Cl. estertheticum only [51]. In an experiment
to compare commercially available antimicrobials, Auranta FV (AFV; composed of bioflavonoids,
citric, malic, lactic, and caprylic acids), Inbac-MDA (IMDA; composed of sodium diacetate, malic acid,
mono and diglycerides of fatty acids, salt and excipients), and sodium octanoate (SO) incorporated
in active packaging systems, found that AFV and SO prevented BPS within 42 days [85]. Times and
temperature combinations of 240 s at 100 ◦C were also shown to inactivate Cl. estertheticum spores [49].

While the application of heat shrink after vacuum-packing may activate spores, the step is
an invaluable processing step in meat processing. Initially, Bell et al. [80] recommended the application
of other techniques besides heat shrink to achieve similar benefits. Later, several authors studied the
practice in relation to BPS and recommended best practices for its application. Moschonas et al. [79]
recommended to perform it at 50 ◦C for 15 s since this procedure reduced BPS compared to higher
temperatures. On the other hand, Silva et al. [72] showed that a combination of high vacuum pressure
(9 mbar) and shrinking temperature (87 ◦C) can retard BPS.
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9. Conclusions

Blown pack spoilage is still a big challenge for the meat industry. Future studies improving the
culture conditions of Cl. estertheticum and exploring the genetic characteristics of Cl. estertheticum might
provide further insights into the mechanisms that can be explored to control the growth Cl. estertheticum
in vacuum-packs, and hence reduce the economic burden associated with BPS.
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